{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Foundations for statistical inference - Sampling distributions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this lab, we investigate the ways in which the statistics from a random sample of data can serve as point estimates for population parameters. We're interested in formulating a *sampling distribution* of our estimate in order to learn about the properties of the estimate, such as its distribution." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We consider real estate data from the city of Ames, Iowa. The details of every real estate transaction in Ames is recorded by the City Assessor's office. Our particular focus for this lab will be all residential home sales in Ames between 2006 and 2010. This collection represents our population of interest. In this lab we would like to learn about these home sales by taking smaller samples from the full population." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import warnings\n", "warnings.filterwarnings(\"ignore\")\n", "\n", "import numpy as np\n", "import pandas as pd\n", "import io\n", "import requests\n", "\n", "df_url = 'https://raw.githubusercontent.com/akmand/datasets/master/openintro/ames.csv'\n", "url_content = requests.get(df_url, verify=False).content\n", "ames = pd.read_csv(io.StringIO(url_content.decode('utf-8')))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's take a quick peek at the first few rows of the data." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OrderPIDMS.SubClassMS.ZoningLot.FrontageLot.AreaStreetAlleyLot.ShapeLand.Contour...Pool.AreaPool.QCFenceMisc.FeatureMisc.ValMo.SoldYr.SoldSale.TypeSale.ConditionSalePrice
0152630110020RL141.031770PaveNaNIR1Lvl...0NaNNaNNaN052010WDNormal215000
1252635004020RH80.011622PaveNaNRegLvl...0NaNMnPrvNaN062010WDNormal105000
2352635101020RL81.014267PaveNaNIR1Lvl...0NaNNaNGar21250062010WDNormal172000
3452635303020RL93.011160PaveNaNRegLvl...0NaNNaNNaN042010WDNormal244000
4552710501060RL74.013830PaveNaNIR1Lvl...0NaNMnPrvNaN032010WDNormal189900
\n", "

5 rows × 82 columns

\n", "
" ], "text/plain": [ " Order PID MS.SubClass MS.Zoning Lot.Frontage Lot.Area Street \\\n", "0 1 526301100 20 RL 141.0 31770 Pave \n", "1 2 526350040 20 RH 80.0 11622 Pave \n", "2 3 526351010 20 RL 81.0 14267 Pave \n", "3 4 526353030 20 RL 93.0 11160 Pave \n", "4 5 527105010 60 RL 74.0 13830 Pave \n", "\n", " Alley Lot.Shape Land.Contour ... Pool.Area Pool.QC Fence Misc.Feature \\\n", "0 NaN IR1 Lvl ... 0 NaN NaN NaN \n", "1 NaN Reg Lvl ... 0 NaN MnPrv NaN \n", "2 NaN IR1 Lvl ... 0 NaN NaN Gar2 \n", "3 NaN Reg Lvl ... 0 NaN NaN NaN \n", "4 NaN IR1 Lvl ... 0 NaN MnPrv NaN \n", "\n", " Misc.Val Mo.Sold Yr.Sold Sale.Type Sale.Condition SalePrice \n", "0 0 5 2010 WD Normal 215000 \n", "1 0 6 2010 WD Normal 105000 \n", "2 12500 6 2010 WD Normal 172000 \n", "3 0 4 2010 WD Normal 244000 \n", "4 0 3 2010 WD Normal 189900 \n", "\n", "[5 rows x 82 columns]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ames.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that there are quite a few variables in the data set, enough to do a very in-depth analysis. For this lab, we'll restrict our attention to just two of the variables: the above ground living area of the house in square feet (`Gr.Liv.Area`) and the sale price (`SalePrice`). To save some effort throughout the lab, create two variables with short names that represent these two variables" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "area = ames['Gr.Liv.Area']\n", "price = ames['SalePrice']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's look at the distribution of area in our population of home sales by calculating a few summary statistics and making a histogram." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 2930.000000\n", "mean 1499.690444\n", "std 505.508887\n", "min 334.000000\n", "25% 1126.000000\n", "50% 1442.000000\n", "75% 1742.750000\n", "max 5642.000000\n", "Name: Gr.Liv.Area, dtype: float64" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "area.describe()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABpAAAANZCAYAAAAI/H0aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AABp70lEQVR4nOzde5TX5WHn8c/MAAMWCA4gA6M1CgUvqIsgqcluRDC0YsS4J2tttukWc9ly0u1uz6knzWk8SRp7sBt317Sb5dSTLjlnbdZevGK02ZWLrYlRjGmaRgWZEqMDM1xGwMtcnMv+wc6v8zjDzKDozJjX66/v/L7P9/k9P87wmJw33++vqre3tzcAAAAAAADw/1WP9gIAAAAAAAAYWwQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgMKE0V4Ab15vb296enpGexnASVRTU5Mk6e7uHuWVAGORPQIYjn0CGIo9AhiKPQLGt+rq6lRVVZ3UOQWkcaynpyctLS2jvQzgJKmurk59fX2S5MCBAwIxULBHAMOxTwBDsUcAQ7FHwPg3Z86cSgg+WTzCDgAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUJjwdk5+5MiR7N69O7t3705jY2MaGxvz8ssvJ0kuu+yyfOYznxl2jo6Ojvz93/99/uEf/iH/9E//lObm5rS3t2fKlCmZO3duLrrooqxevTozZswY0Zo6OjryN3/zN/ne976X5ubmdHV1ZebMmbn44otz5ZVXZvbs2SOa58CBA3nooYfy1FNP5dChQ5kwYULq6+tz6aWX5pd+6ZdSW1s7onkAAAAAAADGmrc1IH3qU596S9c///zzuemmm9Le3j7g3CuvvJLnnnsuzz33XL71rW/l3//7f5/3v//9Q87X3NycDRs2ZN++fcXre/fuzd69e7Nly5b89m//dpYuXTrkPE8++WT+5E/+JG1tbZXXOjo6KpFsy5Yt+dznPpf6+voT+LQAAAAAAABjw9sakPqbNWtWGhoa8sMf/nDE17S1tVXi0aJFi7J06dKcffbZmTZtWo4ePZrHH388W7ZsSVtbW/74j/84U6ZMyZIlS447V/94tGrVqnzgAx/IpEmT8o//+I+5995709bWlttuuy1f/vKX8973vnfQefbs2ZPbbrstnZ2dmTx5cj7ykY9k8eLF6ezszHe+851s2bIl+/bty4YNG3LLLbdkypQpJ/YHBQAAAAAAMMre1oD00Y9+NPPnz8/8+fMzY8aM7N+/P7/1W7814uurqqpy6aWX5t/8m3+T008/fcD5iy66KEuWLMmtt96anp6e/M//+T/zx3/8x6mqqhow9v7776/Eo1/7tV/L2rVrK+cWLlyY888/P1/84hfT0dGRb3zjG/niF7846Jq+8Y1vpLOzMzU1Nfn85z+fhQsXVs4tXrw4c+fOzR133JF9+/Zl8+bNue6660b8eQEAAAAAAMaC6rdz8uuuuy5Lly4d8fcTvdGiRYvyO7/zO4PGoz6XXHJJli9fniRpaWnJnj17Bozp6urKQw89lCRpaGjIhz/84UHf6/LLL0+SPP3009m9e/eAMbt3784zzzyTJLn88suLeNTnwx/+cBoaGpIkDz30ULq6uob7mAAAAAAAAGPK2xqQ3innn39+5bilpWXA+R//+Md57bXXkiSXXXZZqqsH/9grVqyoHD/xxBMDzvd/rS82vVF1dXUuu+yyJMmrr76aH//4x8N/AAAAAAAAgDHkXRGQ+t/lM1gcevbZZyvH55133nHnmT9/fmpra5MkO3fuHHC+77Xa2tqcffbZx52n/3sMNg8AAAAAAMBY9q4ISE8//XTluO/xcf29+OKLQ57vU1NTk/r6+iRJU1PTceepr69PTU3NceeZN2/eoO8NAAAAAAAwHkwY7QW8VT/5yU/y1FNPJUl+/ud/ftDvS2ptbU1y7M6hn/u5nxtyvpkzZ+b555/P0aNH8/rrr2fixIlJks7Ozrz88suVMUOZOnVqamtr09HRkUOHDp3Q5xnJ+BkzZlQC1vEexweMP/3/Pvu7DbyRPQIYjn0CGIo9AhiKPQIYzLgOSK+//nr+9E//ND09PUmS66+/ftBxbW1tSZLJkycPO2ffI+ySpL29vRKQ2tvbK6+PZJ7Jkyeno6OjuG4k1q9fP+yYjRs3ZubMmcUdU8C7y2mnnTbaSwDGMHsEMBz7BDAUewQwFHsE0Gdc5+Q/+7M/S2NjY5Lksssuy7JlywYd9/rrrydJJkwYvpf1BaPk2F1Hgx2PZJ6+Mf2vAwAAAAAAGA/G7R1I99xzT7Zu3ZokmT9/fj7xiU8cd2xfFOrq6hp23r7YlCSTJk0a9Hgk8/SN6X/dSGzcuHHYMTNmzEiSdHd358CBAyc0PzB2VVdXV/6Vz/79+yt3VwIk9ghgePYJYCj2CGAo9ggY/2bPnl356puTZVwGpP/7f/9v/vf//t9JkoaGhnzuc58b8rFyU6ZMSZIRPU6uo6Ojctx/zv7HI5mnb8xIHnfX33Dfr/RGNnN4d+rp6fH3GzguewQwHPsEMBR7BDAUewTQZ9w9wu7RRx/N17/+9STHitrnP//5TJ8+fchr6urqkhyLQ6+++uqQYw8dOpQkmT59evE4u0mTJmXatGnFmON55ZVXKiHqRIMQAAAAAADAaBtXAenJJ5/M1772tfT29ubUU0/NTTfdNKJAc/rpp1eOm5qajjuuu7s7zc3NSY7d2XS8eZqbm9Pd3X3cefbu3TvoewMAAAAAAIwH4yYg/ehHP8p/+2//Ld3d3Zk2bVo+//nPp76+fkTXnnPOOZXjp59++rjjGhsbK3cOLVq0aMD5vtc6OjryT//0T8edp/97DDYPAAAAAADAWDYuAtLOnTvzn//zf87rr7+eU045Jb//+7+fM844Y8TXn3/++TnllFOSJI888kh6e3sHHbd9+/bK8fLlywec7//atm3bBp2jp6cnjzzySJLk537u53L++eePeJ0AAAAAAABjwZgPSD/5yU9yyy23pKOjI7W1tfm93/u9nH322Sc0x4QJE3LllVcmOfYIu82bNw8Ys2vXrkoUOu+887JgwYIBYxYsWJBzzz03ybGAtGvXrgFjHnjggcpj8q688spMmDDhhNYKAAAAAAAw2t7WuvHss89WvlMoSY4ePVo5bm5uLu74SZIVK1YUPzc3N+cP//AP8+qrryZJrr/++pxyyin56U9/etz3fM973pP3vOc9A15fu3Ztvvvd72bfvn2544470tzcnPe///2ZNGlSfvzjH+eee+5Jd3d3Jk2alN/4jd847vy/8Ru/kZtuuimdnZ25+eabc+211+b8889PZ2dnvvvd7+bhhx9OksydOzdXX331cecBAAAAAAAYq6p6j/c8t5Pga1/7WuVxbiPxl3/5l8XP27dvz//4H//jhN7zox/9aK677rpBzzU3N2fDhg3Zt2/foOenTJmS3/7t387SpUuHfI8nn3wyf/Inf5K2trZBz8+dOzef+9znRvwdTW9Wd3d3Wlpa3tb3AN451dXVlX2jubk5PT09o7wiYCyxRwDDsU8AQ7FHAEOxR8D4N2fOnNTU1JzUOX+mnq9WX1+fP/qjP8q3v/3tfO9730tzc3O6uroyc+bMLFmyJGvWrMns2bOHnWfZsmW59dZb8+CDD+app55Ka2trJkyYkPr6+vziL/5ifvmXfzm1tbXvwCcCAAAAAAA4+d7WO5B4e7kDCd5d/GsfYCj2CGA49glgKPYIYCj2CBj/3o47kKpP6mwAAAAAAACMewISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgMGG0FwAwWtrb2/P888+P9jIqqqurc+jQoSTJwYMH09PTM8orYjhnnnlmJk+ePNrLAAAAAICTTkACfmY9//zzWbly5Wgvg3Fs69atWbRo0WgvAwAAAABOOo+wAwAAAAAAoCAgAQAAAAAAUPAIO4D/7+tL5+fMU2pHexmMYc+/1pFPfr9xtJcBAAAAAG87AQng/zvzlNosmjZltJcBAAAAADDqPMIOAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAwoTRXgAAjBedPT3Fz3v27BmllTBenXnmmZk8efJoLwMAAABgWAISAIzQ3rbO4udPfOITo7QSxqutW7dm0aJFo70MAAAAgGF5hB0AAAAAAAAFAQkAAAAAAICCR9gBwJv09aXzc+YptaO9DMaw51/ryCe/3zjaywAAAAA4YQISALxJZ55Sm0XTpoz2MgAAAADgpPMIOwAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQmPB2Tn7kyJHs3r07u3fvTmNjYxobG/Pyyy8nSS677LJ85jOfOaH5fvCDH+Thhx9OY2Njjh49munTp2f+/Pm54oorsmTJkhHN0d3dnS1btuTRRx9NU1NT2tvbU1dXlwsuuCBXXnllzjjjjBHNc/To0Tz00EPZsWNHDhw4kCSZPXt2LrnkkqxZsybTpk07oc8GAAAAAAAwVrytAelTn/rUSZmnp6cnt99+e7Zu3Vq83tramtbW1uzYsSMrV67Mpz/96VRXH/+mqqNHj2bDhg1pbGwsXm9paUlLS0seeeSR3HDDDVm1atWQ63nuuefyla98JYcPHy5e/+lPf5qf/vSn2bp1a2688cYsWLDgxD4oAAAAAADAGPC2BqT+Zs2alYaGhvzwhz884WvvvPPOSjw666yzsnbt2syZMyctLS25//77s2fPnmzdujXTp0/Pxz72sUHn6Onpya233lqJR8uXL88VV1yRqVOn5rnnnsvdd9+dI0eO5Pbbb09dXd1x72g6ePBg/uiP/ihHjx5NTU1NrrrqqixdujRJ8v3vfz/f+ta38tJLL+WP/uiPcsstt2TmzJkn/HkBAAAAAABG09sakD760Y9m/vz5mT9/fmbMmJH9+/fnt37rt05ojr1792bz5s1Jkvnz5+dLX/pSJk2alCRZsGBBli1bli9+8YtpbGzM5s2bs3LlytTX1w+YZ/v27Xn22WeTJKtXr84nP/nJyrkFCxZkyZIl+exnP5u2trZs2rQpF154YWpqagbMc+edd+bo0aNJkt/+7d/OpZdeWjl37rnn5uyzz85tt92WI0eO5M477zzhx/QBAAAAAACMtuM/7+0kuO6667J06dLMmDHjTc/x4IMPpru7O0mybt26SjzqU1tbm3Xr1iU59v1GDzzwwKDz9EWoqVOn5uMf//iA8/X19bn22muTJM3NzXniiScGjDl8+HD+7u/+Lkly0UUXFfGoz/vf//5cdNFFSZK//du/HfCYOwAAAAAAgLHubQ1Ib1Vvb2927NiRJGloaMjChQsHHbdw4cLMmzcvSfLkk0+mt7e3OL937940NTUlSS699NLU1tYOOs+KFSsqx4MFpP5zX3755cddd988vb29efLJJ487DgAAAAAAYCwa0wFp//79eemll5IcezzcUM4777wkSWtraw4cOFCc63t0Xf9xg5kxY0bmzp2bJNm5c+eA8yOdp/+5/tcAAAAAAACMB2/rdyC9VS+++GLluKGhYcixfXcg9V132mmnval5Ghoasm/fvhw6dCjt7e2ZPHnygHlOOeWUIR/Ld+qpp2bKlClpa2ur3Pk0UocOHRp2zIwZMyrfz1RdPaYbIIxp/v4A77Tq6uo3vff0v87+BQzGPgEMxR4BDMUeAQxmTAek/jFl5syZQ46dNWvWoNclx+5K6lNXVzfkPH3v09vbm9bW1iJM9c073Fr61vPCCy+MKAj1t379+mHHbNy4MTNnzkxNTU3q6+tPaH7gn53o30+At2rWrFkn5b/d/f+hDMBg7BPAUOwRwFDsEUCfMZ2T29vbK8f97wQaTP/vNep/XZK0tbWdlHn6fh5ujv7zvHEOAAAAAACAsW5M34HU2dlZOZ4wYeilTpw4cdDrkuT1118/KfP0/TzcHP3neeMcw9m4ceOwY/oen9fd3T3g+56AkTt48OBoLwH4GXPw4ME0Nze/qWurq6sr/xJw//796enpOZlLA94F7BPAUOwRwFDsETD+zZ49u/LVNyfLmA5IkyZNqhx3dXUNObZ/JOp/XVJGoa6urgHnRzrPpEmT0tHRMexa+s8z1HsNZiSPx+vPZg5vnr8/wDutp6fnpOw9J2se4N3LPgEMxR4BDMUeAfQZ04+w6/+ouOEeBdfR0THodUkyZcqUkzJP388jeSxd3zwjedwdAAAAAADAWDKmA1L/u3GG+7L7/o+ieuNdPHV1dZXj1tbWIefpe5+qqqriuv7zDreW/us50TuKAAAAAAAARtuYDkinn3565bipqWnIsXv37h30uhOdp+/8zJkzB9w91DfPa6+9lsOHDx93jpdeeiltbW1JkoaGhiHfDwAAAAAAYKwZ0wHptNNOy6mnnpokeeaZZ4Yc23e+rq4us2fPLs6dc845leOnn376uHMcPnw4+/btS5IsWrRowPmRztP/XP9rAAAAAAAAxoMxHZCqqqpyySWXJDl2Z9CuXbsGHbdr167KnUPLli1LVVVVcX7evHmVO4Eee+yx4nuO+tu+fXvlePny5QPO959727Ztx1133zxVVVVZtmzZcccBAAAAAACMRWM6ICXJmjVrUl19bJmbNm1KZ2dncb6zszObNm1KktTU1OSqq64adJ6rr746SfLKK6/kjjvuGHC+ubk599xzT5Kkvr5+0IA0Y8aM/Kt/9a+SJD/84Q/zve99b8CYxx57LD/84Q+TJB/84AczY8aMkXxMAAAAAACAMWPC2zn5s88+m+bm5srPR48erRw3NzcXd/wkyYoVKwbMMW/evKxduzb33ntvGhsbc9NNN+Waa67JnDlz0tLSkvvuuy979uxJciwSzZ07d9C1rFixItu2bcvOnTvz7W9/O4cPH86qVasyderU7N69O3fddVfa2tpSVVWVdevWpaamZtB5rr/++vz93/99jh49mq9+9atpbGzM0qVLkyTf//7388ADDyRJpk+fnuuvv37Ef1YAAAAAAABjxdsakLZs2ZJHHnlk0HM7d+7Mzp07i9cGC0jJsWhz5MiRbNu2LXv27Mltt902YMzKlSuHDDbV1dW58cYbs2HDhjQ2Nubxxx/P448/XoyZOHFibrjhhixZsuS488yaNSuf/exn85WvfCWHDx/Offfdl/vuu68YM2PGjNx4442ZOXPmcecBAAAAAAAYq97WgHSyVFdXZ/369Xnf+96Xhx9+OI2NjXn55Zczbdq0zJ8/Px/60IeGjD59pk+fnptvvjlbtmzJo48+mqamprS3t6euri6LFy/OmjVrcsYZZww7zy/8wi/k1ltvzYMPPpgdO3bkwIEDSZLTTjsty5Yty1VXXZVp06a95c8NAAAAAAAwGt7WgPSZz3wmn/nMZ07afBdffHEuvvjitzRHTU1NVq9endWrV7+lefoeUecxdQAAAAAAwLtN9WgvAAAAAAAAgLFFQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAIUJo72AE9HV1ZVHHnkk3/ve9/L888/nlVdeSU1NTerq6rJo0aKsWrUqixYtGnaeH/zgB3n44YfT2NiYo0ePZvr06Zk/f36uuOKKLFmyZERr6e7uzpYtW/Loo4+mqakp7e3tqaurywUXXJArr7wyZ5xxxlv9uAAAAAAAAKNi3ASkAwcO5JZbbskLL7xQvN7V1ZV9+/Zl37592b59e375l38569atS1VV1YA5enp6cvvtt2fr1q3F662trWltbc2OHTuycuXKfPrTn0519fFvzjp69Gg2bNiQxsbG4vWWlpa0tLTkkUceyQ033JBVq1a9hU8MAAAAAAAwOsZFQOrq6iri0Zlnnpmrrroq8+bNS3t7e5599tls3rw5HR0d+Zu/+ZvU1dXlIx/5yIB57rzzzko8Ouuss7J27drMmTMnLS0tuf/++7Nnz55s3bo106dPz8c+9rFB19LT05Nbb721Eo+WL1+eK664IlOnTs1zzz2Xu+++O0eOHMntt9+eurq6Ed/RBAAAAAAAMFaMi4D05JNPVuLRwoUL8wd/8AfFHUIXXnhhli1blt///d9Pd3d37rvvvlx99dWpqampjNm7d282b96cJJk/f36+9KUvZdKkSUmSBQsWZNmyZfniF7+YxsbGbN68OStXrkx9ff2AtWzfvj3PPvtskmT16tX55Cc/WTm3YMGCLFmyJJ/97GfT1taWTZs25cILLyzWAQAAAAAAMNYd/zltY8jOnTsrxx/5yEcGfbzc2WefnaVLlyZJXn311TQ1NRXnH3zwwXR3dydJ1q1bV4lHfWpra7Nu3bokx77f6IEHHhh0LX0RaurUqfn4xz8+4Hx9fX2uvfbaJElzc3OeeOKJEX1GAAAAAACAsWJcBKSurq7K8Zw5c447rv+5/tf09vZmx44dSZKGhoYsXLhw0OsXLlyYefPmJTl211Nvb29xfu/evZUwdemll6a2tnbQeVasWFE5FpAAAAAAAIDxZlwEpL6okyQtLS3HHdd3rqqqqnj83P79+/PSSy8lSc4999wh3+u8885LkrS2tubAgQPFub5H1/UfN5gZM2Zk7ty5Scq7pwAAAAAAAMaDcRGQPvCBD2TKlClJkvvuuy89PT0DxuzZsydPPfVUZfwpp5xSOffiiy9WjhsaGoZ8r/6xqv91JzpP3/lDhw6lvb19yLEAAAAAAABjyYTRXsBITJ8+Pf/hP/yHfPWrX83OnTvzuc99LmvWrMncuXPT3t6enTt35oEHHkhXV1fOOuus/Pqv/3px/aFDhyrHM2fOHPK9Zs2aNeh1ybG7kvrU1dUNOU/f+/T29qa1tbUIU0N543sOZsaMGampqUmSQb8PChgZf3+Ad1p1dfWb3nv6X2f/AgZjnwCGYo8AhmKPAAYzLgJSkixbtiy33HJLNm/enG3btuVrX/tacf4973lPfuVXfiWrVq0a8N1E/e8Amjx58pDv0//aN9451NbWdlLmGcr69euHHbNx48bMnDkzNTU1xaP6gBMzkmALcDLNmjXrpPy3+7TTTjsJqwHezewTwFDsEcBQ7BFAn3GTk7u6uvLII4/kySefTG9v74DzR44cyd/93d/lRz/60YBznZ2dleMJE4ZuZhMnThz0uiR5/fXXT8o8AAAAAAAAY9m4uAOpvb09GzZsyDPPPJPq6uqsXbs2l19+eebMmZPOzs7s3r07f/3Xf51nn302X/nKV/Lxj388H/7whyvXT5o0qXLc1dU15Hv1j0T9r0vKKNTV1TXg/EjnGcrGjRuHHTNjxowkSXd3dw4cODDiuYHSwYMHR3sJwM+YgwcPprm5+U1dW11dXfmXgPv37x/0OyGBn232CWAo9ghgKPYIGP9mz55d+eqbk2VcBKS/+qu/yjPPPJMk+c3f/M2sWLGicm7ChAm58MILc/755+fmm2/Oj3/84/yv//W/snjx4rz3ve9NUj5ubrjHyXV0dFSO3/iYuilTphTzDBWGhppnKMN9R9Mb2czhzfP3B3in9fT0nJS952TNA7x72SeAodgjgKHYI4A+Y/4Rdr29vdm2bVuSZO7cuUU86q+mpia/8iu/Urlm+/btlXP9o8xw33nS/46EN8acurq6ynFra+uQ8/S9T1VVVXEdAAAAAADAWDfmA9KRI0fyyiuvJEnOOuusIceeffbZleO9e/dWjk8//fTKcVNT05BzHO+6E52n7/zMmTNP6A4kAAAAAACA0TbmA1J19T8vsbu7e8ix/c/3v+60007LqaeemiSVR+EdT9/5urq6zJ49uzh3zjnnVI6ffvrp485x+PDh7Nu3L0myaNGiId8PAAAAAABgrBnzAWnq1KmV7x7atWvXkBGpf9Tp+9K35Nhj5C655JIkx+4M2rVr16DX79q1q3Ln0LJly1JVVVWcnzdvXhoaGpIkjz32WPE9R/31f3ze8uXLj7teAAAAAACAsWjMB6Tq6upcfPHFSZKXXnopd99996DjXnnllfz5n/955eelS5cW59esWVO5K2nTpk3p7Owsznd2dmbTpk1Jjn2f0lVXXTXo+1x99dWV97vjjjsGnG9ubs4999yTJKmvrxeQAAAAAACAcWfCaC9gJD760Y/mySefTEdHR/7qr/4q//RP/5TLLrssc+bMyeuvv55du3blwQcfzMGDB5MkF1xwQS666KJijnnz5mXt2rW5995709jYmJtuuinXXHNN5syZk5aWltx3333Zs2dPkmORaO7cuYOuZcWKFdm2bVt27tyZb3/72zl8+HBWrVqVqVOnZvfu3bnrrrvS1taWqqqqrFu3LjU1NW/vHw4AAAAAAMBJNi4CUkNDQ2688cZ89atfzcsvv5zvf//7+f73vz/o2MWLF+d3fud3Bj13/fXX58iRI9m2bVv27NmT2267bcCYlStX5vrrrz/uWqqrq3PjjTdmw4YNaWxszOOPP57HH3+8GDNx4sTccMMNWbJkycg/JAAAAAAAwBgxLgJSklx44YW57bbbsnXr1vz93/99Xnjhhbz66qupqanJjBkzMn/+/PzLf/kvB/3uoj7V1dVZv3593ve+9+Xhhx9OY2NjXn755UybNi3z58/Phz70oRFFn+nTp+fmm2/Oli1b8uijj6apqSnt7e2pq6vL4sWLs2bNmpxxxhkn+48AAAAAAADgHTFuAlKSTJs2Lddcc02uueaatzTPxRdfXPlepTerpqYmq1evzurVq9/SPAAAAAAAAGNN9WgvAAAAAAAAgLFFQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgMKE0V7Am3Hw4MFs3bo1Tz31VA4cOJD29vZMnz49s2fPzvnnn59LL700P//zP3/c63/wgx/k4YcfTmNjY44ePZrp06dn/vz5ueKKK7JkyZIRraG7uztbtmzJo48+mqamprS3t6euri4XXHBBrrzyypxxxhkn6+MCAAAAAAC8o8ZdQHrooYfyzW9+Mx0dHcXrhw4dyqFDh/Lss8+mra0tv/EbvzHg2p6entx+++3ZunVr8Xpra2taW1uzY8eOrFy5Mp/+9KdTXX38m7OOHj2aDRs2pLGxsXi9paUlLS0teeSRR3LDDTdk1apVb/6DAgAAAAAAjJJxFZDuuuuu/MVf/EWSZO7cuVm1alUWLFiQU045JS+//HL27NmTHTt2pKqqatDr77zzzko8Ouuss7J27drMmTMnLS0tuf/++7Nnz55s3bo106dPz8c+9rFB5+jp6cmtt95aiUfLly/PFVdckalTp+a5557L3XffnSNHjuT2229PXV3diO9oAgAAAAAAGCvGTUD60Y9+VIlHH/zgB/Obv/mbmTChXP4FF1yQtWvXpqura8D1e/fuzebNm5Mk8+fPz5e+9KVMmjQpSbJgwYIsW7YsX/ziF9PY2JjNmzdn5cqVqa+vHzDP9u3b8+yzzyZJVq9enU9+8pOVcwsWLMiSJUvy2c9+Nm1tbdm0aVMuvPDC1NTUnJw/BAAAAAAAgHfA8Z/TNob09PTk61//epLkzDPPzPr16wfEo/4GO/fggw+mu7s7SbJu3bpKPOpTW1ubdevWJTn2/UYPPPDAoHP3RaipU6fm4x//+IDz9fX1ufbaa5Mkzc3NeeKJJ4b7eAAAAAAAAGPKuAhI//AP/5B9+/YlSa655poTvqOnt7c3O3bsSJI0NDRk4cKFg45buHBh5s2blyR58skn09vbW5zfu3dvmpqakiSXXnppamtrB51nxYoVlWMBCQAAAAAAGG/GRUB67LHHkiRVVVVZunRp5fVXXnkl+/btyyuvvDLk9fv3789LL72UJDn33HOHHHveeeclSVpbW3PgwIHiXN+j6/qPG8yMGTMyd+7cJMnOnTuHfD8AAAAAAICxZlx8B9Jzzz2XJJk9e3amTJmSRx99NPfcc09eeOGFypi5c+dm1apVufLKKzNx4sTi+hdffLFy3NDQMOR79d2B1Hfdaaed9qbmaWhoyL59+3Lo0KG0t7dn8uTJQ47vc+jQoWHHzJgxo3IXVnX1uGiAMCb5+wO806qrq9/03tP/OvsXMBj7BDAUewQwFHsEMJgxH5B6enoqj42bNm1aNm3alIceemjAuH379uWOO+7Ijh078nu/93v5uZ/7ucq5/lFm5syZQ77frFmzBr0uOXZXUp+6uroh5+l7n97e3rS2thZhaijr168fdszGjRszc+bM1NTUpL6+fkTzAgONJNgCnEyzZs06Kf/t7v8PXAAGY58AhmKPAIZijwD6jPmA9Nprr1W+i+inP/1pGhsbc+qpp+bXfu3XsmTJkkyaNCm7d+/On//5n+e5557Lzp07s3Hjxvzu7/5uZY729vbK8XB3AvX/XqP+1yVJW1vbSZkHAAAAAABgLBvzAamjo6Ny/Prrr6e2tjZf+MIXijt6zjvvvHzhC1/I7//+7+f555/PE088keeeey6/8Au/kCTp7OysjJ0wYeiP3P/xd/2v63v/kzHPUDZu3DjsmBkzZiRJuru7B3xPEzByBw8eHO0lAD9jDh48mObm5jd1bXV1deVfAu7fvz89PT0nc2nAu4B9AhiKPQIYij0Cxr/Zs2dXvvrmZBnzAemN32e0cuXKQR8HN2nSpPzqr/5qbrnlliTJd7/73UpAmjRpUmVcV1fXkO/XPxL1v+6Na+nq6hpwfqTzDGW4R+y9kc0c3jx/f4B3Wk9Pz0nZe07WPMC7l30CGIo9AhiKPQLoM+a/EW3KlCnFzxdddNFxxy5evLhS2BobGyuv93/c3HCPk+t/x9MbH1PXfy1vZR4AAAAAAICxbMwHpIkTJ2b69OmVn4e6Q2fSpEmZNm1akuTo0aODXnPo0KEh36//I63e+F51dXWV49bW1iHn6Xufqqqq4joAAAAAAICxbswHpCQ544wzKsfD3T7Zd77/s/5OP/30ynFTU9OQ1+/du3fQ6050nr7zM2fOdAcSAAAAAAAwroyLgHTuuedWjltaWo477rXXXsvLL7+cpLxb6LTTTsupp56aJHnmmWeGfK++83V1dZk9e3Zx7pxzzqkcP/3008ed4/Dhw9m3b1+SZNGiRUO+HwAAAAAAwFgzLgLS+973vsrxE088cdxxTzzxRHp7e5OUsaeqqiqXXHJJkmN3Bu3atWvQ63ft2lW5c2jZsmWpqqoqzs+bNy8NDQ1Jkscee6z4nqP+tm/fXjlevnz5cdcLAAAAAAAwFo2LgHTmmWdmyZIlSZLvfOc7+dGPfjRgzOHDh/MXf/EXSZIJEybk8ssvL86vWbMm1dXHPu6mTZvS2dlZnO/s7MymTZuSHHv83VVXXTXoWq6++uokySuvvJI77rhjwPnm5ubcc889SZL6+noBCQAAAAAAGHcmjPYCRurf/bt/l127duXVV1/NLbfckquuuipLlizJpEmTsnv37tx77705dOhQkuRXfuVXikfYJcfuHlq7dm3uvffeNDY25qabbso111yTOXPmpKWlJffdd1/27NmT5Fgkmjt37qDrWLFiRbZt25adO3fm29/+dg4fPpxVq1Zl6tSp2b17d+666660tbWlqqoq69atK76LCQAAAAAAYDwYNwFp3rx5+exnP5v/8l/+S44cOZJ777039957bzGmqqoq1157ba655ppB57j++utz5MiRbNu2LXv27Mltt902YMzKlStz/fXXH3cd1dXVufHGG7Nhw4Y0Njbm8ccfz+OPP16MmThxYm644YbKXVMAAAAAAADjybgJSMmx7zX6r//1v+ahhx7Kjh07sn///nR1deXUU0/NeeedlyuvvDJnnXXWca+vrq7O+vXr8773vS8PP/xwGhsb8/LLL2fatGmZP39+PvShD40o+kyfPj0333xztmzZkkcffTRNTU1pb29PXV1dFi9enDVr1uSMM844mR8dAAAAAADgHTOuAlKSTJs2Ldddd12uu+66Nz3HxRdfnIsvvvgtraOmpiarV6/O6tWr39I8AAAAAAAAY031aC8AAAAAAACAsUVAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAAhQmjvYC34o477sj9999f+fkLX/hCzj///CGv+cEPfpCHH344jY2NOXr0aKZPn5758+fniiuuyJIlS0b0vt3d3dmyZUseffTRNDU1pb29PXV1dbngggty5ZVX5owzznhLnwsAAAAAAGA0jduA9JOf/CTf+ta3Rjy+p6cnt99+e7Zu3Vq83tramtbW1uzYsSMrV67Mpz/96VRXH//GrKNHj2bDhg1pbGwsXm9paUlLS0seeeSR3HDDDVm1atWJfSAAAAAAAIAxYlwGpJ6envzpn/5puru78573vCdHjhwZ9po777yzEo/OOuusrF27NnPmzElLS0vuv//+7NmzJ1u3bs306dPzsY997Ljve+utt1bi0fLly3PFFVdk6tSpee6553L33XfnyJEjuf3221NXVzfiO5oAAAAAAADGknH5HUgPPfRQGhsb09DQkMsvv3zY8Xv37s3mzZuTJPPnz8+Xv/zlfOADH8iCBQvygQ98IH/wB3+Q+fPnJ0k2b96c5ubmQefZvn17nn322STJ6tWr87u/+7v5F//iX2TBggW58sor8+UvfzlTpkxJb29vNm3alO7u7pP0iQEAAAAAAN454y4gHTx4MH/xF3+RJPnUpz6VCROGv4nqwQcfrMScdevWZdKkScX52trarFu3Lsmx7zd64IEHBp2nL0JNnTo1H//4xwecr6+vz7XXXpskaW5uzhNPPDHCTwUAAAAAADB2jLuA9PWvfz3t7e257LLLct555w07vre3Nzt27EiSNDQ0ZOHChYOOW7hwYebNm5ckefLJJ9Pb21uc37t3b5qampIkl156aWprawedZ8WKFZVjAQkAAAAAABiPxlVA+u53v5unnnrquHcADWb//v156aWXkiTnnnvukGP7glRra2sOHDhQnOt7dF3/cYOZMWNG5s6dmyTZuXPniNYIAAAAAAAwloybgPTqq6/mG9/4RpLk3/7bf5vp06eP6LoXX3yxctzQ0DDk2L47kN543YnO03f+0KFDaW9vH9E6AQAAAAAAxorhv0BojLjjjjty+PDhLFq0KCtXrhzxdYcOHaocz5w5c8ixs2bNGvS65NhdSX3q6uqGnKfvfXp7e9Pa2lqEqRNZ7/HMmDEjNTU1SZLq6nHTAGHM8fcHeKdVV1e/6b2n/3X2L2Aw9glgKPYIYCj2CGAw4yIgPfPMM9m6dWtqamryqU99KlVVVSO+tv8dQJMnTx5ybP/vNXrjnUNtbW0nZZ7hrF+/ftgxGzduzMyZM1NTU5P6+voTmh/4ZyMJtgAn06xZs07Kf7tPO+20k7Aa4N3MPgEMxR4BDMUeAfQZ8zm5q6srt99+e3p7e3PVVVfl53/+50/o+s7OzsrxhAlD97KJEycOel2SvP766ydlHgAAAAAAgLFuzN+BdPfdd6epqSmzZs3KRz/60RO+ftKkSZXjrq6uIcf2j0T9r0vKKNTV1TXg/EjnGc7GjRuHHTNjxowkSXd3dw4cOHBC8wP/7ODBg6O9BOBnzMGDB9Pc3Pymrq2urq78S8D9+/enp6fnZC4NeBewTwBDsUcAQ7FHwPg3e/bsylffnCxjOiA1NTXl3nvvTZLccMMNwz46bjD9rxnucXIdHR2DXpckU6ZMKeYZKgwNNc9whvuepjeymcOb5+8P8E7r6ek5KXvPyZoHePeyTwBDsUcAQ7FHAH3GdED61re+la6ursyZMycdHR35zne+M2DMCy+8UDn+x3/8xxw+fDhJsnTp0kyePLkIMsN930n/uxHeGHLq6uoqx62trZk+ffpx5+l7n6qqquI6AAAAAACA8WBMB6S+R8G1tLTkq1/96rDj77rrrsrxf//v/z2TJ0/O6aefXnmtqalpyOv37t1bOe5/3Rt/bmpqynvf+97jztP3PjNnznxTd00BAAAAAACMpurRXsDb7bTTTsupp56aJHnmmWeGHNt3vq6uLrNnzy7OnXPOOZXjp59++rhzHD58OPv27UuSLFq06E2tGQAAAAAAYDSN6TuQPvOZz+Qzn/nMkGP+8i//Mn/913+dJPnCF76Q888/vzhfVVWVSy65JP/n//yfNDU1ZdeuXVm4cOGAeXbt2lW5c2jZsmWpqqoqzs+bNy8NDQ1pamrKY489ll//9V9PbW3tgHm2b99eOV6+fPmIPicAAAAAAMBY8q6/AylJ1qxZk+rqYx9106ZN6ezsLM53dnZm06ZNSZKamppcddVVg85z9dVXJ0leeeWV3HHHHQPONzc355577kmS1NfXC0gAAAAAAMC4NKbvQDpZ5s2bl7Vr1+bee+9NY2NjbrrpplxzzTWZM2dOWlpact9992XPnj1JjkWiuXPnDjrPihUrsm3btuzcuTPf/va3c/jw4axatSpTp07N7t27c9ddd6WtrS1VVVVZt25dampq3smPCQAAAAAAcFL8TASkJLn++utz5MiRbNu2LXv27Mltt902YMzKlStz/fXXH3eO6urq3HjjjdmwYUMaGxvz+OOP5/HHHy/GTJw4MTfccEOWLFlysj8CAAAAAADAO+JnJiBVV1dn/fr1ed/73peHH344jY2NefnllzNt2rTMnz8/H/rQh0YUfaZPn56bb745W7ZsyaOPPpqmpqa0t7enrq4uixcvzpo1a3LGGWe8A58IAAAAAADg7THuA9J1112X6667bsTjL7744lx88cVv6T1ramqyevXqrF69+i3NAwAAAAAAMBZVj/YCAAAAAAAAGFsEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFCYMNoLAAB4t+rs6Sl+3rNnz5ueq7q6OocOHUqSHDx4MD1vmJt3nzPPPDOTJ08e7WUAAADwM0pAAgB4m+xt6yx+/sQnPjFKK2E82rp1axYtWjTaywAAAOBnlEfYAQAAAAAAUBCQAAAAAAAAKHiEHQDAO+TrS+fnzFNqR3sZjFHPv9aRT36/cbSXAQAAAEkEJACAd8yZp9Rm0bQpo70MAAAAgGF5hB0AAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBhwmgvYCQaGxvzgx/8IM8++2xefPHFHD16NDU1Namrq8uiRYuycuXKnHPOOSOe7wc/+EEefvjhNDY25ujRo5k+fXrmz5+fK664IkuWLBnRHN3d3dmyZUseffTRNDU1pb29PXV1dbngggty5ZVX5owzznizHxcAAAAAAGBUjfmA9IUvfCHPPPPMgNe7urqyb9++7Nu3L9u3b88HP/jB/OZv/mYmTDj+R+rp6cntt9+erVu3Fq+3tramtbU1O3bsyMqVK/PpT3861dXHvznr6NGj2bBhQxobG4vXW1pa0tLSkkceeSQ33HBDVq1adYKfFgAAAAAAYPSN+YDU2tqaJDn11FNz6aWX5pxzzsmsWbPS09OTXbt25YEHHkhra2v+9m//Nt3d3fmP//E/HneuO++8sxKPzjrrrKxduzZz5sxJS0tL7r///uzZsydbt27N9OnT87GPfWzQOXp6enLrrbdW4tHy5ctzxRVXZOrUqXnuuedy991358iRI7n99ttTV1c34juaAAAAAAAAxooxH5AaGhryq7/6q/nFX/zFAXcFLVy4MB/84Adz0003Zd++ffnOd76TD33oQznvvPMGzLN3795s3rw5STJ//vx86UtfyqRJk5IkCxYsyLJly/LFL34xjY2N2bx5c1auXJn6+voB82zfvj3PPvtskmT16tX55Cc/WTm3YMGCLFmyJJ/97GfT1taWTZs25cILL0xNTc1J+/MAAAAAAAB4ux3/OW1jxO/93u/l/e9//3EfKTd9+vT8+q//euXn733ve4OOe/DBB9Pd3Z0kWbduXSUe9amtrc26deuSHPt+owceeGDQefoi1NSpU/Pxj398wPn6+vpce+21SZLm5uY88cQTQ308AAAAAACAMWfMB6SROP/88yvHLS0tA8739vZmx44dSY7d0bRw4cJB51m4cGHmzZuXJHnyySfT29tbnN+7d2+ampqSJJdeemlqa2sHnWfFihWVYwEJAAAAAAAYb94VAamrq6tyPNidSvv3789LL72UJDn33HOHnKvv8Xetra05cOBAca7v0XX9xw1mxowZmTt3bpJk586dw6weAAAAAABgbBnz34E0Ek8//XTluKGhYcD5F198ccjz/fXdgdR33Wmnnfam5mloaMi+ffty6NChtLe3Z/LkyUOO73Po0KFhx8yYMaPyvUrHe7QfMDx/fwAYy6qrq/23ihPS//fF7w7wRvYIYCj2CGAw4z4g9fT05N577638/P73v3/AmP5RZubMmUPON2vWrEGvS47dldSnrq5uyHn63qe3tzetra1FmBrK+vXrhx2zcePGzJw5MzU1Namvrx/RvMBAIwm2ADBaZs2a5X/r8ab1/4dwAG9kjwCGYo8A+oz7nPytb30ru3fvTpIsX748Z5999oAx7e3tlePh7gTq/71G/a9Lkra2tpMyDwAAAAAAwFg2ru9Aevrpp/PNb34zSfKe97wnn/rUpwYd19nZWTmeMGHojzxx4sRBr0uS119//aTMM5SNGzcOO2bGjBlJku7u7gHf0wSM3MGDB0d7CQBwXAcPHkxzc/NoL4NxpLq6uvIvhvfv35+enp5RXhEwltgjgKHYI2D8mz17duWrb06WcRuQXnjhhXzlK19Jd3d3Jk6cmN/5nd/Je97znkHHTpo0qXLc1dU15Lz9I1H/65IyCnV1dQ04P9J5hjLcI/beyGYOb56/PwCMZT09Pf5bxZvm9wcYij0CGIo9AugzLh9ht3///tx888159dVXU11dnf/0n/5TzjvvvOOO7/+4ueEeJ9fR0THodUkyZcqUkzIPAAAAAADAWDbuAlJra2u+/OUv56WXXkpVVVXWr1+fSy65ZMhr+t/Vc+jQoSHH9n+k1RvvBqqrqyvWMZS+96mqqiquAwAAAAAAGOvG1SPsjh49mptvvjktLS1JknXr1uWyyy4b9rrTTz+9ctzU1DTk2L179w563WDzvPe97z3uPH3vM3PmTHcgvUPa29vz/PPPj/YyGEf27Nkz2ksAAAAAABiTxk1Aeu211/KHf/iHefHFF5MkH/vYx/LLv/zLI7r2tNNOy6mnnpqXXnopzzzzzJBj+87X1dVl9uzZxblzzjmncvz000/nAx/4wKBzHD58OPv27UuSLFq0aERr5K17/vnns3LlytFeBgAAAAAAjHvj4hF2HR0d2bBhQ+VugX/9r/91PvKRj4z4+qqqqspj7pqamrJr165Bx+3ataty59CyZctSVVVVnJ83b14aGhqSJI899ljxPUf9bd++vXK8fPnyEa8TAAAAAABgLBjzAamrqyu33nprdu7cmSRZs2ZNrr/++hOeZ82aNamuPvZxN23alM7OzuJ8Z2dnNm3alCSpqanJVVddNeg8V199dZLklVdeyR133DHgfHNzc+65554kSX19vYAEAAAAAACMO2P+EXa33XZbfvjDHyZJFi9enJUrV+anP/3pccdPmDAh8+bNG/D6vHnzsnbt2tx7771pbGzMTTfdlGuuuSZz5sxJS0tL7rvvvsodTldffXXmzp076PwrVqzItm3bsnPnznz729/O4cOHs2rVqkydOjW7d+/OXXfdlba2tlRVVWXdunWpqak5CX8KvBlfXzo/Z55SO9rLYAz77qGX84WnXxjtZQAAAAAAjDljPiA98cQTleN//Md/zO/+7u8OOX727Nn52te+Nui566+/PkeOHMm2bduyZ8+e3HbbbQPGrFy5csg7nKqrq3PjjTdmw4YNaWxszOOPP57HH3+8GDNx4sTccMMNWbJkyZBr5e115im1WTRtymgvgzHsJ6+2j/YSAAAAAADGpDEfkE6m6urqrF+/Pu973/vy8MMPp7GxMS+//HKmTZuW+fPn50Mf+tCIos/06dNz8803Z8uWLXn00UfT1NSU9vb21NXVZfHixVmzZk3OOOOMd+ATAQAAAAAAnHxjPiD95V/+5Umf8+KLL87FF1/8luaoqanJ6tWrs3r16pO0KgAAAAAAgLGherQXAAAAAAAAwNgiIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoDBhtBcAAAAknT09xc979uwZpZUwXp111lmjvQQAAOBdREACAIAxYG9bZ/HzJz7xiVFaCePV9u3b8973vne0lwEAALxLeIQdAAAAAAAABQEJAAAAAACAgkfYAQDAGPT1pfNz5im1o70MxrDnX+vIJ7/fONrLAAAA3qUEJAAAGIPOPKU2i6ZNGe1lAAAA8DPKI+wAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgIKABAAAAAAAQEFAAgAAAAAAoCAgAQAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAACAgoAEAAAAAABAQUACAAAAAACgICABAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAAAKAhIAAAAAAAAFAQkAAAAAAICCgAQAAAAAAEBBQAIAAAAAAKAgIAEAAAAAAFAQkAAAAAAAACgISAAAAAAAABQEJAAAAAAAAAoCEgAAAAAAAAUBCQAAAAAAgMKE0V4AAAAAJ66zp6f4ec+ePZk1a1aS5ODBg+l5w3l4ozPPPDOTJ08e7WUAADBGCUgAAADj0N62zuLndevWjdJKGK+2bt2aRYsWjfYyAAAYozzCDgAAAAAAgII7kN6CAwcO5KGHHspTTz2VQ4cOZcKECamvr8+ll16aX/qlX0ptbe1oLxEAAAAAAOCECUhv0pNPPpk/+ZM/SVtbW+W1jo6ONDY2prGxMVu2bMnnPve51NfXj+IqAQCAnxVfXzo/Z57iH7FxfM+/1pFPfr9xtJcBAMA4ISC9CXv27Mltt92Wzs7OTJ48OR/5yEeyePHidHZ25jvf+U62bNmSffv2ZcOGDbnlllsyZcqU0V4yAADwLnfmKbVZNM3/9wAAAE4OAelN+MY3vpHOzs7U1NTk85//fBYuXFg5t3jx4sydOzd33HFH9u3bl82bN+e6664bxdUCAAAAAACcmOrRXsB4s3v37jzzzDNJkssvv7yIR30+/OEPp6GhIUny0EMPpaur6x1dIwAAAAAAwFvhDqQT9MQTT1SOL7/88kHHVFdX57LLLss3v/nNvPrqq/nxj3+ciy666J1aIgAAAAzQ2dNT/Lxnz55RWgmjobq6OocOHUqSHDx4MD1v+H0YiTPPPDOTJ08+2UsDAMYoAekE7dy5M0lSW1ubs88++7jjzjvvvOIaAQkAAIDRtLets/j5E5/4xCithPHqz/7sz3LWWWeN9jIYwzo7O9PU1FT5ed68eamtrR3FFTFSJyMynwxCNYwtAtIJevHFF5Mk9fX1qampOe64efPmDbgGAAAAYLwSHYG3m1DNiRId314C0gno7OzMyy+/nCSZOXPmkGOnTp2a2tradHR0VOr9SIxk7IwZMyrxqrra11j1eeOfxfOvdYzSShgv9ra/Xvzsd4bh+J3hRPmd4UT4feFE+Z3hRL3xdwYAxhqhmhO1ffv2LFq0aLSX8a4lIJ2A9vb2yvFIqubkyZPT0dFRXDec9evXDzvmm9/8ZpKkpqYm9fX1I5773W7mzJl54YUXRnsZjCPnJLlhtBfBuOJ3hhPld4YT4feFE+V3hhPldwYAeLeZM2dOJk6cONrLeNcSkE5AZ+c/Py96woTh/+j6xvS/7mSoqqo6qfO9W0ycODGnn376aC8DAAAAAADGPQHpBEyaNKly3NXVNez4vjH9rxvOxo0bhx3jsXXw7tTd3Z3Dhw8nKR9VCZDYI4Dh2SeAodgjgKHYI4DBCEgnoP9j60byWLq+MSfyJV7DfbcS8O51+PDhymMsN27caD8ACvYIYDj2CWAo9ghgKPYIYDBuZTkBkyZNyrRp05Ikhw4dGnLsK6+8ko6OY19ia8MFAAAAAADGk//X3r0HR1Xefxz/hIQkkBByAcLNFEkaAgFsDNdAgSZoIRSqljJWrAOMMDpYqlam2qkDHbCpXGZg6qWiDk4HLEVuhQBSBAJyiVxFIEBgRS4JGwK5bIBcyG5+f+zscTd7yQb3V9vk/Zph5mSf5/nuiTPn65PzPed5KCA1k2OPHbPZLKvV6rVfcXGx2xgAAAAAAAAAAID/BRSQmqlPnz6SpNraWn399dde+xUUFLiNAQAAAAAAAAAA+F9AAamZhgwZYhzv2bPHYx+bzaa9e/dKkiIiIpSamvofOTcAAAAAAAAAAIBAoIDUTElJSerbt68kewGpsLDQrU9ubq6KiookSePHj1dISMh/9BwBAAAAAAAAAAC+CwpI92HatGkKDQ2V1WrVwoULtXHjRhUWFur06dNasWKFVq1aJUnq1q2bJk6c+D2fLQAAAAAAAAAAQPPwasx9ePDBB/Xiiy/qr3/9q6qrq/WPf/zDrU+3bt302muvqV27dt/DGQIAAAAAAAAAANy/oIaGhobv+yT+V5WWlmrbtm06fvy4ysrKFBISoq5du2rYsGEaN26cwsLCvu9TBAAAAAAAAAAAaDYKSAAAAAAAAAAAAHDBHkgAAAAAAAAAAABwQQEJAAAAAAAAAAAALiggAQAAAAAAAAAAwAUFJAAAAAAAAAAAALiggAQAAAAAAAAAAAAXFJAAAAAAAAAAAADgggISAAAAAAAAAAAAXFBAAgAAAAAAAAAAgIuQ7/sEAOC/SWVlpS5evKiLFy/KZDLJZDKpqqpKkjR69GjNnj27WfFOnDihzz77TCaTSRaLRVFRUUpMTNTYsWOVlpbmVwyr1apdu3Zp//79KioqUk1NjWJjYzVgwACNHz9eDzzwgF9xLBaLtm/friNHjqi0tFSS1LlzZw0ePFjZ2dnq0KFDs343oLUymUw6ceKEzp07p2vXrslisSg4OFixsbHq06ePMjMzlZKS4nc88gTQcty9e1cnTpww5hBlZWWyWCyqq6tTRESEevbsqbS0NGVmZvp1PZ0/f147duzQuXPnVFlZqfbt26tXr14aPXq0Ro4c6fd57d+/X3l5ebp8+bLu3r2rjh07KiUlRePGjVNycrJfMWpra/Xpp58qPz9fZrNZ9fX1iouL08MPP6zx48erc+fOfp8PAM9WrVqlzZs3Gz/PmzdPqampPscwjwBanilTpvjVr1+/fpo/f77PPuQIAN9VUENDQ8P3fRIA8N/C10StOQUkm82mFStWaPfu3V77ZGZmatasWWrTxvvLoBaLRTk5OTKZTB7b27ZtqxkzZigrK8vn+Vy4cEGLFy9WRUWFx/aYmBjNnTtXSUlJPuMArd28efN09uzZJvuNGjVKzz33nEJCvD+rQ54AWp6vvvpKCxcubLJfhw4d9Jvf/EY/+tGPvPZZu3at1q9fL29/rj388MN6+eWXFRoa6jVGXV2dli5dqhMnTnhsDwoK0uTJk/XLX/7S5/mazWbl5OTo+vXrHtvbtWunOXPmKD093WccAN598803eu2112S1Wo3PfBWQmEcALVcgCkjkCACBwhtIAOBFp06d1KNHD508ebLZY9esWWNM1B588EFNmjRJ8fHxKikp0ebNm3Xp0iXt3r1bUVFReuqppzzGsNlsWrJkiTFRGzJkiMaOHavIyEhduHBBGzZsUGVlpVasWKHY2FivTw/dvHlTb775pvGWxIQJE4wbPMeOHdPWrVtVXl6uN998U3/5y18UFxfX7N8XaC3Kysok2f/AGT58uFJSUtSpUyfZbDYVFhYqNzdXZWVl2rdvn6xWq3772996jUWeAFqmuLg4paamqnfv3urUqZOio6PV0NCgW7duKT8/X4cPH1ZVVZUWLVqkP//5z+rVq5dbjJ07d2rdunWSpPj4eD3++ONKSEhQeXm5tm3bpjNnzuj48eN69913feaZd955xygepaamKjs7WzExMbpy5Yo2btyokpISffLJJ4qJidHYsWM9xqiurnYpHmVlZWnEiBEKDQ3V6dOntWnTJlVXV2vZsmVasGCBx98HgG82m03vvfeerFarOnbsqMrKyibHMI8AWr5HH31Ujz76qNf28PBwr23kCACBQgEJAJxMnjxZiYmJSkxMVHR0tG7cuKEXXnihWTGKi4u1ZcsWSVJiYqL+9Kc/GU8HJyUladCgQZo/f75MJpO2bNmizMxMde3a1S1OXl6ezp07J8k+cXz22WeNtqSkJKWlpen3v/+9qqurtXLlSg0cOFDBwcFucdasWSOLxSJJmjNnjoYPH2609e3bV71799ayZctUWVmpNWvWNHuZPqA16dGjh371q19p2LBhbk/qJScna9SoUXr99dd1/fp1HThwQI888oj69evnFoc8AbRM/fv317vvvuu1PSMjQ4cPH9aSJUtUX1+vdevW6ZVXXnHpc/v2ba1evVqS/WGWN954Q1FRUUZ7enq6Fi9erGPHjunAgQMaO3asxzcUTp8+rYMHDxpj5s6da+QtR5559dVXdfPmTa1evVrDhg1TZGSkW5zNmzcbxaOnn35akyZNMtqSk5OVmpqq+fPnq7a2Vh999FGTS+kAcLd9+3aZTCb16NFDgwcP1qZNm3z2Zx4BtA5RUVFKSEho9jhyBIBA8v6OIgC0QlOmTFF6erqio6PvO8a2bduMpSemT5/utrRMWFiYpk+fLsm+lnBubq7HOI4JX2RkpH7961+7tXft2lWPP/64JPvSMocPH3brU1FRoc8//1yS9NBDD7lM1BwyMjL00EMPSZL27dvn9ZVyANKrr76qjIwMr8s8REVF6ZlnnjF+zs/P99iPPAG0TL6WgHEYMmSIunfvLkkel8TctWuX7t69K0maOnWqS/HI8R3PPvus8V3O+6U4c+SH4OBgl/4OUVFRmjp1qiTpzp07Hpe4qa+v1/bt2yXZC+g/+9nP3Pr06dNHP/nJTyRJBQUFunjxopffHIAnN2/e1D//+U9J0syZM30uf+vAPAKAL+QIAIFEAQkAAqihoUFHjhyRZL/R4m1j6uTkZOPm0dGjR932NyguLlZRUZEkafjw4QoLC/MYZ8yYMcaxp8mac2zHzR1fcRoaGnT06FGv/QA0zflNgJKSErd28gSAdu3aSZLu3bvn1ubID+3atdPQoUM9jo+Li9OAAQMk2d80qq6udmmvrq7WqVOnJEkDBgzwuhTM0KFDjXPxlB/OnDljFLNGjx7ttUDWVJ4B4N0HH3ygmpoajR492uNby40xjwDgCzkCQKBRQAKAALpx44bKy8sl2V/F9sXxB2JZWZlKS0td2hyviTv38yQ6OlrdunWTJJ0/f96t3d84zm3OYwA0X319vXHs6WYreQJo3YqLi/XNN99Ist/YcVZfX2+8wZOcnOzzTQTHNXnv3j23ja1NJpORi3xd1yEhIcaNJecxDv7mh8TEROPGkqc8A8CzgwcP6vjx416f7veEeQQAX8gRAAKNAhIABNC1a9eM48Y3hRpzPO3TeFxz4zjab926pZqaGo9x2rdv73NZvpiYGOMJZMdTRgDuT0FBgXHs6folTwCtT21tra5fv67c3FzNmzfPWFYmOzvbpV9xcbFsNpsk/69ryf2adM4PznnEE0e71WqV2Wz2GsfX+QQHBxt7J5AfAP/cuXNHH330kSTPy1V6wzwCaD3y8/P10ksv6emnn9YzzzyjOXPm6K233tLp06e9jiFHAAi0phfXBQD47datW8axt+ViHDp16uRxnGR/AsghNjbWZxzH9zQ0NKisrMxlEuiI29S5OM7n6tWrbucCwH82m81l4+uMjAy3PuQJoHXIy8vTO++847X9scce08iRI10+u5/rWnLPD83JM87tN2/eVM+ePd3OJywsTBEREU3GuXz5siwWi+7du6e2bdv67A+0dqtWrVJFRYX69OmjzMxMv8cxjwBaj8ZFHbPZLLPZrH379mnw4MGaPXu22rdv79KHHAEg0CggAUAAOT9tEx4e7rOv8xrCjZ/Scd7L4LvEcfzcVAznOI1jAPDf1q1bjeWnhgwZot69e7v1IU8ArVuvXr00a9YsJSUlubUF6rpuThzndm9xmpMfHHEoIAHenT17Vrt371ZwcLBmzpypoKAgv8cyjwBavrCwMKWnp2vAgAHq0aOHwsPDZbFYVFBQoJ07d6qqqkpHjhzRokWL9Mc//tFlyVtyBIBAo4AEAAFUV1dnHPvat0CSy40V53GS66ba3yWO4+emYjjHaRwDgH8KCgr08ccfS5I6duyomTNneuxHngBah8GDB2vJkiWS7NdMSUmJDh06pMOHD2v58uWaNm2a0tPTXcYE6rpuThzndm9xmpMfPMUB8K36+nqtWLFCDQ0NmjBhghISEpo1nnkE0PL97W9/8/jm78CBAzVu3Djl5OTo0qVLKigo0L///W+XJXHJEQACjT2QACCAQkNDjePGG1E35jwhcx4nuU7Avkscx89NxXCO0zgGgKZdvXpVixcvltVqVdu2bfXSSy+pY8eOHvuSJ4DWISIiQgkJCUpISFBSUpJGjBihV155RS+88IJu3LihRYsWKS8vz2VMoK7r5sRxbvcWpzn5wVMcAN/asGGDioqK1KlTJ02ePLnZ45lHAC2fr2Vjo6Oj9fLLLys4OFiS9Omnn7q0kyMABBoFJAAIIF/LwDRWW1vrcZwkY/PI7xrH8bM/r4A74vjzajmAb924cUMLFy7UnTt31KZNG7344ovq16+f1/7kCaB1GzVqlIYNG6aGhgZ9+OGHun37ttEWqOu6OXF8LXXjiNOc/OApDgC7oqIiY6/EGTNm3Ne1wjwCQHx8vAYOHCjJvi+S835F5AgAgUYBCQACyNeG1o3dvHnT4zjJdZNK58mgJ47vCQoKctvc0hHXn00oHefjz+aWAOzKysq0YMEClZeXKygoSM8//7wGDx7scwx5AoAjT9TW1urLL780Pr+f61pyvyabk2ec250303Y+n9raWt25c8evOFFRUex/BHixdetW1dfXKz4+XrW1tTpw4IDbv6tXrxr9T58+bXzuuPnKPAKAJPXs2dM4dr6GyREAAo09kAAggJwncUVFRT77FhcXexznKU6vXr28xnF8T1xcnNuTOj179tTXX3+tu3fvqqKiQtHR0R5jlJeXG5tk9ujRw+d5A7CzWCxauHChSkpKJEnTp0/X6NGjmxxHngAQFRVlHJeWlhrH3bt3V5s2bWSz2ZrMD87tja9J5/zgnEc8cbQHBwera9eubnG++OIL4/uSk5M9xrBarTKbzR7PBcC3HMszlZSUaPny5U32X79+vXH81ltvKTw8nHkEAEn2Yo0n5AgAgcYbSAAQQF26dFFMTIwk6ezZsz77OtpjY2PVuXNnl7aUlBTjuKCgwGuMiooKXb9+XZLUp08ft3Z/4zi3OY8B4Nndu3f1xhtv6Nq1a5Kkp556SuPGjfNrLHkCgLelZkJCQpSUlCRJKiws9LlfgOOabNu2rRITE13aEhMTjc2qfV3X9fX1KiwsdBvj4G9+MJlMxrIznvIMgMBhHgFAkvF3iOT6thA5AkCgUUACgAAKCgoylqUpKioybso0VlhYaDylM2jQILenh7p37248dXPo0CGXNYWdOW++PWTIELd259h79uzxet6OOEFBQRo0aJDXfgDsSznl5OTo0qVLkqQnnnhCjz32mN/jyRMADh06ZBwnJCS4tDnyQ3V1tfH2T2O3bt3SqVOnJEn9+/d32adAsu9bMGDAAEnSqVOnvC4b88UXXxhP+3rKD6mpqWrfvr0kae/evWpoaPAYp6k8A8Bu9uzZWrt2rc9/kydPNvrPmzfP+LxLly6SmEcAsO/B+tVXX0my74fkXEAiRwAINApIABBg2dnZatPGnl5Xrlypuro6l/a6ujqtXLlSkn25mAkTJniMM3HiREnS7du3tWrVKrd2s9msjRs3SpK6du3qcbIWHR2tH//4x5KkkydPKj8/363PoUOHdPLkSUn2jb29vVIOwP60/pIlS3T+/HlJ9uv9ySefbHYc8gTQMuXl5bldz43l5ubqxIkTkuxPCfft29elPSsryyjafPzxx6qqqnJpt9ls+uCDD2Sz2SRJkyZN8vg9jvxgtVr14YcfGv0dLBaLVq9eLUmKiIhQZmamW4yQkBCNHz9ekv0m1JYtW9z6FBYWGjeE+vXrZ7xBBeD/D/MIoOU6evSorFar1/aKigotXbrUeEv5pz/9qVsfcgSAQGIPJABwcu7cOWMNf8l+c8XBbDa7PF0jSWPGjHGL0b17d02aNEmbNm2SyWTS66+/rp///OeKj49XSUmJ/vWvfxlvLkycOFHdunXzeC5jxozRnj17dP78ee3YsUMVFRXKyspSZGSkLl68qPXr16u6ulpBQUGaPn26goODPcZ58skn9eWXX8pisWj58uUymUxKT0+XJB07dky5ubmS7Psx3M+NcKA1WbZsmfHHTf/+/ZWZmakrV6547R8SEqLu3bu7fU6eAFqmTz75RH//+981dOhQpaSkKD4+XuHh4aqpqdGVK1f0+eefGwXokJAQzZo1y7jB4xAZGampU6fq/fffV2lpqf7whz/oiSeeUEJCgsrLy7V161adOXNGkjRixAilpqZ6PJf+/fsrIyNDBw8e1NGjR7VgwQJNmDBBMTExunLlijZs2GBsVj116lRFRkZ6jDNp0iQdPHhQ169f16pVq2Q2m5WRkaHQ0FCdOXNGGzdulNVqVWhoqKZNmxag/5IAfGEeAbRcK1eu1Pvvv6+hQ4cqOTlZXbp0UWhoqCwWiwoKCrRz507j4ZKUlBSPBSRyBIBACmrwtg4BALRCb7/9tvbu3et3/7Vr13r83Gaz6b333vP5inZmZqbHG0fOLBaLcnJyZDKZPLa3bdtWM2bMUFZWls/zvHDhghYvXqyKigqP7dHR0Zo7d65++MMf+owDtHZTpkxpVv/OnTvr7bff9thGngBantmzZ6u0tLTJfnFxcXr++ec1cOBAr33Wrl2r9evXe102Li0tTb/73e8UGhrqNUZdXZ2WLl1qvPHUWFBQkH7xi180mdvMZrNycnKMPQ4aa9eunebMmWPcDAJw/9auXat169ZJsi9h561IzDwCaJn8nUsMHTpUzz33nCIiIjy2kyMABAoFJABwEqgCksPx48f12WefyWQyqaqqSh06dFBiYqIeeeQRpaWl+fUdVqtVu3bt0v79+1VUVKSamhrFxsaqf//+ys7O1gMPPOBXHIvFom3btunIkSPGhLRLly4aNGiQJkyYoA4dOvgVB2jNAllAciBPAC1HcXGxjh8/rnPnzqmkpEQVFRW6ffu2QkNDFRUVpV69eik9PV3Dhw9XWFhYk/EcT/yePXtWlZWVioiI0A9+8AONGTNGI0eO9Pu89u/fr7y8PF2+fFl37txRx44d1bdvX40bN07Jycl+xaipqdGOHTuUn58vs9ms+vp6xcXFKS0tTdnZ2W6bbwO4P/4WkByYRwAtS0FBgQoKClRYWKiSkhJVVVWpurpa4eHhiouLU3JyssaMGeP3/7/JEQC+KwpIAAAAAAAAAAAAcOH9HUUAAAAAAAAAAAC0ShSQAAAAAAAAAAAA4IICEgAAAAAAAAAAAFxQQAIAAAAAAAAAAIALCkgAAAAAAAAAAABwQQEJAAAAAAAAAAAALiggAQAAAAAAAAAAwAUFJAAAAAAAAAAAALiggAQAAAAAAAAAAAAXFJAAAAAAAAAAAADgggISAAAAAAAAAAAAXFBAAgAAAAAAAAAAgAsKSAAAAAAAAAAAAHBBAQkAAAAAAAAAAAAuKCABAAAAAAAAAADABQUkAAAAAAAAAAAAuKCABAAAAAAAAAAAABcUkAAAAAAAAAAAAOCCAhIAAAAAAAAAAABcUEACAAAAAAAAAACACwpIAAAAAAAAAAAAcEEBCQAAAAAAAAAAAC4oIAEAAAAAAAAAAMAFBSQAAAAAAAAAAAC4oIAEAAAAAAAAAAAAF/8HJ55wITf7nQkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 428, "width": 840 } }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline \n", "%config InlineBackend.figure_format = 'retina'\n", "plt.style.use('ggplot')\n", "plt.rcParams['figure.figsize'] = (10,5)\n", "\n", "plt.hist(area, edgecolor = 'black', linewidth = 1.2)\n", "plt.show();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "

Exercise 1

\n", "Describe this population distribution.\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The unknown sampling distribution" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this lab we have access to the entire population, but this is rarely the case in real life. Gathering information on an entire population is often extremely costly or impossible. Because of this, we often take a sample of the population and use that to understand the properties of the population.\n", "\n", "If we were interested in estimating the mean living area in Ames based on a sample, we can use the following command to survey the population." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "sampl1 = area.sample(50)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This command collects a simple random sample of size 50 from the vector `area`, which is assigned to `samp1`. This is like going into the City Assessor's database and pulling up the files on 50 random home sales. Working with these 50 files would be considerably simpler than working with all 2930 home sales." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "

Exercise 2

\n", "Describe the distribution of this sample. How does it compare to the distribution of the population?\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we're interested in estimating the average living area in homes in Ames using the sample, our best single guess is the sample mean." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1537.0" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sampl1.mean()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Depending on which 50 homes you selected, your estimate could be a bit above or a bit below the true population mean of 1499.69 square feet. In general, though, the sample mean turns out to be a pretty good estimate of the average living area, and we were able to get it by sampling less than 3% of the population." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "

Exercise 3

\n", " Take a second sample, also of size 50, and call it samp2. How does the mean of samp2 compare with the mean of samp1? Suppose we took two more samples, one of size 100 and one of size 1000. Which would you think would provide a more accurate estimate of the population mean?\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Not surprisingly, every time we take another random sample, we get a different sample mean. It's useful to get a sense of just how much variability we should expect when estimating the population mean this way. The distribution of sample means, called the *sampling distribution*, can help us understand this variability. In this lab, because we have access to the population, we can build up the sampling distribution for the sample mean by repeating the above steps many times. Here we will generate 5000 samples and compute the sample mean of each." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABpAAAANZCAYAAAAI/H0aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AABzfklEQVR4nOzdfZSW9WHn/8/M8GiA4AAyMFqjQ0FFzSKE1GQ3IhgaMGLc41qbNtlgYrYeu9n2bD2pp/HENPZgNu6uaTaHU092yZ61bdLWR4zWLU+2mqgYbZoEAZkQEgdmeBh5UOfBefj9wc79m8sZZgYF5x55vf665r6+1/f+3pzhZuDN9b0ruru7uwMAAAAAAAD/T+VwLwAAAAAAAIDyIiABAAAAAABQICABAAAAAABQICABAAAAAABQICABAAAAAABQICABAAAAAABQICABAAAAAABQICABAAAAAABQICABAAAAAABQICABAAAAAABQICABAAAAAABQICABAAAAAABQICABAAAAAABQICABAAAAAABQICABAAAAAABQICABAAAAAABQICABAAAAAABQICABAAAAAABQICABAAAAAABQICABAAAAAABQMGq4F8Bb193dna6uruFeBiNcVVVVkqSzs3OYVwK8W3mfAU4m7zHAyeZ9BjjZvM8AJ0JlZWUqKipO6JwC0gjW1dWVpqam4V4GI1hlZWVqamqSJPv27RMkgRPO+wxwMnmPAU427zPAyeZ9BjhRpk+fXgrSJ4ot7AAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgYNdwLAAAAktbW1uzatWu4lzGiVFZW5sCBA0mS/fv3p6ura5hXNLzOPvvsjBs3briXAQAAvEsISAAAUAZ27dqVxYsXD/cyGME2bNiQOXPmDPcyAACAdwlb2AEAAAAAAFAgIAEAAAAAAFBgCzsAAChD355fl7NPGzvcy6CM7Xq9LZ/7Uf1wLwMAAHiXEpAAAKAMnX3a2MyZOH64lwEAAMApyhZ2AAAAAAAAFAhIAAAAAAAAFAhIAAAAAAAAFAhIAAAAAAAAFAhIAAAAAAAAFAhIAAAAAAAAFAhIAAAAAAAAFAhIAAAAAAAAFAhIAAAAAAAAFAhIAAAAAAAAFAhIAAAAAAAAFAhIAAAAAAAAFIw6mZMfOnQoO3bsyI4dO1JfX5/6+vocOXIkSXLZZZfl5ptvfstzt7W15T//5/+cvXv3JkmmTZuWb33rW0O67u///u/z9NNPp7GxMR0dHZkyZUouueSSLFu2LNOmTRvS8+/bty+PPfZYnn/++Rw4cCCjRo1KTU1NLr300vzmb/5mxo4d+5ZfGwAAAAAAwHA6qQHpxhtvPGlzf+973yvFo6FqbGzMqlWrsmfPnsLju3fvzu7du7N+/fp84QtfyPz58wec57nnnss3v/nNtLS0lB5ra2srRbL169fn1ltvTU1NzXGtDwAAAAAAoByc1IDU29SpU1NbW5sf//jHb3uunTt35tFHH83o0aMzatSoQsg5lpaWlkI8WrJkST784Q9nzJgx+elPf5oHH3wwLS0tufvuu/PVr34173vf+4753HfffXfa29szbty4fOITn8iFF16Y9vb2PPXUU1m/fn327NmTVatW5c4778z48ePf9usFAAAAAAB4J53UgHTttdemrq4udXV1mTx5cvbu3Zvf//3ff1tzdnV15S/+4i/S1dWVa6+9Nhs3bhxSQHr44YdL8eh3f/d3s2LFitK52bNnZ+7cubn99tvT1taW73znO7n99tv7nec73/lO2tvbU1VVlS996UuZPXt26dyFF16YGTNm5N57782ePXuydu3aXHfddW/r9QIAAAAAALzTKk/m5Nddd13mz5+fyZMnn7A5H3300fz85z/PzJkz84lPfGJI13R0dOSxxx5LktTW1ubjH/94nzFz5szJ5ZdfniTZsmVLduzY0WfMjh078uKLLyZJLr/88kI86vHxj388tbW1SZLHHnssHR0dQ1ojAAAAAABAuTipAelE27dvX773ve8lOfr5SqNGDe0Gqp/97Gd5/fXXkySXXXZZKiv7f9mLFi0qHT/77LN9zvd+rCc2vVllZWUuu+yyJMlrr72Wn/3sZ0NaIwAAAAAAQLkYUQHp29/+dtra2vKRj3wkc+fOHfJ1W7duLR1fcMEFxxxXV1eXsWPHJkm2bdvW53zPY2PHjs255557zHl6P0d/8wAAAAAAAJSzEROQnnrqqbzwwgt5z3vek09/+tPHde3LL79cOu7ZXq4/VVVVqampSZI0NDQcc56amppUVVUdc56ZM2f2+9wAAAAAAAAjwdD2gBtmr776ar7zne8kSX7nd34nkyZNOq7rm5ubkxy9c+g973nPgGOnTJmSXbt25fDhw3njjTcyevToJEl7e3uOHDlSGjOQCRMmZOzYsWlra8uBAweOa61DGT958uRSwDrWdnwwFL2/f3wvASeD9xkYOr9HeLsqKyt9H8EJ5mcZ4GTzPgOUsxERkO69994cOnQos2fPzpIlS477+paWliTJuHHjBh3bs4VdkrS2tpYCUmtra+nxocwzbty4tLW1Fa4biptuumnQMatXr86UKVMKd0zB23XGGWcM9xKAdznvMzCw4/2PR/BmU6dO9fcDOIn8LAOcbN5ngHJT9ll7y5Yt2bhxY6qqqnLjjTemoqLiuOd44403kiSjRg3ey3qCUXL0rqP+jocyT8+Y3tcBAAAAAACMBGV9B9Ibb7yRe+65J93d3Vm2bFnOPvvstzRPTxTq6OgY0nP2GDNmTL/HQ5mnZ0zv64Zi9erVg46ZPHlykqSzszP79u07rvmht8rKytL/btm7d2+6urqGeUXAu433GRi6/fv3D/cSGOH279+fxsbG4V4GvKv4WQY42bzPACfKtGnTSh99c6KUdUC6//77s3v37kyZMiXXXXfdW55n/PjxSTKk7eTa2tpKx723qut9PJR5esYMZbu73gb7fKU384cKJ0pXV5fvJ+Ck8j4DA/P7g7fL+yycXH6PASeb9xmg3JR1QHrooYeSJBdddFF+9KMf9TumJ9S0trbmqaeeSpK8973vzYUXXlgaU11dneRoHHrttdfynve855jP2bP3/KRJkwrb2Y0ZMyYTJ07MkSNHBt2f/tVXXy2FqOMNQgAAAAAAAMOtrANSzzZwmzZtyqZNmwYce+TIkXzjG99IklxwwQWFgHTmmWfmmWeeSZI0NDRk9uzZ/c7R2dlZ2vKhtra2z/kzzzwzL774YhobG9PZ2XnM28F2795duAYAAAAAAGAkqRzuBbwTzjvvvNLxli1bjjmuvr6+dOfQnDlz+pzveaytrS0///nPjzlP7+fobx4AAAAAAIByVtZ3IP3N3/zNoGNuvvnm7Nu3L9OmTcu3vvWtfsfMnTs3p512Wl5//fU88cQTufrqq1NRUdFnXO+7nBYuXNjn/MKFC/Pggw8mSTZu3Jhf//Vf7zOmq6srTzzxRJLkPe95T+bOnTvoawAAAAAAACgnp8QdSKNGjcqyZcuSHN3Cbu3atX3GbN++PRs3bkxydAu8WbNm9Rkza9asnH/++UmOBqTt27f3GfPII4+koaEhSbJs2bKMGlXWjQ4AAAAAAKCPk1o3tm7dWvpMoSQ5fPhw6bixsbHP5xotWrTopK1lxYoV+cEPfpA9e/bk3nvvTWNjYz70oQ9lzJgx+dnPfpYHHnggnZ2dGTNmTD7zmc8cc57PfOYzue2229Le3p477rgj11xzTebOnZv29vb84Ac/yLp165IkM2bMyFVXXXXSXg8AAAAAAMDJclID0vr160vbub3Ztm3bsm3btsJjJzMgjR8/PrfeemtWrVqVPXv2ZN26daXY03vMF77whbzvfe875jznnHNO/uAP/iDf/OY309LSkr/+67/uM2bGjBm59dZbM378+BP9MgAAAAAAAE66U2p/tZqamnzta1/L448/nqeffjqNjY3p6OjIlClTMm/evCxfvjzTpk0bdJ4FCxbkrrvuyqOPPprnn38+zc3NGTVqVGpqavIbv/Eb+djHPpaxY8e+A68IAAAAAADgxKvo7u7uHu5F8NZ0dnamqalpuJfBCFZZWZmampokR7eV7OrqGuYVAe823mdg6LZt25bFixeXvv6Hf3NB5kx0RzvHtu1ISz76T1tKX2/YsCFz5swZxhXBu4+fZYCTzfsMcKJMnz49VVVVJ3TOyhM6GwAAAAAAACOegAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAEDBqJM5+aFDh7Jjx47s2LEj9fX1qa+vz5EjR5Ikl112WW6++eZB52hra8s///M/51/+5V/y85//PI2NjWltbc348eMzY8aMvP/978/SpUszefLkIa2pra0tf//3f5+nn346jY2N6ejoyJQpU3LJJZdk2bJlmTZt2pDm2bdvXx577LE8//zzOXDgQEaNGpWamppceuml+c3f/M2MHTt2SPMAAAAAAACUm5MakG688ca3df2uXbty2223pbW1tc+5V199NS+99FJeeumlfP/7389/+A//IR/60IcGnK+xsTGrVq3Knj17Co/v3r07u3fvzvr16/OFL3wh8+fPH3Ce5557Lt/85jfT0tJSeqytra0UydavX59bb701NTU1x/FqAQAAAAAAysNJDUi9TZ06NbW1tfnxj3885GtaWlpK8WjOnDmZP39+zj333EycODGHDx/OM888k/Xr16elpSV//ud/nvHjx2fevHnHnKt3PFqyZEk+/OEPZ8yYMfnpT3+aBx98MC0tLbn77rvz1a9+Ne973/v6nWfnzp25++67097ennHjxuUTn/hELrzwwrS3t+epp57K+vXrs2fPnqxatSp33nlnxo8ff3y/UAAAAAAAAMPspAaka6+9NnV1damrq8vkyZOzd+/e/P7v//6Qr6+oqMill16af/fv/l3OPPPMPuff//73Z968ebnrrrvS1dWV//W//lf+/M//PBUVFX3GPvzww6V49Lu/+7tZsWJF6dzs2bMzd+7c3H777Wlra8t3vvOd3H777f2u6Tvf+U7a29tTVVWVL33pS5k9e3bp3IUXXpgZM2bk3nvvzZ49e7J27dpcd911Q369AAAAAAAA5aDyZE5+3XXXZf78+UP+fKI3mzNnTv7wD/+w33jU4wMf+EAWLlyYJGlqasrOnTv7jOno6Mhjjz2WJKmtrc3HP/7xfp/r8ssvT5Js2bIlO3bs6DNmx44defHFF5Mkl19+eSEe9fj4xz+e2traJMljjz2Wjo6OwV4mAAAAAABAWTmpAemdMnfu3NJxU1NTn/M/+9nP8vrrrydJLrvsslRW9v+yFy1aVDp+9tln+5zv/VhPbHqzysrKXHbZZUmS1157LT/72c8GfwEAAAAAAABl5F0RkHrf5dNfHNq6dWvp+IILLjjmPHV1dRk7dmySZNu2bX3O9zw2duzYnHvuucecp/dz9DcPAAAAAABAOXtXBKQtW7aUjnu2j+vt5ZdfHvB8j6qqqtTU1CRJGhoajjlPTU1NqqqqjjnPzJkz+31uAAAAAACAkWDUcC/g7frFL36R559/Pknya7/2a/1+XlJzc3OSo3cOvec97xlwvilTpmTXrl05fPhw3njjjYwePTpJ0t7eniNHjpTGDGTChAkZO3Zs2tracuDAgeN6PUMZP3ny5FLAOtZ2fDAUvb9/fC8BJ4P3GRg6v0d4uyorK30fwQnmZxngZPM+A5SzER2Q3njjjfzFX/xFurq6kiTXX399v+NaWlqSJOPGjRt0zp4t7JKktbW1FJBaW1tLjw9lnnHjxqWtra1w3VDcdNNNg45ZvXp1pkyZUrhjCt6uM844Y7iXALzLeZ+BgR3vfzyCN5s6daq/H8BJ5GcZ4GTzPgOUmxGdtf/n//yfqa+vT5JcdtllWbBgQb/j3njjjSTJqFGD97KeYJQcveuov+OhzNMzpvd1AAAAAAAAI8GIvQPpgQceyIYNG5IkdXV1+exnP3vMsT1RqKOjY9B5e2JTkowZM6bf46HM0zOm93VDsXr16kHHTJ48OUnS2dmZffv2Hdf80FtlZWXpf7fs3bu3dDcfwInifQaGbv/+/cO9BEa4/fv3p7GxcbiXAe8qfpYBTjbvM8CJMm3atNJH35woIzIg/cM//EP++q//OklSW1ubW2+9dcBt5caPH58kQ9pOrq2trXTce87ex0OZp2fMULa7622wz1d6M3+ocKJ0dXX5fgJOKu8zMDC/P3i7vM/CyeX3GHCyeZ8Bys2I28LuySefzLe//e0kR4val770pUyaNGnAa6qrq5McjUOvvfbagGN79p6fNGlSYTu7MWPGZOLEiYUxx/Lqq6+WQtTxBiEAAAAAAIDhNqIC0nPPPZdvfetb6e7uzumnn57bbrttSIHmzDPPLB03NDQcc1xnZ2dpy4fa2tpjztPY2JjOzs5jzrN79+5+nxsAAAAAAGAkGDEB6Sc/+Un++3//7+ns7MzEiRPzpS99KTU1NUO69rzzzisdb9my5Zjj6uvrS3cOzZkzp8/5nsfa2try85///Jjz9H6O/uYBAAAAAAAoZyMiIG3bti3/5b/8l7zxxhs57bTT8id/8ic566yzhnz93Llzc9pppyVJnnjiiXR3d/c7btOmTaXjhQsX9jnf+7GNGzf2O0dXV1eeeOKJJMl73vOezJ07d8jrBAAAAAAAKAdlH5B+8Ytf5M4770xbW1vGjh2bP/7jP8655557XHOMGjUqy5YtS3J0C7u1a9f2GbN9+/ZSFLrgggsya9asPmNmzZqV888/P8nRgLR9+/Y+Yx555JHSNnnLli3LqFGjjmutAAAAAAAAw+2k1o2tW7eWPlMoSQ4fPlw6bmxsLNzxkySLFi0qfN3Y2Jg/+7M/y2uvvZYkuf7663Paaafll7/85TGf873vfW/e+9739nl8xYoV+cEPfpA9e/bk3nvvTWNjYz70oQ9lzJgx+dnPfpYHHnggnZ2dGTNmTD7zmc8cc/7PfOYzue2229Le3p477rgj11xzTebOnZv29vb84Ac/yLp165IkM2bMyFVXXXXMeQAAAAAAAMrVSQ1I69evL23n9mbbtm3Ltm3bCo+9OSBt3bo1hw4dKn39v//3/x70Oa+99tpcd911fR4fP358br311qxatSp79uzJunXrSrGn95gvfOELed/73nfM+c8555z8wR/8Qb75zW+mpaUlf/3Xf91nzIwZM3Lrrbdm/Pjxg64XAAAAAACg3JxS+6vV1NTka1/7Wh5//PE8/fTTaWxsTEdHR6ZMmZJ58+Zl+fLlmTZt2qDzLFiwIHfddVceffTRPP/882lubs6oUaNSU1OT3/iN38jHPvaxjB079h14RQAAAAAAACdeRXd3d/dwL4K3prOzM01NTcO9DEawysrK1NTUJDm6ZWRXV9cwrwh4t/E+A0O3bdu2LF68uPT1P/ybCzJnojvaObZtR1ry0X/aUvp6w4YNmTNnzjCuCN59/CwDnGzeZ4ATZfr06amqqjqhc1ae0NkAAAAAAAAY8QQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACgQkAAAAAAAACkYN9wIAAN6tWltbs2vXruFeBiPEzp07h3sJAAAAUCIgAQCcJLt27crixYuHexkAAAAAx80WdgAAAAAAABQISAAAAAAAABTYwg4A4B3y7fl1Ofu0scO9DMrUDw4cyZe3/Gq4lwEAAABJBCQAgHfM2aeNzZyJ44d7GZSpX7zWOtxLAAAAgBJb2AEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAgIAEAAAAAAFAwargXAAAAwPFr7+oqfL1z585hWgkj1dlnn51x48YN9zIAAChTAhIAAMAItLulvfD1Zz/72WFaCSPVhg0bMmfOnOFeBgAAZcoWdgAAAAAAABQISAAAAAAAABTYwg4AAOBd4Nvz63L2aWOHexmUsV2vt+VzP6of7mUAADBCCEgAAADvAmefNjZzJo4f7mUAAADvErawAwAAAAAAoEBAAgAAAAAAoEBAAgAAAAAAoEBAAgAAAAAAoEBAAgAAAAAAoEBAAgAAAAAAoGDUyZz80KFD2bFjR3bs2JH6+vrU19fnyJEjSZLLLrssN99883HN98ILL2TdunWpr6/P4cOHM2nSpNTV1eWKK67IvHnzhjRHZ2dn1q9fnyeffDINDQ1pbW1NdXV1LrrooixbtixnnXXWkOY5fPhwHnvssWzevDn79u1LkkybNi0f+MAHsnz58kycOPG4XhsAAAAAAEC5OKkB6cYbbzwh83R1deWee+7Jhg0bCo83Nzenubk5mzdvzuLFi/P5z38+lZXHvqnq8OHDWbVqVerr6wuPNzU1pampKU888URuuOGGLFmyZMD1vPTSS/n617+egwcPFh7/5S9/mV/+8pfZsGFDbrnllsyaNev4XigAAAAAAEAZOKkBqbepU6emtrY2P/7xj4/72u9+97uleHTOOedkxYoVmT59epqamvLwww9n586d2bBhQyZNmpRPfvKT/c7R1dWVu+66qxSPFi5cmCuuuCITJkzISy+9lPvvvz+HDh3KPffck+rq6mPe0bR///587Wtfy+HDh1NVVZUrr7wy8+fPT5L86Ec/yve///288sor+drXvpY777wzU6ZMOe7XCwAAAAAAMJxOakC69tprU1dXl7q6ukyePDl79+7N7//+7x/XHLt3787atWuTJHV1dfnKV76SMWPGJElmzZqVBQsW5Pbbb099fX3Wrl2bxYsXp6amps88mzZtytatW5MkS5cuzec+97nSuVmzZmXevHn54he/mJaWlqxZsyYXX3xxqqqq+szz3e9+N4cPH06SfOELX8ill15aOnf++efn3HPPzd13351Dhw7lu9/97nFv0wcAAAAAADDcjr3f2wlw3XXXZf78+Zk8efJbnuPRRx9NZ2dnkmTlypWleNRj7NixWblyZZKjn2/0yCOP9DtPT4SaMGFCPvWpT/U5X1NTk2uuuSZJ0tjYmGeffbbPmIMHD+af/umfkiTvf//7C/Gox4c+9KG8//3vT5L84z/+Y59t7gAAAAAAAMrdSQ1Ib1d3d3c2b96cJKmtrc3s2bP7HTd79uzMnDkzSfLcc8+lu7u7cH737t1paGhIklx66aUZO3Zsv/MsWrSodNxfQOo99+WXX37MdffM093dneeee+6Y4wAAAAAAAMpRWQekvXv35pVXXklydHu4gVxwwQVJkubm5uzbt69wrmfrut7j+jN58uTMmDEjSbJt27Y+54c6T+9zva8BAAAAAAAYCco6IL388sul49ra2gHH9tyB9ObrjneenvMHDhxIa2trv/OcdtppA27Ld/rpp2f8+PFJUrrzCQAAAAAAYKQYNdwLGMiBAwdKx1OmTBlw7NSpU/u9Ljl6V1KP6urqAefpeZ7u7u40NzcXwlTPvIOtpWc9v/rVr/qsZTBDGT958uRUVVUlSSory7oBUuZ6f//4XgJOhlP9feZUfM0AjByVlZX+rBrEqf6zDHDyeZ8ByllZB6TedwCNGzduwLG9P9fozXcOtbS0nJB5er4ebI7e87x5jsHcdNNNg45ZvXp1pkyZkqqqqtTU1BzX/HAsZ5xxxnAvAXiXOxXfZ473P5IAwDtp6tSp/k55HE7Fn2WAd5b3GaDclHXWbm9vLx2PGjVw6xo9enS/1yXJG2+8cULm6fl6sDl6z/PmOQAAAAAAAMpdWd+BNGbMmNJxR0fHgGN7R6Le1yXFKNTR0dHn/FDnGTNmTNra2gZdS+95Bnqu/qxevXrQMT2fv9TZ2Zl9+/Yd1/zQW2VlZel/t+zduzddXV3DvCLg3eZUf5/Zv3//cC8BAI5p//79aWxsHO5llLVT/WcZ4OTzPgOcKNOmTSt99M2JUtYBqfdWcYNtBdfW1tbvdUkyfvz4wjwDRZ2B5hk3blza2tqGtC1dzzxD2e6ut6F8vlJv/lDhROnq6vL9BJxUp+L7zKn2egEYWU7FP5vfDr9ewMnmfQYoN2W9hV3vmDLYZwj0/h++b44w1dXVpePm5uYB5+l5noqKisJ1vecdyucZ9KzneIMQAAAAAADAcCvrgHTmmWeWjhsaGgYcu3v37n6vO955es5PmTKlz91DPfO8/vrrOXjw4DHneOWVV9LS0pIkqa2tHfD5AAAAAAAAyk1ZB6Qzzjgjp59+epLkxRdfHHBsz/nq6upMmzatcO68884rHW/ZsuWYcxw8eDB79uxJksyZM6fP+aHO0/tc72sAAAAAAABGgrIOSBUVFfnABz6Q5OidQdu3b+933Pbt20t3Di1YsCAVFRWF8zNnzizdCfTDH/6w8DlHvW3atKl0vHDhwj7ne8+9cePGY667Z56KioosWLDgmOMAAAAAAADKUVkHpCRZvnx5KiuPLnPNmjVpb28vnG9vb8+aNWuSJFVVVbnyyiv7neeqq65Kkrz66qu59957+5xvbGzMAw88kCSpqanpNyBNnjw5/+bf/JskyY9//OM8/fTTfcb88Ic/zI9//OMkyUc+8pFMnjx5KC8TAAAAAACgbIw6mZNv3bo1jY2Npa8PHz5cOm5sbCzc8ZMkixYt6jPHzJkzs2LFijz44IOpr6/PbbfdlquvvjrTp09PU1NTHnrooezcuTPJ0Ug0Y8aMfteyaNGibNy4Mdu2bcvjjz+egwcPZsmSJZkwYUJ27NiR++67Ly0tLamoqMjKlStTVVXV7zzXX399/vmf/zmHDx/ON77xjdTX12f+/PlJkh/96Ed55JFHkiSTJk3K9ddfP+RfKwAAAAAAgHJxUgPS+vXr88QTT/R7btu2bdm2bVvhsf4CUnI02hw6dCgbN27Mzp07c/fdd/cZs3jx4gGDTWVlZW655ZasWrUq9fX1eeaZZ/LMM88UxowePTo33HBD5s2bd8x5pk6dmi9+8Yv5+te/noMHD+ahhx7KQw89VBgzefLk3HLLLZkyZcox5wEAAAAAAChXJzUgnSiVlZW56aab8sEPfjDr1q1LfX19jhw5kokTJ6auri4f/ehHB4w+PSZNmpQ77rgj69evz5NPPpmGhoa0tramuro6F154YZYvX56zzjpr0Hl+/dd/PXfddVceffTRbN68Ofv27UuSnHHGGVmwYEGuvPLKTJw48W2/bgAAAAAAgOFwUgPSzTffnJtvvvmEzXfJJZfkkksueVtzVFVVZenSpVm6dOnbmqdnizrb1AEAAAAAAO82lcO9AAAAAAAAAMqLgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAEDBqOFewPHo6OjIE088kaeffjq7du3Kq6++mqqqqlRXV2fOnDlZsmRJ5syZM+g8L7zwQtatW5f6+vocPnw4kyZNSl1dXa644orMmzdvSGvp7OzM+vXr8+STT6ahoSGtra2prq7ORRddlGXLluWss856uy8XAAAAAABgWIyYgLRv377ceeed+dWvflV4vKOjI3v27MmePXuyadOmfOxjH8vKlStTUVHRZ46urq7cc8892bBhQ+Hx5ubmNDc3Z/PmzVm8eHE+//nPp7Ly2DdnHT58OKtWrUp9fX3h8aampjQ1NeWJJ57IDTfckCVLlryNVwwAAAAAADA8RkRA6ujoKMSjs88+O1deeWVmzpyZ1tbWbN26NWvXrk1bW1v+/u//PtXV1fnEJz7RZ57vfve7pXh0zjnnZMWKFZk+fXqampry8MMPZ+fOndmwYUMmTZqUT37yk/2upaurK3fddVcpHi1cuDBXXHFFJkyYkJdeein3339/Dh06lHvuuSfV1dVDvqMJAAAAAACgXIyIgPTcc8+V4tHs2bPzp3/6p4U7hC6++OIsWLAgf/Inf5LOzs489NBDueqqq1JVVVUas3v37qxduzZJUldXl6985SsZM2ZMkmTWrFlZsGBBbr/99tTX12ft2rVZvHhxampq+qxl06ZN2bp1a5Jk6dKl+dznPlc6N2vWrMybNy9f/OIX09LSkjVr1uTiiy8urAMAAAAAAKDcHXuftjKybdu20vEnPvGJfreXO/fcczN//vwkyWuvvZaGhobC+UcffTSdnZ1JkpUrV5biUY+xY8dm5cqVSY5+vtEjjzzS71p6ItSECRPyqU99qs/5mpqaXHPNNUmSxsbGPPvss0N6jQAAAAAAAOViRASkjo6O0vH06dOPOa73ud7XdHd3Z/PmzUmS2trazJ49u9/rZ8+enZkzZyY5etdTd3d34fzu3btLYerSSy/N2LFj+51n0aJFpWMBCQAAAAAAGGlGREDqiTpJ0tTUdMxxPecqKioK28/t3bs3r7zySpLk/PPPH/C5LrjggiRJc3Nz9u3bVzjXs3Vd73H9mTx5cmbMmJGkePcUAAAAAADASDAiAtKHP/zhjB8/Pkny0EMPpaurq8+YnTt35vnnny+NP+2000rnXn755dJxbW3tgM/VO1b1vu545+k5f+DAgbS2tg44FgAAAAAAoJyMGu4FDMWkSZPyH//jf8w3vvGNbNu2LbfeemuWL1+eGTNmpLW1Ndu2bcsjjzySjo6OnHPOOfn0pz9duP7AgQOl4ylTpgz4XFOnTu33uuToXUk9qqurB5yn53m6u7vT3NxcCFMDefNz9mfy5MmpqqpKkn4/DwqGqvf3j+8l4GQ41d9nTsXXDMDIUVlZ6c+qQZzqP8sAJ5/3GaCcjYiAlCQLFizInXfembVr12bjxo351re+VTj/3ve+N7/1W7+VJUuW9Plsot53AI0bN27A5+l97ZvvHGppaTkh8wzkpptuGnTM6tWrM2XKlFRVVRW26oO344wzzhjuJQDvcqfi+8xQ/mMIAAyXqVOn+jvlcTgVf5YB3lneZ4ByM2KydkdHR5544ok899xz6e7u7nP+0KFD+ad/+qf85Cc/6XOuvb29dDxq1MDNbPTo0f1elyRvvPHGCZkHAAAAAACgnI2IO5BaW1uzatWqvPjii6msrMyKFSty+eWXZ/r06Wlvb8+OHTvyd3/3d9m6dWu+/vWv51Of+lQ+/vGPl64fM2ZM6bijo2PA5+odiXpflxSjUEdHR5/zQ51nIKtXrx50zOTJk5MknZ2d2bdv35DnhjerrKws/e+WvXv39vv5YgBvx6n+PrN///7hXgIAHNP+/fvT2Ng43Msoa6f6zzLAyed9BjhRpk2bVvromxNlRASkv/3bv82LL76YJPm93/u9LFq0qHRu1KhRufjiizN37tzccccd+dnPfpb/83/+Ty688MK8733vS1Lcbm6w7eTa2tpKx2/epm78+PGFeQYKQwPNM5DBPqPpzfyhwonS1dXl+wk4qU7F95lT7fUCMLKcin82vx1+vYCTzfsMUG7Kfgu77u7ubNy4MUkyY8aMQjzqraqqKr/1W79VumbTpk2lc72jzGCfRdD7fwq/OeZUV1eXjpubmwecp+d5KioqCtcBAAAAAACUu7IPSIcOHcqrr76aJDnnnHMGHHvuueeWjnfv3l06PvPMM0vHDQ0NA85xrOuOd56e81OmTDmuO5AAAAAAAACGW9kHpMrK/3+JnZ2dA47tfb73dWeccUZOP/30JClthXcsPeerq6szbdq0wrnzzjuvdLxly5ZjznHw4MHs2bMnSTJnzpwBnw8AAAAAAKDclH1AmjBhQumzh7Zv3z5gROoddXo+fC45uo3cBz7wgSRH7wzavn17v9dv3769dOfQggULUlFRUTg/c+bM1NbWJkl++MMfFj7nqLfe2+ctXLjwmOsFAAAAAAAoR2UfkCorK3PJJZckSV555ZXcf//9/Y579dVX85d/+Zelr+fPn184v3z58tJdSWvWrEl7e3vhfHt7e9asWZPk6OcpXXnllf0+z1VXXVV6vnvvvbfP+cbGxjzwwANJkpqaGgEJAAAAAAAYcUYN9wKG4tprr81zzz2Xtra2/O3f/m1+/vOf57LLLsv06dPzxhtvZPv27Xn00Uezf//+JMlFF12U97///YU5Zs6cmRUrVuTBBx9MfX19brvttlx99dWZPn16mpqa8tBDD2Xnzp1JjkaiGTNm9LuWRYsWZePGjdm2bVsef/zxHDx4MEuWLMmECROyY8eO3HfffWlpaUlFRUVWrlyZqqqqk/uLAwAAAAAAcIKNiIBUW1ubW265Jd/4xjdy5MiR/OhHP8qPfvSjfsdeeOGF+cM//MN+z11//fU5dOhQNm7cmJ07d+buu+/uM2bx4sW5/vrrj7mWysrK3HLLLVm1alXq6+vzzDPP5JlnnimMGT16dG644YbMmzdv6C8SAAAAAACgTIyIgJQkF198ce6+++5s2LAh//zP/5xf/epXee2111JVVZXJkyenrq4u//pf/+t+P7uoR2VlZW666aZ88IMfzLp161JfX58jR45k4sSJqaury0c/+tEhRZ9JkybljjvuyPr16/Pkk0+moaEhra2tqa6uzoUXXpjly5fnrLPOOtG/BAAAAAAAAO+IEROQkmTixIm5+uqrc/XVV7+teS655JLS5yq9VVVVVVm6dGmWLl36tuYBAAAAAAAoN5XDvQAAAAAAAADKi4AEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAwajhXsBbsX///mzYsCHPP/989u3bl9bW1kyaNCnTpk3L3Llzc+mll+bXfu3Xjnn9Cy+8kHXr1qW+vj6HDx/OpEmTUldXlyuuuCLz5s0b0ho6Ozuzfv36PPnkk2loaEhra2uqq6tz0UUXZdmyZTnrrLNO1MsFAAAAAAB4R424gPTYY4/lr/7qr9LW1lZ4/MCBAzlw4EC2bt2alpaWfOYzn+lzbVdXV+65555s2LCh8Hhzc3Oam5uzefPmLF68OJ///OdTWXnsm7MOHz6cVatWpb6+vvB4U1NTmpqa8sQTT+SGG27IkiVL3voLBQAAAAAAGCYjKiDdd999+d73vpckmTFjRpYsWZJZs2bltNNOy5EjR7Jz585s3rw5FRUV/V7/3e9+txSPzjnnnKxYsSLTp09PU1NTHn744ezcuTMbNmzIpEmT8slPfrLfObq6unLXXXeV4tHChQtzxRVXZMKECXnppZdy//3359ChQ7nnnntSXV095DuaAAAAAAAAysWICUg/+clPSvHoIx/5SH7v934vo0YVl3/RRRdlxYoV6ejo6HP97t27s3bt2iRJXV1dvvKVr2TMmDFJklmzZmXBggW5/fbbU19fn7Vr12bx4sWpqanpM8+mTZuydevWJMnSpUvzuc99rnRu1qxZmTdvXr74xS+mpaUla9asycUXX5yqqqoT84sAAAAAAADwDjj2Pm1lpKurK9/+9reTJGeffXZuuummPvGot/7OPfroo+ns7EySrFy5shSPeowdOzYrV65McvTzjR555JF+5+6JUBMmTMinPvWpPudrampyzTXXJEkaGxvz7LPPDvbyAAAAAAAAysqICEj/8i//kj179iRJrr766uO+o6e7uzubN29OktTW1mb27Nn9jps9e3ZmzpyZJHnuuefS3d1dOL979+40NDQkSS699NKMHTu233kWLVpUOhaQAAAAAACAkWZEBKQf/vCHSZKKiorMnz+/9Pirr76aPXv25NVXXx3w+r179+aVV15Jkpx//vkDjr3ggguSJM3Nzdm3b1/hXM/Wdb3H9Wfy5MmZMWNGkmTbtm0DPh8AAAAAAEC5GRGfgfTSSy8lSaZNm5bx48fnySefzAMPPJBf/epXpTEzZszIkiVLsmzZsowePbpw/csvv1w6rq2tHfC5eu5A6rnujDPOeEvz1NbWZs+ePTlw4EBaW1szbty4Acf3OHDgwKBjJk+eXLoLq7JyRDRAylTv7x/fS8DJcKq/z5yKrxmAkaOystKfVYM41X+WAU4+7zNAOSv7gNTV1VXaNm7ixIlZs2ZNHnvssT7j9uzZk3vvvTebN2/OH//xH+c973lP6VzvKDNlypQBn2/q1Kn9XpccvSupR3V19YDz9DxPd3d3mpubC2FqIDfddNOgY1avXp0pU6akqqoqNTU1Q5oXBtM7lgKcDKfi+8xQ/mMIAAyXqVOn+jvlcTgVf5YB3lneZ4ByU/YB6fXXXy99FtEvf/nL1NfX5/TTT8/v/u7vZt68eRkzZkx27NiRv/zLv8xLL72Ubdu2ZfXq1fmjP/qj0hytra2l48HuBOr9uUa9r0uSlpaWEzIPAAAAAABAOSv7gNTW1lY6fuONNzJ27Nh8+ctfLtzRc8EFF+TLX/5y/uRP/iS7du3Ks88+m5deeim//uu/niRpb28vjR01auCX3Hv7u97X9Tz/iZhnIKtXrx50zOTJk5MknZ2dfT6nCY5HZWVl6X+37N27N11dXcO8IuDd5lR/n9m/f/9wLwEAjmn//v1pbGwc7mWUtVP9Zxng5PM+A5wo06ZNK330zYlS9gHpzZ9ntHjx4n63gxszZkx++7d/O3feeWeS5Ac/+EEpII0ZM6Y0rqOjY8Dn6x2Jel/35rV0dHT0OT/UeQYy2BZ7b+YPFU6Urq4u30/ASXUqvs+caq8XgJHlVPyz+e3w6wWcbN5ngHJT9p/MNn78+MLX73//+4859sILLywVtvr6+tLjvbebG2w7ud53PL15m7rea3k78wAAAAAAAJSzsg9Io0ePzqRJk0pfD3SHzpgxYzJx4sQkyeHDh/u9ZrAPs+691cybn6u6urp03NzcPOA8Pc9TUVFRuA4AAAAAAKDclX1ASpKzzjqrdDzYbZw953vv9XfmmWeWjhsaGga8fvfu3f1ed7zz9JyfMmWKO5AAAAAAAIARZUQEpPPPP7903NTUdMxxr7/+eo4cOZKkeLfQGWeckdNPPz1J8uKLLw74XD3nq6urM23atMK58847r3S8ZcuWY85x8ODB7NmzJ0kyZ86cAZ8PAAAAAACg3IyIgPTBD36wdPzss88ec9yzzz6b7u7uJMXYU1FRkQ984ANJjt4ZtH379n6v3759e+nOoQULFqSioqJwfubMmamtrU2S/PCHPyx8zlFvmzZtKh0vXLjwmOsFAAAAAAAoRyMiIJ199tmZN29ekuSpp57KT37ykz5jDh48mO9973tJklGjRuXyyy8vnF++fHkqK4++3DVr1qS9vb1wvr29PWvWrElydPu7K6+8st+1XHXVVUmSV199Nffee2+f842NjXnggQeSJDU1NQISAAAAAAAw4owa7gUM1b//9/8+27dvz2uvvZY777wzV155ZebNm5cxY8Zkx44defDBB3PgwIEkyW/91m8VtrBLjt49tGLFijz44IOpr6/PbbfdlquvvjrTp09PU1NTHnrooezcuTPJ0Ug0Y8aMftexaNGibNy4Mdu2bcvjjz+egwcPZsmSJZkwYUJ27NiR++67Ly0tLamoqMjKlSsLn8UEAAAAAAAwEoyYgDRz5sx88YtfzH/9r/81hw4dyoMPPpgHH3ywMKaioiLXXHNNrr766n7nuP7663Po0KFs3LgxO3fuzN13391nzOLFi3P99dcfcx2VlZW55ZZbsmrVqtTX1+eZZ57JM888UxgzevTo3HDDDaW7pgAAAAAAAEaSEROQkqOfa/Tf/tt/y2OPPZbNmzdn79696ejoyOmnn54LLrggy5YtyznnnHPM6ysrK3PTTTflgx/8YNatW5f6+vocOXIkEydOTF1dXT760Y8OKfpMmjQpd9xxR9avX58nn3wyDQ0NaW1tTXV1dS688MIsX748Z5111ol86QAAAAAAAO+YERWQkmTixIm57rrrct11173lOS655JJccsklb2sdVVVVWbp0aZYuXfq25gEAAAAAACg3lcO9AAAAAAAAAMqLgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAEDBqOFeAACMFK2trdm1a9dwL2NEqayszIEDB5Ik+/fvT1dX1zCv6J21c+fO4V4CAAAAwFsiIAHAEO3atSuLFy8e7mUAAAAAwElnCzsAAAAAAAAKBCQAAAAAAAAKbGEHAG/Rt+fX5ezTxg73MihjPzhwJF/e8qvhXgYAAADAcROQAOAtOvu0sZkzcfxwL4My9ovXWod7CQAAAABviS3sAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBCQAAAAAAAAKBg13AsAAAAATr72rq7C1zt37hymlYwclZWVOXDgQJJk//796XrTr+Gp5uyzz864ceOGexkAwDtEQAIAAIBTwO6W9sLXn/3sZ4dpJYxUGzZsyJw5c4Z7GQDAO8QWdgAAAAAAABQISAAAAAAAABTYwg4AAABOQd+eX5ezTxs73MugjO16vS2f+1H9cC8DABgmAhIAAACcgs4+bWzmTBw/3MsAAKBM2cIOAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAAgEJAAAAAACAglHDvYC34957783DDz9c+vrLX/5y5s6dO+A1L7zwQtatW5f6+vocPnw4kyZNSl1dXa644orMmzdvSM/b2dmZ9evX58knn0xDQ0NaW1tTXV2diy66KMuWLctZZ531tl4XAAAAAADAcBqxAekXv/hFvv/97w95fFdXV+65555s2LCh8Hhzc3Oam5uzefPmLF68OJ///OdTWXnsG7MOHz6cVatWpb6+vvB4U1NTmpqa8sQTT+SGG27IkiVLju8FAQAAAAAAlIkRGZC6urryF3/xF+ns7Mx73/veHDp0aNBrvvvd75bi0TnnnJMVK1Zk+vTpaWpqysMPP5ydO3dmw4YNmTRpUj75yU8e83nvuuuuUjxauHBhrrjiikyYMCEvvfRS7r///hw6dCj33HNPqqurh3xHEwAAAAAAQDkZkZ+B9Nhjj6W+vj61tbW5/PLLBx2/e/furF27NklSV1eXr371q/nwhz+cWbNm5cMf/nD+9E//NHV1dUmStWvXprGxsd95Nm3alK1btyZJli5dmj/6oz/Kv/pX/yqzZs3KsmXL8tWvfjXjx49Pd3d31qxZk87OzhP0igEAAAAAAN45Iy4g7d+/P9/73veSJDfeeGNGjRr8JqpHH320FHNWrlyZMWPGFM6PHTs2K1euTHL0840eeeSRfufpiVATJkzIpz71qT7na2pqcs011yRJGhsb8+yzzw7xVQEAAAAAAJSPEReQvv3tb6e1tTWXXXZZLrjggkHHd3d3Z/PmzUmS2trazJ49u99xs2fPzsyZM5Mkzz33XLq7uwvnd+/enYaGhiTJpZdemrFjx/Y7z6JFi0rHAhIAAAAAADASjaiA9IMf/CDPP//8Me8A6s/evXvzyiuvJEnOP//8Acf2BKnm5ubs27evcK5n67re4/ozefLkzJgxI0mybdu2Ia0RAAAAAACgnAy+/1uZeO211/Kd73wnSfI7v/M7mTRp0pCue/nll0vHtbW1A47tuQOp57ozzjjjLc1TW1ubPXv25MCBA2ltbc24ceOGtNYkOXDgwKBjJk+enKqqqiRJZeWIaoCUmd7fP76XYHB+nwAAcCqrrKz0MzGcYP5tBihnIyYg3XvvvTl48GDmzJmTxYsXD/m63kFmypQpA46dOnVqv9clR+9K6lFdXT3gPD3P093dnebm5kKYGsxNN9006JjVq1dnypQpqaqqSk1NzZDnhoH0DqZA/4YS+QEA4N1q6tSp/h0CTiL/NgOUmxGRtV988cVs2LAhVVVVufHGG1NRUTHka1tbW0vHg90J1PtzjXpflyQtLS0nZB4AAAAAAIByV/Z3IHV0dOSee+5Jd3d3rrzyyvzar/3acV3f3t5eOh41auCXO3r06H6vS5I33njjhMwzmNWrVw86ZvLkyUmSzs7OPp/VBMejsrKy9L9b9u7dm66urmFeEZS3/fv3D/cSAABg2Ozfvz+NjY3DvQx4V/FvM8CJMm3atNJH35woZR+Q7r///jQ0NGTq1Km59tprj/v6MWPGlI47OjoGHNs7EvW+LilGoY6Ojj7nhzrPYAbbZu/N/KHCidLV1eX7CQbh9wgAAKcyf2+Ek8vvMaDclPUWdg0NDXnwwQeTJDfccMOgW8f1p/c1g20n19bW1u91STJ+/PgTMg8AAAAAAEC5K+s7kL7//e+no6Mj06dPT1tbW5566qk+Y371q1+Vjn/605/m4MGDSZL58+dn3LhxhTt6Bvvw895bE735TqDq6urScXNzcyZNmnTMeXqep6KionAdAAAAAADASFDWAalnK7impqZ84xvfGHT8fffdVzr+H//jf2TcuHE588wzS481NDQMeP3u3btLx72ve/PXDQ0Ned/73nfMeXqeZ8qUKe5AAgAAAAAARpyy3sLuRDjjjDNy+umnJ0lefPHFAcf2nK+urs60adMK584777zS8ZYtW445x8GDB7Nnz54kyZw5c97SmgEAAAAAAIZTWd+BdPPNN+fmm28ecMzf/M3f5O/+7u+SJF/+8pczd+7cwvmKiop84AMfyP/9v/83DQ0N2b59e2bPnt1nnu3bt5fuHFqwYEEqKioK52fOnJna2to0NDTkhz/8YT796U9n7NixfebZtGlT6XjhwoVDep0AAAAAAADl5F1/B1KSLF++PJWVR1/qmjVr0t7eXjjf3t6eNWvWJEmqqqpy5ZVX9jvPVVddlSR59dVXc++99/Y539jYmAceeCBJUlNTIyABAAAAAAAjUlnfgXSizJw5MytWrMiDDz6Y+vr63Hbbbbn66qszffr0NDU15aGHHsrOnTuTHI1EM2bM6HeeRYsWZePGjdm2bVsef/zxHDx4MEuWLMmECROyY8eO3HfffWlpaUlFRUVWrlyZqqqqd/JlAgAAAAAAnBCnREBKkuuvvz6HDh3Kxo0bs3Pnztx99919xixevDjXX3/9MeeorKzMLbfcklWrVqW+vj7PPPNMnnnmmcKY0aNH54Ybbsi8efNO9EsAAAAAAAB4R5wyAamysjI33XRTPvjBD2bdunWpr6/PkSNHMnHixNTV1eWjH/3okKLPpEmTcscdd2T9+vV58skn09DQkNbW1lRXV+fCCy/M8uXLc9ZZZ70DrwgAAAAAAODkGPEB6brrrst111035PGXXHJJLrnkkrf1nFVVVVm6dGmWLl36tuYBAAAAAAAoR5XDvQAAAAAAAADKi4AEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAgYAEAAAAAABAwajhXsBQ1NfX54UXXsjWrVvz8ssv5/Dhw6mqqkp1dXXmzJmTxYsX57zzzhvyfC+88ELWrVuX+vr6HD58OJMmTUpdXV2uuOKKzJs3b0hzdHZ2Zv369XnyySfT0NCQ1tbWVFdX56KLLsqyZcty1llnvdWXCwAAAAAAMKzKPiB9+ctfzosvvtjn8Y6OjuzZsyd79uzJpk2b8pGPfCS/93u/l1Gjjv2Surq6cs8992TDhg2Fx5ubm9Pc3JzNmzdn8eLF+fznP5/KymPfnHX48OGsWrUq9fX1hcebmprS1NSUJ554IjfccEOWLFlynK8WAAAAAABg+JV9QGpubk6SnH766bn00ktz3nnnZerUqenq6sr27dvzyCOPpLm5Of/4j/+Yzs7O/Kf/9J+OOdd3v/vdUjw655xzsmLFikyfPj1NTU15+OGHs3PnzmzYsCGTJk3KJz/5yX7n6Orqyl133VWKRwsXLswVV1yRCRMm5KWXXsr999+fQ4cO5Z577kl1dfWQ72gCAAAAAAAoF2UfkGpra/Pbv/3b+Y3f+I0+dwXNnj07H/nIR3Lbbbdlz549eeqpp/LRj340F1xwQZ95du/enbVr1yZJ6urq8pWvfCVjxoxJksyaNSsLFizI7bffnvr6+qxduzaLFy9OTU1Nn3k2bdqUrVu3JkmWLl2az33uc6Vzs2bNyrx58/LFL34xLS0tWbNmTS6++OJUVVWdsF8PAAAAAACAk+3Y+7SViT/+4z/Ohz70oWNuKTdp0qR8+tOfLn399NNP9zvu0UcfTWdnZ5Jk5cqVpXjUY+zYsVm5cmWSo59v9Mgjj/Q7T0+EmjBhQj71qU/1OV9TU5NrrrkmSdLY2Jhnn312oJcHAAAAAABQdso+IA3F3LlzS8dNTU19znd3d2fz5s1Jjt7RNHv27H7nmT17dmbOnJkkee6559Ld3V04v3v37jQ0NCRJLr300owdO7bfeRYtWlQ6FpAAAAAAAICR5l0RkDo6OkrH/d2ptHfv3rzyyitJkvPPP3/AuXq2v2tubs6+ffsK53q2rus9rj+TJ0/OjBkzkiTbtm0bZPUAAAAAAADlpew/A2kotmzZUjqura3tc/7ll18e8HxvPXcg9Vx3xhlnvKV5amtrs2fPnhw4cCCtra0ZN27cgON7HDhwYNAxkydPLn2u0rG29oOh6P3943sJBuf3CQAAp7LKyko/E8MJ5t9mgHI24gNSV1dXHnzwwdLXH/rQh/qM6R1lpkyZMuB8U6dO7fe65OhdST2qq6sHnKfnebq7u9Pc3FwIUwO56aabBh2zevXqTJkyJVVVVampqRnSvDCY3rEU6N9QIj8AALxbTZ061b9DwEnk32aAcjPis/b3v//97NixI0mycOHCnHvuuX3GtLa2lo4HuxOo9+ca9b4uSVpaWk7IPAAAAAAAAOVsRN+BtGXLlvzVX/1VkuS9731vbrzxxn7Htbe3l45HjRr4JY8ePbrf65LkjTfeOCHzDGT16tWDjpk8eXKSpLOzs8/nNMHxqKysLP3vlr1796arq2uYVwTlbf/+/cO9BAAAGDb79+9PY2PjcC8D3lX82wxwokybNq300TcnyogNSL/61a/y9a9/PZ2dnRk9enT+8A//MO9973v7HTtmzJjScUdHx4Dz9o5Eva9LilGoo6Ojz/mhzjOQwbbYezN/qHCidHV1+X6CQfg9AgDAqczfG+Hk8nsMKDcjcgu7vXv35o477shrr72WysrK/MEf/EEuuOCCY47vvd3cYNvJtbW19XtdkowfP/6EzAMAAAAAAFDORlxAam5uzle/+tW88sorqaioyE033ZQPfOADA17T+66ewT4Avff2RG++G6i6urqwjoH0PE9FRUXhOgAAAAAAgHI3ogLS4cOHc8cdd6SpqSlJsnLlylx22WWDXnfmmWeWjhsaGgYcu3v37n6vO955es5PmTLFHUgAAAAAAMCIMmIC0uuvv54/+7M/y8svv5wk+eQnP5mPfexjQ7r2jDPOyOmnn54kefHFFwcc23O+uro606ZNK5w777zzSsdbtmw55hwHDx7Mnj17kiRz5swZ0hoBAAAAAADKxYgISG1tbVm1alV27tyZJPm3//bf5hOf+MSQr6+oqChtc9fQ0JDt27f3O2779u2lO4cWLFiQioqKwvmZM2emtrY2SfLDH/6w8DlHvW3atKl0vHDhwiGvEwAAAAAAoByUfUDq6OjIXXfdlW3btiVJli9fnuuvv/6451m+fHkqK4++3DVr1qS9vb1wvr29PWvWrEmSVFVV5corr+x3nquuuipJ8uqrr+bee+/tc76xsTEPPPBAkqSmpkZAAgAAAAAARpxRw72Awdx999358Y9/nCS58MILs3jx4vzyl7885vhRo0Zl5syZfR6fOXNmVqxYkQcffDD19fW57bbbcvXVV2f69OlpamrKQw89VLrD6aqrrsqMGTP6nX/RokXZuHFjtm3blscffzwHDx7MkiVLMmHChOzYsSP33XdfWlpaUlFRkZUrV6aqquoE/CoAAAAAAAC8c8o+ID377LOl45/+9Kf5oz/6owHHT5s2Ld/61rf6PXf99dfn0KFD2bhxY3bu3Jm77767z5jFixcPeIdTZWVlbrnllqxatSr19fV55pln8swzzxTGjB49OjfccEPmzZs34FoBAAAAAADKUdkHpBOpsrIyN910Uz74wQ9m3bp1qa+vz5EjRzJx4sTU1dXlox/96JCiz6RJk3LHHXdk/fr1efLJJ9PQ0JDW1tZUV1fnwgsvzPLly3PWWWe9A68IAAAAAADgxCv7gPQ3f/M3J3zOSy65JJdccsnbmqOqqipLly7N0qVLT9CqAAAAAAAAykPlcC8AAAAAAACA8iIgAQAAAAAAUCAgAQAAAAAAUCAgAQAAAAAAUCAgAQAAAAAAUCAgAQAAAAAAUDBquBcAAAAAQPlp7+oqfL1z585hWgkj1dlnn51x48YN9zIAeIsEJAAAAAD62N3SXvj6s5/97DCthJFqw4YNmTNnznAvA4C3yBZ2AAAAAAAAFAhIAAAAAAAAFNjCDgAAAIBBfXt+Xc4+bexwL4Mytuv1tnzuR/XDvQwAThABCQAAAIBBnX3a2MyZOH64lwEAvENsYQcAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAEDBqOFeAMBwaW1tza5du4Z7GYwgO3fuHO4lAAAAAMA7QkACTlm7du3K4sWLh3sZAAAAAABlxxZ2AAAAAAAAFAhIAAAAAAAAFNjCDuD/+fb8upx92tjhXgZl7AcHjuTLW3413MsAAAAAgJNOQAL4f84+bWzmTBw/3MugjP3itdbhXgIAAAAAvCNsYQcAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAAAAECBgAQAAAD8f+3deWwU5/3H8Y9vG7AxmGPNYSccdgADAYwTSMNRKMFAUpIikh5paA4pJS1qFaHWTaqSFIkgUEWKCC2NWlpZNEEtJCUFcpgrgRgCbpNgc9mmHD6wMRiv8XoXH78//NvRDnt41xh2bd4vKdLszjPPPmsNn8zsd+YZAAAAwIQCEgAAAAAAAAAAAEwoIAEAAAAAAAAAAMCEAhIAAAAAAAAAAABMKCABAAAAAAAAAADAhAISAAAAAAAAAAAATCggAQAAAAAAAAAAwIQCEgAAAAAAAAAAAEwoIAEAAAAAAAAAAMCEAhIAAAAAAAAAAABMKCABAAAAAAAAAADAhAISAAAAAAAAAAAATCggAQAAAAAAAAAAwIQCEgAAAAAAAAAAAEwoIAEAAAAAAAAAAMCEAhIAAAAAAAAAAABMKCABAAAAAAAAAADAhAISAAAAAAAAAAAATCggAQAAAAAAAAAAwIQCEgAAAAAAAAAAAEwoIAEAAAAAAAAAAMCEAhIAAAAAAAAAAABMKCABAAAAAAAAAADAhAISAAAAAAAAAAAATCKDPQAAAAAAAAAAXZ+jpcX0+uzZs0EaSdcRHh6umpoaSdLly5fVctPf8G6Tmpqq2NjYYA8DwP+jgAQAAAAAAADglpXbHKbXzz33XJBGgq5qz549Sk9PD/YwAPw/prADAAAAAAAAAACACXcgodtobGzUuXPngj2MLuVuv02aW+kBAAAAAAAAwDMKSOg2zp07p29+85vBHgYAAAAAAAAkvT1puFJ7xAR7GAhh5xrsev5YSbCHAcALCkgAAAAAAAAAOl1qjxilx8cFexgAgA7iGUgAAAAAAAAAAAAw4Q4kdFvcJo32HKqx6jdFF4I9DAAAAAAAAAAIORSQbkF1dbV27dqlgoIC1dTUKDIyUhaLRVOmTNEjjzyimBiKF8HEbdJoz/+uNwZ7CAAAAAAAAAAQkiggddDRo0e1fv162Ww24z273a6SkhKVlJQoLy9POTk5slgsQRwlAAAAAAAAAABA4CggdcDZs2e1bt06ORwOxcbGauHChcrIyJDD4dDBgweVl5eniooKrVq1Sm+88Ybi4rgLBgAAAAAAAAAAdB0UkDpg8+bNcjgcioiI0Kuvvqq0tDRjXUZGhpKTk5Wbm6uKigrt2LFDixcvDuJoAQAAAAAAACD0OFpaTK/Pnj0bpJGgq0pNTVVsbGywh9FtUUAKUHFxsU6cOCFJmjlzpql45LRgwQLt3btXZWVl2rVrl5544glFRvKnBgAAAAAAAACncpvD9Pq5554L0kjQVe3Zs0fp6enBHka3FR7sAXQ1R44cMZZnzpzpsU14eLimT58uSbp+/boKCwvvyNgAAAAAAAAAAAA6AwWkAJ06dUqSFBMTo2HDhnltN3r0aLdtAAAAAAAAAAAAugLmVQvQxYsXJUkWi0URERFe2w0aNMhtGwAAAAAAAACAZ29PGq7UHjHBHgZC2LkGu54/VhLsYdw1KCAFwOFwyGq1SpKSkpJ8tu3Vq5diYmJkt9tVU1Pj92f40zYxMdEoXoWHcxOZ081/i3MN9iCNBF1FeeMN02v2GbSHfQaBYp9BINhfECj2GQSKfQaBYp9BoNhnEKib9xkgUOHh4fxGfhtRQApAY2OjsRwbG9tu+9jYWNntdtN27fnxj3/cbpstW7ZIkiIiImSxWPzuu7tLSkrShQsXgj0MdCH3SXo22INAl8I+g0CxzyAQ7C8IFPsMAsU+g0CxzyBQ7DMIFPsMAnWfJNdfgAcOHKioqKhgDafbo4AUAIfDYSxHRrb/p3O2cd2uM4SFhXVqf91FVFSUhgwZEuxhAAAAAAAAAADQ5VFACkB0dLSx3NTU1G57ZxvX7dqzcePGdttwSx46S3Nzs2prayWZp0YEgM5CzgC4ncgYALcbOQPgdiNnAIQyCkgBcJ22zp9p6Zxt/Jnuzqm9ZysBnam2ttaYNnHjxo3sfwA6HTkD4HYiYwDcbuQMgNuNnAEQyriVJQDR0dGKj4+XJNXU1PhsW19fL7u97UGBBD8AAAAAAAAAAOhKKCAFyPmMncrKSjU3N3ttV15e7rYNAAAAAAAAAABAV0ABKUDp6emSJLvdrtLSUq/tioqK3LYBAAAAAAAAAADoCiggBSgrK8tY3rt3r8c2LS0t2r9/vySpZ8+eGjNmzB0ZGwAAAAAAAAAAQGeggBSgESNGaNSoUZLaCkinT592a/PBBx+orKxMkpSdna3IyMg7OkYAAAAAAAAAAIBbQQGpA5YsWaLo6Gg1Nzdr5cqV2r59u06fPq3jx49r06ZNys3NlSQlJyfr0UcfDfJoAQAAAAAAAAAAAsOtMR1w77336mc/+5nWr18vm82mv//9725tkpOTlZOTo7i4uCCMEAAAAAAAAAAAoOPCWltbW4M9iK6qurpaO3fuVEFBga5cuaLIyEhZLBY9+OCDmjt3rmJiYoI9RAAAAAAAAAAAgIBRQAIAAAAAAAAAAIAJz0ACAAAAAAAAAACACQUkAAAAAAAAAAAAmFBAAgAAAAAAAAAAgAkFJAAAAAAAAAAAAJhQQAIAAAAAAAAAAIAJBSQAAAAAAAAAAACYUEACAAAAAAAAAACACQUkAAAAAAAAAAAAmEQGewAApGvXrqm4uFjFxcUqKSlRSUmJrFarJGn69Ol66aWX2u3j4sWLOn78uIqLi3XhwgVdu3ZNVqtV4eHh6t27t4YPH65vfOMbyszMVFhYWLv9NTc3Ky8vT5999pnKysrU2Niovn37auzYscrOztbQoUP9+m51dXXatWuXvvjiC1VXV0uS+vfvr8mTJ2vevHmKj4/3qx8AHdcZGeON3W7Xyy+/rKqqKklt/743bNjg13a7d+9Wfn6+Kisr1dTUpKSkJE2cOFHZ2dnq37+/X59fXV2tXbt2qaCgQDU1NYqMjJTFYtGUKVP0yCOPKCYmpsPfDYD/OiNn9u3bp7feesuvz1u6dKlmzJjhsw05A3Qvt+N45quvvtKnn36qkydPqra2VuHh4UpMTFRKSorGjh2radOmKTY21uv25AzQfdxqxlRVVeknP/lJQJ/Z3rkTGQMgFFBAAkLACy+8cMt9bNu2TZ999pnHdVVVVaqqqtLnn3+u0aNH6+WXX/ZZuKmrq9OqVatUUlJiev/SpUu6dOmS9u/fr2effVazZs3yOaYzZ85ozZo1qq2tNb1//vx5nT9/Xnv27NHy5cs1YsQI/74kgA7pjIzx5t133zWKR/6qrKzUqlWrVFFRYXq/vLxc5eXlysvL07JlyzRp0iSf/Rw9elTr16+XzWYz3rPb7cYJX15ennJycmSxWAIaH4DA3c6c6QhyBuh+OjNn6uvr9dZbb+no0aNu62w2myoqKnT48GGlpaXpnnvu8dgHOQN0L8E4lhk0aJDXdWQMgFBBAQkIMf369dPgwYP15ZdfBrRdRESERo4cqfT0dKWkpCgxMVEJCQmqr69XeXm5Pv74Y124cEFFRUVavXq1Xn/9dYWHu89i2dLSorVr1xrFo6ysLM2ePVu9evXSmTNntG3bNl27dk2bNm1S3759NWHCBI/juXz5slavXq26ujpFRERo/vz5xoHNsWPH9O9//1tXr17V6tWr9cYbbygpKSnAvxSAjuhoxnhy9uxZ7dy5U1FRUYqMjDSdlHhjs9lMJ0KzZs3SQw89pOjoaB0/flzvvfeebDab1q1bp9/+9rdef7Q5e/as1q1bJ4fDodjYWC1cuFAZGRlyOBw6ePCg8vLyVFFRoVWrVumNN95QXFzcLX9fAP7pjJx55ZVX1KdPH6/rfR03kDNA93crOdPQ0KCVK1eqtLRUUtv5zoMPPqiBAwcqPDxcNTU1Kioq0uHDh732Qc4A3VtHMqZv375au3Ztu+3ee+894+Lf6dOne2xDxgAIJRSQgBCwaNEiDR8+XMOHD1diYmKHbn1+8cUXFRER4XHduHHjNGfOHP3ud7/TkSNHdPr0aRUUFCgzM9Ot7b59+3Ty5ElJ0pw5c/T8888b60aMGKEJEyboF7/4hWw2m/7yl79o3LhxHj/3nXfeUV1dnSRp2bJlmjJlirFu1KhRGjZsmNatW6dr167pnXfeuaUptAD41hkZc7OWlhb98Y9/VEtLixYtWqS9e/f6VUD617/+ZZwI/eAHP9Bjjz1mrEtLS9OYMWO0YsUK2e12bd68WStWrPDYz+bNm+VwOBQREaFXX31VaWlpxrqMjAwlJycrNzdXFRUV2rFjhxYvXnxL3xeAb52dM8nJyRowYECHtiVngO6ps3Lmz3/+s0pLSxUVFaWf//znbudEw4cPV1ZWlp555hm1tLR47IOcAbqfW82YyMhIpaSk+GzT0tKiwsJCSVJcXJyysrI8tiNjAIQS99sPANxxixcv1qRJk5SYmNjhPrwVj5zCw8NNBx0nTpzw2G7Hjh2SpF69eunpp592W2+xWPT4449Larul+siRI25tamtr9emnn0qSxo8fbyoeOU2dOlXjx4+XJB04cMBtmjsAnaczMuZmO3fuVGlpqQYNGqSFCxf6tU1TU5N27dolSRo8eLAWLFjg1iY9PV0zZ86UJBUVFam4uNitTXFxsZFhM2fONJ0IOS1YsECDBw+WJO3atUtNTU1+jRFAx9yOnOkIcgbovjojZ06ePKkDBw5Ikp588kmPF9Q5hYWFeTzHImeA7ulOHMt89dVXunr1qiTpgQceUHR0tFsbMgZAqKGABNxFXG9HvnHjhtv68vJylZWVSZKmTJni9UGKrg+t9lRAOnr0qFpbWyXJOKjx1U9ra6vH+ccBhKbq6mq9++67ktrmCo+M9O+G5sLCQjU0NEhqm67B0zSaUvsZ4/qet4wJDw83poS4fv26caUfgO6NnAHgy+7duyVJPXr00Ny5czvUBzkDoKOcBWzJnBGuyBgAoYYCEnAXOXjwoLHs6WGNzqnrJGn06NFe+0lMTFRycrIk6dSpUx3ux3Wd6zYAQtvbb78tu92uadOmacyYMX5v5282DB8+3Chge8oY53sxMTEaNmyY135cP8NTPwC6H3IGgDdNTU364osvJLVN8e288r+lpUWXL19WVVWVHA5Hu/2QMwA6wmazGRnUv39/jRo1ymM7MgZAqOEZSEA3V1dXp8rKSuXl5Wnfvn2SpPj4eD388MNubS9evGgsO29j9mbw4MGqqKhQTU2NGhsbFRsb69ZPjx49fN7+3adPH8XFxclmsxl3PgEIbQcPHtR//vMf9ezZUz/84Q8D2tbfjImIiJDFYtG5c+c8ZoOzH4vF4nP6TtdCuetnAwh9GzduVHl5uerq6tSjRw9ZLBaNHTtWc+bMUd++fb1uR84A8OZ///ufMQtDSkqKGhoatHXrVu3fv1/Xr1+X1PYMk1GjRumJJ57wepEMOQOgI/Lz82W32yVJ06ZNU1hYmMd2ZAyAUEMBCeiGVqxYoaKiIo/r4uPjtXz5cvXs2dNt3ZUrV4xlXz/OSFJSUpKktunnrly5YjroqKmpMbXxpV+/frpw4YKxDYDQVV9fr82bN0uSvv/97yshISGg7Z0ZExMT4zGDXCUlJencuXOqq6vTjRs3FBUVJUlyOByyWq1GG1969eqlmJgY2e12MgboYlynULFarbJarTpz5ox27NihJUuW6Fvf+pbH7cgZAN64/jDa0tKinJwc4yH1Tk1NTfr66691/Phxffe73/X4nEdyBkBHuE5f55w2zhMyBkCooYAE3EWys7P1ne98x+uPvjabzVh2vaPIE9fnIzU2NprWOV+314drPzf3ASD05Obm6tq1a0pLS9OsWbMC3t6ZMYFkg9SWD86TIdes8Kef2NhY2e12MgboIgYOHKisrCylpaUZP3hUVVUpPz9fhw8f1o0bN/SnP/1JYWFhmj17ttv25AwAb+rr643l999/Xzdu3ND999+vxYsXKzU1VTabTfn5+dqyZYsaGhq0ZcsWDR48WJMnTzb1Q84ACNTly5eNi3zT09NlsVi8tiVjAIQaCkhAN7R06VLjf/zXr19XSUmJPv74Y+3evVuXLl3Siy++6HFqOeeUDlLb9A2+OA9MJLnNFe583V4frv34M984gOApKirS3r17FRERoRdeeMHrlAu+ODMmkGyQzPnguuxPP842ZAwQ+rKysjR9+nS3fBkxYoSmTp2qY8eOae3atWpubtZf//pXZWZmuh3PkDMAvHFOHSW1ZcW4ceP0y1/+0nhAfVRUlObMmaOUlBT95je/UWtrq7Zs2aLMzExTLpEzAAJ14MABtba2Smqbvs4XMgZAqAkP9gAAdL4BAwYoJSVFKSkpGjVqlBYsWKA1a9ZowoQJKigoUE5Ojsdbk10PPpqamnx+hmuxyfkA2ptft9eHaz839wEgdNy4cUObNm1Sa2ursrOzlZqa2qF+nBkTSDZI5nxwXfanH2cbMgYIfT169PBZnJ40aZIWLVokqe2H4D179ri1IWcAeON6riO1TcfrLB65uu+++/TAAw9IksrKynT+/HmP/ZAzAPz16aefSmrLj6lTp/psS8YACDUUkIC7RHR0tJYuXaqYmBjV1NQoNzfXrU1cXJyx3N6ty65X8N18S7TztT+3Pzv78ee2agDBsW3bNpWXlyspKUmLFy/ucD/OjAkkGyRzPrgu+9NPIFNqAgh9s2fPNopMnp73SM4A8Mb1XCchIUH33nuv17bjx483lktKSjz2Q84A8EdxcbHKysoktV0M095zjcgYAKGGKeyAu0hCQoLS09P11Vdf6ejRo2pqajLdzty3b19j+cqVK16flSTJuIMpLCzMtJ3U9pDGa9eu+fUAxsuXLxvbAAhN77//viRp7NixOnbsmMc2zpOOxsZGHTx4UJLUu3dvZWRkGG2cWWG323X9+nWfJ0/O/EhISDBdMRwdHa34+HhZrdZ2M6a+vt44qSJjgO6hd+/e6tWrl6xWq/GQaVfkDABvXP+Ntvfv1XV9XV2daR05AyAQ+/fvN5anT5/ebnsyBkCooYAE3GWcRSG73S6r1ao+ffoY64YMGWIsl5WV6Z577vHaj/MKmqSkJLerVIYMGaLS0lI1NDSotrbW4/OWJOnq1avGAyIHDx7cka8D4A5wTmmwb98+7du3z2dbq9WqN998U5I0evRoUwFpyJAhOnz4sKS2DElLS/PYR3NzsyorKyV5zoYhQ4boxIkTqqysVHNzsyIiIjz2U15ebtoGQPfga5o7cgaAN0OHDjWWW1pafLZ1XX/zNHfkDAB/NTU16dChQ5LaLoK5//77292GjAEQapjCDrjLuF6te3Ph57777jOWPU0L41RbW6uKigpJUnp6utt6f/txXee6DYDuyd9sKCkpMa6C85QxzvfsdrtKS0u99uP6GZ76AdD11NXVyWq1SpLpIhgncgaAN/3791e/fv0kSVVVVcYD7T25dOmSsXzzbAvkDAB/FRQUGMctDz30kNcijisyBkCooYAE3EVqamp0+vRpSW0nUK7zgEvSoEGDjCtXPv/8c9N8uq5c70DIyspyW5+ZmWlcHbx3716v43H2ExYWpszMTL+/B4A7a+vWre3+179/f0lt2eJ8b8WKFaZ+xowZox49ekhqm8rB2w837WWM63veMqalpcWYLqJnz54aM2aM398XQOj65JNPjOwYPXq023pyBoAvDzzwgCTJZrPp66+/9truyJEjxvLNF7qRMwD8deDAAWN5xowZfm1DxgAINRSQgG6gvLxcx48f99mmoaFBv//9742pqKZNm+ax3aOPPiqpbR7c3Nxct/WVlZXavn27JMlisXg8UElMTNTDDz8sSfryyy+Vn5/v1ubzzz/Xl19+aYzF2zR3ALqPyMhIZWdnS2qbjmHHjh1ubU6fPm2c4IwePVojRoxwazNixAiNGjVKUtvJkLMw7uqDDz4wptrMzs42Pe8NQOipqqrS2bNnfbY5duyY/vGPf0hqm9t/5syZbm3IGQC+zJ8/33hOyN/+9jc1NDS4tTlw4IAKCwslSRMnTjTuWnIiZwD4o76+XgUFBZKklJQUn48IcEXGAAg1JAMQAk6ePGnMXSuZH9RaWVnp9syRm69cuXr1ql5//XWlpqZq8uTJGjZsmBITExUREaHa2lqdOnVKe/bsUW1traS2+b8XLlzocSwzZszQ3r17derUKX344Yeqra3VrFmz1KtXLxUXF+uf//ynbDabwsLC9KMf/cjrLdhPPfWU/vvf/6qurk5vvvmmSkpKNGnSJEltPwB98MEHktqeyfTUU08F8NcCEKhbzZjO9Nhjj+nQoUOqqKhQbm6uKisrNXXqVEVHR6uwsFDbt29Xc3OzoqOjtWTJEq/9LFmyRL/+9a/lcDi0cuVKPf744xozZowcDocOHTqkTz75RJKUnJxsFMYB3D63mjPV1dV67bXXlJaWpkmTJik1NVW9e/eW1DaVVH5+vg4fPmxchfv000+7TSvlRM4A3VNnHM/069dPTz75pHJzc3X+/Hn96le/0re//W2lpqaqoaFBR44c0UcffSRJiouL0zPPPONxLOQM0P109jnTwYMHjQt4p0+fHtBYyBgAoSSs1dfEvwDuiA0bNhi3Dftj69atpteFhYV67bXX/Np24sSJWrp0qRISEry2qaur06pVq1RSUuJxfVRUlJ599lnNmjXL52edOXNGa9asMQpXN0tMTNTy5cs1cuRIv8YOoGNuNWP88dJLL6m6ulr9+/fXhg0bfLatrKzUqlWrjGep3SwuLk7Lli0zis7eHD16VOvXr5fNZvO4Pjk5WTk5ObJYLP59CQAddqeOZWJiYvTMM89o9uzZPtuRM0D305nHM1u2bNH777/vdWqo3r17a/ny5V4fXi+RM0B309nnTK+88orOnDmj8PBw/eEPfwh41hUyBkCo4A4koBtIT0/XK6+8oq+//lolJSW6cuWKamtr5XA4FBcXpwEDBmjkyJF66KGH3Obw9iQhIUErV65UXl6ePvvsM5WVlamxsVF9+/ZVRkaG5s2bp6FDh7bbz8iRI7V27Vrt3LlTX3zxhaqrqyVJAwYMUGZmpubPn6/4+Phb/v4AuhaLxaLVq1frww8/VH5+viorK9XU1KSkpCRNmDBB8+bNM56p5EtmZqaRMQUFBbpy5YoiIyNlsVj04IMPau7cuYqJibkD3wjArRo2bJh++tOf6vTp0yotLdXVq1dltVrV3Nysnj17aujQocrIyNCsWbOMO5N8IWcA+PK9731PmZmZ+uijj3TixAnV1tYqKipKycnJyszMVHZ2tvEMEm/IGQDeVFRU6MyZM5KkcePGdWjKfjIGQKjgDiQAAAAAAAAAAACYhAd7AAAAAAAAAAAAAAgtFJAAAAAAAAAAAABgQgEJAAAAAAAAAAAAJhSQAAAAAAAAAAAAYEIBCQAAAAAAAAAAACYUkAAAAAAAAAAAAGBCAQkAAAAAAAAAAAAmFJAAAAAAAAAAAABgQgEJAAAAAAAAAAAAJhSQAAAAAAAAAAAAYEIBCQAAAAAAAAAAACYUkAAAAAAAAAAAAGBCAQkAAAAAAAAAAAAmFJAAAAAAAAAAAABgQgEJAAAAAAAAAAAAJhSQAAAAAAAAAAAAYEIBCQAAAAAAAAAAACYUkAAAAAAAAAAAAGBCAQkAAAAAAAAAAAAmFJAAAAAAAAAAAABgQgEJAAAAAAAAAAAAJhSQAAAAAAAAAAAAYEIBCQAAAAAAAAAAACYUkAAAAAAAAAAAAGBCAQkAAAAAAAAAAAAm/wfrG7ikrtQwWAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 428, "width": 840 } }, "output_type": "display_data" } ], "source": [ "sample_means50 = [area.sample(50).mean() for i in range(0, 5000)]\n", "\n", "plt.rcParams['figure.figsize'] = (10,5)\n", "plt.hist(sample_means50, edgecolor = 'black', linewidth = 1.2)\n", "plt.show();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you would like to adjust the bin width of your histogram to show a little more detail, you can do so by changing the `bins` parameter." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABn4AAANZCAYAAAAh10DYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AABrPElEQVR4nOzdfZSW9WHn/8/MAAMIBAeQJ83EwoLPLT5gTbIJGZRGrKZ2u65NNt2ixlPW3dNsT3LS7jbHZGPXntack55uy9baQ88ek00ffIgaU1tB7BKtYHTTJCiE2clEBxhgRh5UhpEZfn/wY3YGhgF0bu7hy+v113XP9b2+9/cmk4vB91zXVXPw4MGDAQAAAAAA4LRXW+0FAAAAAAAAMDyEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACjGq2gs4Ux08eDC9vb3VXgansbq6uiRJT09PlVcClMp5Bqg05xmgkpxjgEpzngGGS21tbWpqaoZtPuGnSnp7e9Pe3l7tZXCaqq2tzYwZM5IkO3bsEBGBYec8A1Sa8wxQSc4xQKU5zwDDafr06X0xeTi41RsAAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQow6lW+2c+fOrF69Oi+99FJ27NiRrq6uTJo0KdOmTcvFF1+ca665Ju9///uPefzLL7+cp59+Os3NzdmzZ08mTZqUOXPm5Nprr82CBQtOaA09PT1ZtWpV1q5dm7a2tnR1daWhoSGXXnpprr/++px33nnD9XEBAAAAAABOqVMWfr7zne/kG9/4Rvbv3z/g6x0dHeno6Mirr76affv25dd//dePOra3tzf3339/Vq9ePeDrnZ2d6ezszPr169PU1JQ777wztbXHvohpz549uffee9Pc3Dzg6+3t7Wlvb8+zzz6b2267LYsXL373HxQAAAAAAKBKTkn4eeihh/JXf/VXSZKZM2dm8eLFmTt3bsaPH5+9e/empaUl69evT01NzaDHf/Ob3+yLPueff35uuummTJ8+Pe3t7XnsscfS0tKS1atXZ9KkSfnkJz856By9vb257777+qLPwoULc+2112bChAn58Y9/nIcffji7d+/O/fffn4aGhhO+gggAAAAAAGCkqHj4+cEPftAXfT7ykY/kN37jNzJq1MC3vfTSS3PTTTflwIEDRx2/ZcuWPP7440mSOXPm5Mtf/nLGjBmTJJk7d26uvPLKfOlLX0pzc3Mef/zxNDU1ZcaMGUfNs2bNmrz66qtJkiVLluSOO+7o2zd37twsWLAgX/jCF7Jv376sXLkyl112Werq6obnDwEAAAAAAOAUOPZ90YZBb29vHnjggSRJY2Njli9fflT06W+wfU8++WR6enqSJMuWLeuLPofV19dn2bJlSQ49v+eJJ54YdO7D8WjChAn59Kc/fdT+GTNm5Oabb06SbNu2LevWrTvexwMAAAAAABhRKhp+/vmf/zlbt25NknziE5846StoDh48mPXr1ydJZs+enXnz5g06bt68eZk1a1aS5MUXX8zBgwcH7N+yZUva2tqSJNdcc03q6+sHnWfRokV928IPAAAAAABwuqlo+Hn++eeTJDU1Nbniiiv6vv7mm29m69atefPNN4c8fvv27XnjjTeSJBdeeOGQYy+66KIkSWdnZ3bs2DFg3+FbvPUfN5jJkydn5syZSZKNGzcO+X4AAAAAAAAjTUWf8fPjH/84STJt2rSMGzcua9euzSOPPJLXXnutb8zMmTOzePHiXH/99Rk9evSA419//fW+7dmzZw/5Xoev+Dl83DnnnPOu5pk9e3a2bt2ajo6OdHV1ZezYsUOOBwAAAAAAGCkqFn56e3v7bq82ceLErFy5Mt/5zneOGrd169Y8+OCDWb9+fX77t387Z511Vt++jo6Ovu0pU6YM+X5Tp04d9Ljk0FVAhzU0NAw5z+H3OXjwYDo7OwcEpeM58n0HM3ny5L5b3tXWVvSCKwrW/3vH9xFQCc4zQKU5zwCV5BwDVJrzDDCSVSz8vP32233P2vnpT3+a5ubmnH322fm3//bfZsGCBRkzZkw2b96cr3/96/nxj3+cjRs3ZsWKFfnc5z7XN0dXV1ff9vGuvOn/3J7+xyXJvn37hmWe41m+fPlxx6xYsSJTpkxJXV1dZsyYcVLzw2D6X90GUAnOM0ClOc8AleQcA1Sa8www0lQsR+/fv79v+5133kl9fX3uvvvu/Mt/+S8zYcKEjBkzJhdddFHuvvvuNDY2JknWrVvXd3u4JOnu7u7bHjVq6EbV/zZx/Y87/P7DMQ8AAAAAAMBIVrErfo58Xk9TU9Ogt00bM2ZMfvVXfzW///u/nyR57rnn8i/+xb/o23fYgQMHhny//nGn/3FHruXAgQNH7T/ReY5nxYoVxx0zefLkJElPT0927NhxUvPDYbW1tX2/TbJ9+/b09vZWeUVAaZxngEpzngEqyTkGqDTnGWA4TZs2re8RMcOhYuFn3LhxA17/7M/+7DHHXnLJJamrq0tPT0+am5v7vt7/tmzHu+1a/yuMjrydW/+1dHV1DRl0hprneI73HKIj+QuB4dDb2+t7Cago5xmg0pxngEpyjgEqzXkGGGkqdqu30aNHZ9KkSX2vh4oiY8aMycSJE5Mke/bsGfSYjo6OId9v586dx3yvhoaGvu3Ozs4h5zn8PjU1NQOOAwAAAAAAGOkqFn6S5LzzzuvbPl71Pry//+VM5557bt92W1vbkMdv2bJl0ONOdp7D+6dMmXLSV/wAAAAAAABUU0XDz4UXXti33d7efsxxb7/9dvbu3Ztk4NU555xzTs4+++wkySuvvDLkex3e39DQkGnTpg3Yd8EFF/Rtb9iw4Zhz7Nq1K1u3bk2SzJ8/f8j3AwAAAAAAGGkqGn6uvvrqvu1169Ydc9y6dety8ODBJAMjTU1NTa666qokh67E2bRp06DHb9q0qe9KnSuvvDI1NTUD9s+aNSuzZ89Okjz//PMDnuPT35o1a/q2Fy5ceMz1AgAAAAAAjEQVDT+NjY1ZsGBBkuS73/1ufvCDHxw1ZteuXfmrv/qrJMmoUaPysY99bMD+pUuXprb20DJXrlyZ7u7uAfu7u7uzcuXKJIduE3fDDTcMupYbb7wxSfLmm2/mwQcfPGr/tm3b8sgjjyRJZsyYIfwAAAAAAACnnVGVfoN/9+/+XTZt2pS33norv//7v58bbrghCxYsyJgxY7J58+Y8+uij6ejoSJL8m3/zbwbc6i05dLXOTTfdlEcffTTNzc354he/mE984hOZPn162tvb861vfSstLS1JDsWdmTNnDrqORYsW5ZlnnsnGjRvz1FNPZdeuXVm8eHEmTJiQzZs356GHHsq+fftSU1OTZcuWDXjWEAAAAAAAwOmg5uDhe6xV0KuvvpqvfvWr2b179+CLqKnJzTffnFtvvXXQ/b29vfmzP/uzPPPMM8d8j6amptx55519VwcNZs+ePbn33nvT3Nw86P7Ro0fntttuy+LFi4f4NMOjp6dnyOcewVBqa2szY8aMJIeuVuvt7a3yioDSOM8AleY8A1SScwxQac4zwHCaPn36sF6MckrCT5Ls3bs33/nOd7J+/fps3749Bw4cyNlnn52LLroo119/fc4///zjzvHSSy/l6aefTnNzc/bu3ZuJEydmzpw5ue666/puKXc8PT09WbVqVdauXZu2trZ0dXWloaEhl1xySZYuXZrzzjvvvX7UE16H8MO75YcLoNKcZ4BKc54BKsk5Bqg05xlgOJ224YeBhB/eCz9cAJXmPAMnp6urK62trdVexinT2NiYsWPHvqc5nGeASnKOASrNeQYYTsMdfir+jB8AAChda2trmpqaqr2MU2b16tWZP39+tZcBAADAII79QBwAAAAAAABOK8IPAAAAAABAIdzqDQAAhtkDV8xJ4/j6ai9j2LS+vT93fK+52ssAAADgBAg/AAAwzBrH12f+xHHVXgYAAABnILd6AwAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhRlV7AQAAANXW1dWV1tbWai/jlGlsbMzYsWOrvQwAAKAChB8AAOCM19ramqampmov45RZvXp15s+fX+1lAAAAFeBWbwAAAAAAAIUQfgAAAAAAAArhVm8AAABHeOCKOWkcX1/tZQyb1rf3547vNVd7GQAAwCkg/AAAAByhcXx95k8cV+1lAAAAnDS3egMAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCFGVXsBAADAyNbd2zvgdUtLy3ues7a2Nh0dHUmSnTt3pveI9zjVhuMzAQAAjATCDwAAMKQt+7oHvL799turtBIAAACOx63eAAAAAAAACiH8AAAAAAAAFMKt3gAAgJPywBVz0ji+vtrLGFbPdezN3Rteq/YyAAAA3jPhBwAAOCmN4+szf+K4ai9jWP3kra5qLwEAAGBYuNUbAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIUZVewEAAJStq6srra2t1V5GRbW0tFR7CQAAAJBE+AEAoMJaW1vT1NRU7WUAAADAGcGt3gAAAAAAAAoh/AAAAAAAABSiord6u+WWW05o3EUXXZQvfelLQ455+eWX8/TTT6e5uTl79uzJpEmTMmfOnFx77bVZsGDBCb1PT09PVq1albVr16atrS1dXV1paGjIpZdemuuvvz7nnXfeCc0DAMC798AVc9I4vr7ayxhWz3Xszd0bXqv2MgAAAGDkP+Ont7c3999/f1avXj3g652dnens7Mz69evT1NSUO++8M7W1x76Aac+ePbn33nvT3Nw84Ovt7e1pb2/Ps88+m9tuuy2LFy+uyOcAAOCQxvH1mT9xXLWXMax+8lZXtZcAAAAASU5R+FmyZEmWLFlyzP1jx4495r5vfvObfdHn/PPPz0033ZTp06envb09jz32WFpaWrJ69epMmjQpn/zkJwedo7e3N/fdd19f9Fm4cGGuvfbaTJgwIT/+8Y/z8MMPZ/fu3bn//vvT0NBwwlcQAQAAAAAAjCSnJPxMmjQp73//+0/6uC1btuTxxx9PksyZMydf/vKXM2bMmCTJ3Llzc+WVV+ZLX/pSmpub8/jjj6epqSkzZsw4ap41a9bk1VdfTXIoQt1xxx19++bOnZsFCxbkC1/4Qvbt25eVK1fmsssuS11d3bv5qAAAAAAAAFVz7HujjQBPPvlkenp6kiTLli3riz6H1dfXZ9myZUkOPb/niSeeGHSew/FowoQJ+fSnP33U/hkzZuTmm29Okmzbti3r1q0bts8AAAAAAABwqozY8HPw4MGsX78+STJ79uzMmzdv0HHz5s3LrFmzkiQvvvhiDh48OGD/li1b0tbWliS55pprUl8/+IOEFy1a1Lct/AAAAAAAAKejERt+tm/fnjfeeCNJcuGFFw459qKLLkqSdHZ2ZseOHQP2Hb7FW/9xg5k8eXJmzpyZJNm4ceO7WjMAAAAAAEA1nZJn/PzTP/1Tnn/++ezYsSO1tbWZPHly5s2bl0WLFuWSSy4Z9JjXX3+9b3v27NlDzn/4ip/Dx51zzjnvap7Zs2dn69at6ejoSFdXV8aOHTvkeAAAAAAAgJHklISf/vElOfQcnW3btuUf//Efc9VVV+Wuu+7K+PHjB4zp6Ojo254yZcqQ80+dOnXQ45JDVwEd1tDQMOQ8h9/n4MGD6ezsHBCUTsSR7z2YyZMnp66uLklSWztiL7hihOv/veP7CKgE5xmGk+8hGHlqa2v9f5Oi+VkGqDTnGWAkq2j4qa+vzxVXXJFLL700s2fPztixY7Nnz55s2LAh//AP/5C9e/dm/fr1+YM/+IP87u/+bkaN+n/L6erq6ts+3pU3/Z/b0/+4JNm3b9+wzHMili9fftwxK1asyJQpU1JXV5cZM2ac9HvAkfpf4QZQCc4zvFcn8ssxwKk1depU/x7hjOFnGaDSnGeAkaai4ed//I//kbPOOuuor1922WX5+Mc/nnvvvTctLS3ZsGFD/v7v/z5Lly7tG9Pd3f3/Fjlq6GWOHj160OOS5J133hmWeQAAAAAAAEa6ioafwaLPYZMnT85v/dZv5bOf/Wx6enryd3/3dwPCz5gxY/q2Dxw4MOT79I87/Y9LBsacAwcOHLX/ROc5EStWrDjumMmTJydJenp6smPHjpN+D0gOXUJ8+LdJtm/fnt7e3iqvCCiN8wzDaefOndVeAnCEnTt3Ztu2bdVeBlSMn2WASnOeAYbTtGnT+h4RMxxOyTN+jmX69Om57LLL8vLLL2fbtm3p7Ozsew5P/9uyHe+2a/v37+/bPvJ2buPGjRswz1BBZ6h5TsTxnkV0JH8hMBx6e3t9LwEV5TzDe+X7B0Ye53bOJL7fgUpzngFGmqo/eezcc8/t2+7s7Ozb7h9Rjndf+P6/RXpkfDkcko6cfzCH36empmbAcQAAAAAAAKeDqoefmpqaQb/ePwi1tbUNOceWLVsGPe5k5zm8f8qUKe/qih8AAAAAAIBqqnr4ef311/u2+19lc8455+Tss89OkrzyyitDznF4f0NDQ6ZNmzZg3wUXXNC3vWHDhmPOsWvXrmzdujVJMn/+/BNcPQAAAAAAwMhR1fCzffv2/PM//3OSQ8/76R9+ampqctVVVyU5dCXOpk2bBp1j06ZNfVfqXHnllUddQTRr1qzMnj07SfL8888PeI5Pf2vWrOnbXrhw4bv7QAAAAAAAAFVUsfDz4osvpqen55j7d+3ala9+9as5cOBAkuQXfuEXjhqzdOnS1NYeWuLKlSvT3d09YH93d3dWrlyZJKmrq8sNN9ww6HvdeOONSZI333wzDz744FH7t23blkceeSRJMmPGDOEHAAAAAAA4LY2q1MQrV67Mn//5n+fqq6/OvHnzcs4552TMmDHZs2dPNmzYkH/4h3/I3r17kxy6Hdtg4WfWrFm56aab8uijj6a5uTlf/OIX84lPfCLTp09Pe3t7vvWtb6WlpSXJobgzc+bMQdeyaNGiPPPMM9m4cWOeeuqp7Nq1K4sXL86ECROyefPmPPTQQ9m3b19qamqybNmy1NXVVeqPBQAAAAAAoGIqFn6S5I033sjf/d3f5e/+7u+OOebqq6/Ob/zGb2T06NGD7r/11luze/fuPPPMM2lpacnXvva1o8Y0NTXl1ltvPeZ71NbW5vOf/3zuvffeNDc354UXXsgLL7wwYMzo0aNz2223ZcGCBSf24QAAAAAAAEaYioWfu+66Kxs2bMimTZvS3t6evXv3Zt++fRk7dmymTJmSefPmZdGiRZk3b96Q89TW1mb58uW5+uqr8/TTT6e5uTl79+7NxIkTM2fOnFx33XUnFGsmTZqUe+65J6tWrcratWvT1taWrq6uNDQ05JJLLsnSpUtz3nnnDdfHBwAAAAAAOOUqFn4uuuiiXHTRRcM23+WXX57LL7/8Pc1RV1eXJUuWZMmSJcO0KgAAAAAAgJGjttoLAAAAAAAAYHgIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQiFHVXgAAwJmuq6srra2t1V5GxbS0tFR7CQAAAHDGEH4AAKqstbU1TU1N1V4GAAAAUAC3egMAAAAAACiE8AMAAAAAAFAIt3oDABhhHrhiThrH11d7GcPmuY69uXvDa9VeBgAAAJwRhB8AgBGmcXx95k8cV+1lDJufvNVV7SUAAADAGUP4AQAAKFx3b++A1y0tLVVayanR2NiYsWPHVnsZAABQFcIPAABA4bbs6x7w+vbbb6/SSk6N1atXZ/78+dVeBgAAVEVttRcAAAAAAADA8BB+AAAAAAAACuFWbwAAAGeYB66Yk8bx9dVexrBpfXt/7vhec7WXAQAAI4LwAwAAcIZpHF+f+RPHVXsZAABABbjVGwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRiVLXe+MEHH8xjjz3W9/ruu+/OxRdfPOQxL7/8cp5++uk0Nzdnz549mTRpUubMmZNrr702CxYsOKH37enpyapVq7J27dq0tbWlq6srDQ0NufTSS3P99dfnvPPOe0+fCwAAAAAAoFqqEn5+8pOf5Nvf/vYJj+/t7c3999+f1atXD/h6Z2dnOjs7s379+jQ1NeXOO+9Mbe2xL2Las2dP7r333jQ3Nw/4ent7e9rb2/Pss8/mtttuy+LFi0/uAwEAAAAAAIwApzz89Pb25s/+7M/S09OT973vfdm9e/dxj/nmN7/ZF33OP//83HTTTZk+fXra29vz2GOPpaWlJatXr86kSZPyyU9+8pjve9999/VFn4ULF+baa6/NhAkT8uMf/zgPP/xwdu/enfvvvz8NDQ0nfAURAAAAAADASHHKn/Hzne98J83NzZk9e3Y+9rGPHXf8li1b8vjjjydJ5syZk6985Sv50Ic+lLlz5+ZDH/pQ/ut//a+ZM2dOkuTxxx/Ptm3bBp1nzZo1efXVV5MkS5Ysyec+97n83M/9XObOnZvrr78+X/nKVzJu3LgcPHgwK1euTE9PzzB9YgAAAAAAgFPjlIafnTt35q/+6q+SJJ/5zGcyatTxLzh68skn+yLMsmXLMmbMmAH76+vrs2zZsiSHnt/zxBNPDDrP4Xg0YcKEfPrTnz5q/4wZM3LzzTcnSbZt25Z169ad4KcCAAAAAAAYGU5p+HnggQfS1dWVj370o7nooouOO/7gwYNZv359kmT27NmZN2/eoOPmzZuXWbNmJUlefPHFHDx4cMD+LVu2pK2tLUlyzTXXpL6+ftB5Fi1a1Lct/AAAAAAAAKebUxZ+nnvuubz00kvHvOJmMNu3b88bb7yRJLnwwguHHHs4JHV2dmbHjh0D9h2+xVv/cYOZPHlyZs6cmSTZuHHjCa0RAAAAAABgpDgl4eett97KX/7lXyZJPvWpT2XSpEkndNzrr7/etz179uwhxx6+4ufI4052nsP7Ozo60tXVdULrBAAAAAAAGAmO/5CdYfDggw9m165dmT9/fpqamk74uI6Ojr7tKVOmDDl26tSpgx6XHLoK6LCGhoYh5zn8PgcPHkxnZ+eAoHQy6z2WyZMnp66uLklSW3tK77RHQfp/7/g+AirBeebU8mcMMLxqa2udW89wfpYBKs15BhjJKh5+XnnllaxevTp1dXX5zGc+k5qamhM+tv8VN2PHjh1ybP/n9hx5pc6+ffuGZZ7jWb58+XHHrFixIlOmTEldXV1mzJhxUvPDYM4555xqLwEonPNM5Z3IL48AcOKmTp3q31v08bMMUGnOM8BIU9EcfeDAgdx///05ePBgbrjhhrz//e8/qeO7u7v7tkeNGrpRjR49etDjkuSdd94ZlnkAAAAAAABGsope8fPwww+nra0tU6dOza/8yq+c9PFjxozp2z5w4MCQY/vHnf7HJQNjzoEDB47af6LzHM+KFSuOO2by5MlJkp6enuzYseOk5ofDamtr+36bZPv27ent7a3yioDSOM+cWjt37qz2EgCKsnPnzmzbtq3ay6CK/CwDVJrzDDCcpk2b1veImOFQsfDT1taWRx99NEly2223HfcWa4Ppf8zxbru2f//+QY9LknHjxg2YZ6igM9Q8x3O85xAdyV8IDIfe3l7fS0BFOc9Unj9fgOHl7y768/0AVJrzDDDSVCz8fPvb386BAwcyffr07N+/P9/97nePGvPaa6/1bf/whz/Mrl27kiRXXHFFxo4dOyCkHO/e9/1/U/bIANPQ0NC33dnZmUmTJh1znsPvU1NTM+A4AAAAAACAka5i4efwLdPa29vzR3/0R8cd/9BDD/Vt//f//t8zduzYnHvuuX1fa2trG/L4LVu29G33P+7I121tbfnABz5wzHkOv8+UKVPe1VVKAAAAAAAA1VJb7QUM5ZxzzsnZZ5+dJHnllVeGHHt4f0NDQ6ZNmzZg3wUXXNC3vWHDhmPOsWvXrmzdujVJMn/+/He1ZgAAAAAAgGqp2BU/d911V+66664hx/z1X/91/vZv/zZJcvfdd+fiiy8esL+mpiZXXXVV/v7v/z5tbW3ZtGlT5s2bd9Q8mzZt6rtS58orr0xNTc2A/bNmzcrs2bPT1taW559/Pr/2a7+W+vr6o+ZZs2ZN3/bChQtP6HMCAAAAAACMFCP6ip8kWbp0aWprDy1z5cqV6e7uHrC/u7s7K1euTJLU1dXlhhtuGHSeG2+8MUny5ptv5sEHHzxq/7Zt2/LII48kSWbMmCH8AAAAAAAAp52KXfEzXGbNmpWbbropjz76aJqbm/PFL34xn/jEJzJ9+vS0t7fnW9/6VlpaWpIcijszZ84cdJ5FixblmWeeycaNG/PUU09l165dWbx4cSZMmJDNmzfnoYceyr59+1JTU5Nly5alrq7uVH5MAAAAAACA92zEh58kufXWW7N79+4888wzaWlpyde+9rWjxjQ1NeXWW2895hy1tbX5/Oc/n3vvvTfNzc154YUX8sILLwwYM3r06Nx2221ZsGDBcH8EAAAAAACAijstwk9tbW2WL1+eq6++Ok8//XSam5uzd+/eTJw4MXPmzMl11113QrFm0qRJueeee7Jq1aqsXbs2bW1t6erqSkNDQy655JIsXbo055133in4RAAAAAAAAMOvquHnlltuyS233HLC4y+//PJcfvnl7+k96+rqsmTJkixZsuQ9zQMAAAAAADDS1FZ7AQAAAAAAAAwP4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKMSoai8AAAAA3ovu3t4Br1taWqq0klOnsbExY8eOrfYyAAAYgYQfAAAATmtb9nUPeH377bdXaSWnzurVqzN//vxqLwMAgBFI+AEARryurq60trZWexkVcyb8ZjoAAABwagg/AMCI19ramqampmovAwAAAGDEE34AAAAoygNXzEnj+PpqL2NYtb69P3d8r7naywAA4DQg/AAAAFCUxvH1mT9xXLWXAQAAVSH8AACnndJ+k/u5jr25e8Nr1V4GAAAAUADhBwA47ZT2m9w/eaur2ksAAAAAClFb7QUAAAAAAAAwPIQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKMSoSk389ttv5+WXX05zc3Oam5vT2dmZPXv2pLu7O2eddVbOPffcLFiwIE1NTZk4ceJx59u4cWOeeuqpvPrqq9m9e3fGjx+fD3zgA/noRz+aD3/4wye8rrVr12bNmjVpbW3N22+/nfe973254IIL8vGPfzzz5s17Lx8ZAAAAAACgqioWfjZv3pw/+qM/GnTfnj17smHDhmzYsCGPPfZY/uN//I/5uZ/7uWPO9dd//dd56KGHcvDgwb6v7d69O9///vfz/e9/P2vXrs1v/dZvZcyYMceco7u7O1/96lfz8ssvD/j6zp07s3bt2nz3u9/Nr/zKr+Rf/+t/fXIfFAAAAAAAYISoWPhJkilTpuTiiy/Oz/zMz2Tq1KmZPHlyDh48mI6OjvzTP/1T1q1bl7179+YP/uAP8t/+23/LBz7wgaPm+Id/+If87d/+bZJk+vTpufnmm/P+978/b7zxRp588sn86Ec/yksvvZQVK1bkN3/zN4+5lj/90z/tiz4XX3xxli5dmrPPPjs//elP88gjj6S9vT1/8zd/k7PPPjvXXnttRf48AAAAAAAAKqli4eeSSy7JihUrjrn/gx/8YNatW5f77rsvBw4cyN/+7d/mc5/73IAxb775Zr7+9a8nSaZOnZrf+73fy6RJk/r2X3HFFfnDP/zDfO9738t3v/vdXHvttbn44ouPeq8f/vCHee655/qO+fznP5/a2kOPN5o7d26uvPLK/PZv/3Z27tyZr3/96/n5n//5TJgw4T3/GQAAAAAAAJxKtRWbuPb4Uy9cuDCzZs1KkrzyyitH7V+1alXefvvtJMmnPvWpAdHn8Hvccccdfe/12GOPDfo+jz/+eJKkrq5uwPjDJk2alE996lNJkrfeeiurV68+7toBAAAAAABGmoqFnxM1bty4JMk777xz1L7169f3jbn66qsHPX7KlCm59NJLkxy6smffvn0D9u/bty8/+MEPkiSXXnpppkyZMug8V199dd9a1q1b9y4+CQAAAAAAQHVVNfxs2bIlP/nJT5Iks2fPHrDvwIED2bx5c5Jk3rx5GTXq2Helu+iii5IcikfNzc0D9jU3N+fAgQMDxg1m1KhRmTdv3lHHAAAAAAAAnC5OefjZv39/tm7dmieeeCJ33313enp6kiRLly4dMG7Lli3p7e1NcnQUOlL//W1tbQP2vf76633bh28rdyyH9/f09GTbtm3H+SQAAAAAAAAjy7EvoxlGa9asyZ/+6Z8ec/8v/dIv5cMf/vCAr3V2dvZtNzQ0DDl//9u3dXR0DNjX//WxbvM22P6dO3fm3HPPHXL8kY5878FMnjw5dXV1SU7sOUgwmP7fO76PgEoYaeeZkbAGABhJamtr/f04hJH2swxQHucZYCQ7JeHnWD7wgQ/kzjvvzNy5c4/a1/9ZPWPHjh1ynvr6+r7trq6udz1P//1HznMili9fftwxK1asyJQpU1JXV5cZM2ac9HvAkc4555xqLwEo3Eg4z5zIL1cAwJlk6tSp/k15gkbCzzJA2ZxngJHmlISfq666Kvfdd1+SpLu7O+3t7Xn++eezbt26/NEf/VF+/dd/PVdcccWAY955553/t8ghnu+TJKNHj+7b7u7uftfz9N9/5DwAAAAAAAAj3SkJP2eddVbOOuusvtdz587Nhz70ofzjP/5j/uRP/iR/8Ad/kOXLl2fRokV9Y/rHnAMHDgw5f/+4M2bMmAH7Tmae/vuPnOdErFix4rhjJk+enOTQc4R27Nhx0u8ByaFLiA//Nsn27dv7nocFMFxG2nlm586dVX1/ABhpdu7c6dm0QxhpP8sA5XGeAYbTtGnT+h4RMxyqequ3j3zkI/ne976X559/Pn/xF3+RK6+8MhMmTEiSjBs3rm/c8W67tn///r7tI2/ndjLz9N9/vNvCDeZ4zxA6kr8QGA69vb2+l4CKGgnnmWq/PwCMNCPh7+fThT8roNKcZ4CRpupPHrvqqquSHIo3/+f//J++rzc0NPRtd3Z2DjlH//v+Hxlf+r8+3vMB+u+fOnXqkGMBAAAAAABGmqqHn0mTJvVt97/12axZs1Jbe2h5bW1tQ87Rf//s2bMH7Dv33HP7trds2TLkPIf319XVeUgmAAAAAABw2ql6+Ol/NU//26uNGjUqc+fOTZJs2rRpyOfzbNiwIcmh5/nMmTNnwL45c+Zk1KhRA8YN5sCBA9m0adNRxwAAAAAAAJwuqh5+nn/++b7t97///QP2Hb4N3L59+/LCCy8MenxHR0d+8IMfJEkuueSSAc/0SQ494+fSSy9NkvzgBz845u3eXnjhhezbty9JsnDhwnfxSQAAAAAAAKqrYuFnzZo16e7uHnLME088kZdffjlJcs455+TCCy8csH/x4sUZP358kuQb3/hG9u7dO2B/b29vHnjggb6Hp910002Dvs+NN96YJOnp6clf/MVfHPWwtT179uTrX/96kuSss85KU1PTiXxEAAAAAACAEaVi9zP7m7/5m/zP//k/c/XVV+eCCy7I9OnTM3bs2HR1deWnP/1p/vf//t/ZuHHjoUWMGpU777yz75k+h02YMCGf+tSn8ud//ufZsWNH/vN//s/55V/+5bz//e/PG2+8kW9/+9v50Y9+lCT50Ic+lIsvvnjQtVxyySX54Ac/mOeeey4vvvhivvKVr+SGG27I2WefnZ/+9Kd5+OGHs3PnziTJpz71qUyYMKFSfywAAAAAAAAVU9EH2bz55ptZtWpVVq1adcwxU6ZMyfLly3PZZZcNuv+6667LG2+8kYceeijt7e1ZsWLFUWMWLFiQ5cuXD7mWf//v/3327duXl19+OT/60Y/6gtFhNTU1+Vf/6l/l2muvPYFPBgAAAAAAMPJULPz8l//yX/LSSy/l1VdfTXt7e3bt2pU333wzY8aMyaRJk/KBD3wgV1xxRa655prU19cPOdctt9ySn/3Zn81TTz2VV155Jbt3785ZZ52VxsbGLFq0KB/+8IePu54xY8bkd37nd7J27dqsWbMmra2teeutt/K+970vF154YT7+8Y9n3rx5w/XxAQAAAAAATrmKhZ9Zs2Zl1qxZ+cVf/MVhmW/+/PmZP3/+e57nwx/+8AmFIgAAAAAAgNNN7fGHAAAAAAAAcDoQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFGFXtBQAAAABD6+7tHfC6paWlSis5NRobGzN27NhqLwMA4LQk/AAAAMAIt2Vf94DXt99+e5VWcmqsXr068+fPr/YyAABOS271BgAAAAAAUAjhBwAAAAAAoBBu9QYAAACnmQeumJPG8fXVXsawaX17f+74XnO1lwEAUAThBwAAAE4zjePrM3/iuGovAwCAEcit3gAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiEZ/wAwGmuq6srra2twzpnbW1tOjo6kiQ7d+5Mb2/vsM5/slpaWqr6/gAAAACnC+EHAE5zra2taWpqqvYyAAAAABgB3OoNAAAAAACgEMIPAAAAAABAIdzqDQAK88AVc9I4vr7ayxhWz3Xszd0bXqv2MgAAAABGPOEHAArTOL4+8yeOq/YyhtVP3uqq9hIAAAAATgtu9QYAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUYlQlJ29ubs7LL7+cV199Na+//nr27NmTurq6NDQ0ZP78+WlqasoFF1xwwvO9/PLLefrpp9Pc3Jw9e/Zk0qRJmTNnTq699tosWLDghObo6enJqlWrsnbt2rS1taWrqysNDQ259NJLc/311+e88857tx8XAAAAAACgqioWfu6+++688sorR339wIED2bp1a7Zu3Zo1a9bkIx/5SH7jN34jo0Ydeym9vb25//77s3r16gFf7+zsTGdnZ9avX5+mpqbceeedqa099kVMe/bsyb333pvm5uYBX29vb097e3ueffbZ3HbbbVm8ePFJfloAAAAAAIDqq1j46ezsTJKcffbZueaaa3LBBRdk6tSp6e3tzaZNm/LEE0+ks7Mz//iP/5ienp785m/+5jHn+uY3v9kXfc4///zcdNNNmT59etrb2/PYY4+lpaUlq1evzqRJk/LJT35y0Dl6e3tz33339UWfhQsX5tprr82ECRPy4x//OA8//HB2796d+++/Pw0NDSd8BREAAAAAAMBIUbHwM3v27Pzqr/5qfv7nf/6oq3DmzZuXj3zkI/niF7+YrVu35rvf/W6uu+66XHTRRUfNs2XLljz++ONJkjlz5uTLX/5yxowZkySZO3durrzyynzpS19Kc3NzHn/88TQ1NWXGjBlHzbNmzZq8+uqrSZIlS5bkjjvu6Ns3d+7cLFiwIF/4wheyb9++rFy5Mpdddlnq6uqG7c8DAAAAAACg0o59X7T36Ld/+7fzwQ9+8Ji3Xps0aVJ+7dd+re/1P/3TPw067sknn0xPT0+SZNmyZX3R57D6+vosW7YsyaHn9zzxxBODznM4Hk2YMCGf/vSnj9o/Y8aM3HzzzUmSbdu2Zd26dUN9PAAAAAAAgBGnYuHnRFx88cV92+3t7UftP3jwYNavX5/k0BVE8+bNG3SeefPmZdasWUmSF198MQcPHhywf8uWLWlra0uSXHPNNamvrx90nkWLFvVtCz8AAAAAAMDppqrh58CBA33bg10ZtH379rzxxhtJkgsvvHDIuQ7fJq6zszM7duwYsO/wLd76jxvM5MmTM3PmzCTJxo0bj7N6AAAAAACAkaWq4WfDhg1927Nnzz5q/+uvvz7k/v4OX/Fz5HEnO8/h/R0dHenq6hpyLAAAAAAAwEgyqlpv3Nvbm0cffbTv9Qc/+MGjxnR0dPRtT5kyZcj5pk6dOuhxyaGrgA5raGgYcp7D73Pw4MF0dnYOCErHc+T7Dmby5Mmpq6tLMvhVTnAi+n/v+D4CnAcAgNLU1ta+p59x/JsJqDTnGWAkq1r4+fa3v53NmzcnSRYuXJif+ZmfOWpM/ytuxo4dO+R8/Z/bc+SVOvv27RuWeY5n+fLlxx2zYsWKTJkyJXV1dZkxY8ZJzQ+DOeecc6q9BKDKTuQXDwAATidTp04dtn8z+zcTUGnOM8BIU5UcvWHDhnzjG99Ikrzvfe/LZz7zmUHHdXd3922PGjV0oxo9evSgxyXJO++8MyzzAAAAAAAAjGSn/Iqf1157LX/4h3+Ynp6ejB49Ov/pP/2nvO997xt07JgxY/q2Dxw4MOS8/eNO/+OSgTHnwIEDR+0/0XmOZ8WKFccdM3ny5CRJT09PduzYcVLzw2G1tbV9v02yffv29Pb2VnlFQDXt3Lmz2ksAABhWO3fuzLZt29718f7NBFSa8wwwnKZNm9b3iJjhcErDz/bt23PPPffkrbfeSm1tbT772c/moosuOub4/rdlO95t1/bv3z/ocUkybty4AfMMFXSGmud4jvccoiP5C4Hh0Nvb63sJznDOAQBAaYbz3zn+zQRUmvMMMNKcslu9dXZ25itf+UreeOON1NTUZPny5bnqqquGPKZ/SDne8wv6/7bzkQGmoaFhwDqGcvh9ampqBhwHAAAAAAAw0p2S8LNnz57cc889aW9vT5IsW7YsH/3oR4973Lnnntu33dbWNuTYLVu2DHrcyc5zeP+UKVNO+oofAAAAAACAaqp4+Hn77bfze7/3e3n99deTJJ/85Cfz8Y9//ISOPeecc3L22WcnSV555ZUhxx7e39DQkGnTpg3Yd8EFF/Rtb9iw4Zhz7Nq1K1u3bk2SzJ8//4TWCAAAAAAAMFJUNPzs378/9957b1paWpIkv/zLv5xf+qVfOuHja2pq+m4H19bWlk2bNg06btOmTX1X6lx55ZWpqakZsH/WrFmZPXt2kuT5558f8Byf/tasWdO3vXDhwhNeJwAAAAAAwEhQsfBz4MCB3Hfffdm4cWOSZOnSpbn11ltPep6lS5emtvbQMleuXJnu7u4B+7u7u7Ny5cokSV1dXW644YZB57nxxhuTJG+++WYefPDBo/Zv27YtjzzySJJkxowZwg8AAAAAAHDaGVWpib/2ta/l+9//fpLkkksuSVNTU376058eeyGjRmXWrFlHfX3WrFm56aab8uijj6a5uTlf/OIX84lPfCLTp09Pe3t7vvWtb/VdUXTjjTdm5syZg86/aNGiPPPMM9m4cWOeeuqp7Nq1K4sXL86ECROyefPmPPTQQ9m3b19qamqybNmy1NXVDcOfAgAAAHA83b29A14f/nf+u1VbW5uOjo4kyc6dO9N7xPzV1tjY6LnCAEDFVCz8rFu3rm/7hz/8YT73uc8NOX7atGn5kz/5k0H33Xrrrdm9e3eeeeaZtLS05Gtf+9pRY5qamoa8oqi2tjaf//znc++996a5uTkvvPBCXnjhhQFjRo8endtuuy0LFiwYcq0AAADA8Nmyb+DdPW6//fYqreTUWL16tWcLAwAVU7HwM5xqa2uzfPnyXH311Xn66afT3NycvXv3ZuLEiZkzZ06uu+66E4o1kyZNyj333JNVq1Zl7dq1aWtrS1dXVxoaGnLJJZdk6dKlOe+8807BJwIAAAAAABh+FQs/f/3Xfz3sc15++eW5/PLL39McdXV1WbJkSZYsWTJMqwIAAAAAABgZTosrfgAAAIAzxwNXzEnj+PpqL2PYtL69P3d8r7naywAAzhDCDwAAADCiNI6vz/yJ46q9DACA01JttRcAAAAAAADA8BB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQo6q9AACotK6urrS2tlZ7GRXT0tJS7SUAAAAAMEIIPwAUr7W1NU1NTdVeBgAAAABUnFu9AQAAAAAAFEL4AQAAAAAAKIRbvQFwxnngijlpHF9f7WUMm+c69ubuDa9VexkAAAAAjADCDwBnnMbx9Zk/cVy1lzFsfvJWV7WXAAAAAMAI4VZvAAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEKMquTku3fvzubNm7N58+Y0Nzenubk5e/fuTZJ89KMfzV133XVS87388st5+umn09zcnD179mTSpEmZM2dOrr322ixYsOCE5ujp6cmqVauydu3atLW1paurKw0NDbn00ktz/fXX57zzzjvpzwkAAAAAADASVDT8fOYznxmWeXp7e3P//fdn9erVA77e2dmZzs7OrF+/Pk1NTbnzzjtTW3vsi5j27NmTe++9N83NzQO+3t7envb29jz77LO57bbbsnjx4mFZNwAAAAAAwKlU0fDT39SpUzN79ux8//vfP+ljv/nNb/ZFn/PPPz833XRTpk+fnvb29jz22GNpaWnJ6tWrM2nSpHzyk58cdI7e3t7cd999fdFn4cKFufbaazNhwoT8+Mc/zsMPP5zdu3fn/vvvT0NDwwlfQQQAAAAAADBSVDT8/Mqv/ErmzJmTOXPmZPLkydm+fXv+w3/4Dyc1x5YtW/L4448nSebMmZMvf/nLGTNmTJJk7ty5ufLKK/OlL30pzc3Nefzxx9PU1JQZM2YcNc+aNWvy6quvJkmWLFmSO+64o2/f3Llzs2DBgnzhC1/Ivn37snLlylx22WWpq6t7tx8dAAAAAADglDv2fdGGwS233JIrrrgikydPftdzPPnkk+np6UmSLFu2rC/6HFZfX59ly5YlOfT8nieeeGLQeQ7HowkTJuTTn/70UftnzJiRm2++OUmybdu2rFu37l2vGQAAAAAAoBoqGn7eq4MHD2b9+vVJktmzZ2fevHmDjps3b15mzZqVJHnxxRdz8ODBAfu3bNmStra2JMk111yT+vr6QedZtGhR37bwAwAAAAAAnG5GdPjZvn173njjjSTJhRdeOOTYiy66KEnS2dmZHTt2DNh3+BZv/ccNZvLkyZk5c2aSZOPGje9qzQAAAAAAANUyosPP66+/3rc9e/bsIccevuLnyONOdp7D+zs6OtLV1XXCawUAAAAAAKi2UdVewFA6Ojr6tqdMmTLk2KlTpw56XHLoKqDDGhoahpzn8PscPHgwnZ2dA4LSyaz3WCZPnpy6urokSW3tiO5ujGD9v3d8H8Hx+f8JAAAjSW1trZ9R4TTnv80AI9mIDj/9r7gZO3bskGP7P7fnyCt19u3bNyzzHM/y5cuPO2bFihWZMmVK6urqMmPGjJOaHwZzzjnnVHsJMOKdSJgHAIBTZerUqf6bABTEf5sBRpoRnaO7u7v7tkeNGrpRjR49etDjkuSdd94ZlnkAAAAAAABGshF9xc+YMWP6tg8cODDk2P5xp/9xycCYc+DAgaP2n+g8x7NixYrjjpk8eXKSpKenJzt27Dip+eGw2travt8m2b59e3p7e6u8IhjZdu7cWe0lAABAn507d2bbtm3VXgbwHvhvM8BwmjZtWt8jYobDiA4//W/Ldrzbru3fv3/Q45Jk3LhxA+YZKugMNc/xHO85REfyFwLDobe31/cSHIf/jwAAMJL4dxyUxf+ngZFmRN/qrX9IOd7zGfr/NveRAaahoaFvu7Ozc8h5Dr9PTU3NgOMAAAAAAABGuhEdfs4999y+7ba2tiHHbtmyZdDjTnaew/unTJly0lf8AAAAAAAAVNOIDj/nnHNOzj777CTJK6+8MuTYw/sbGhoybdq0AfsuuOCCvu0NGzYcc45du3Zl69atSZL58+e/qzUDAAAAAABUy4gOPzU1NbnqqquSHLoSZ9OmTYOO27RpU9+VOldeeWVqamoG7J81a1Zmz56dJHn++ecHPMenvzVr1vRtL1y48L0uHwAAAAAA4JQa0eEnSZYuXZra2kPLXLlyZbq7uwfs7+7uzsqVK5MkdXV1ueGGGwad58Ybb0ySvPnmm3nwwQeP2r9t27Y88sgjSZIZM2YIPwAAAAAAwGlnVCUnf/XVV7Nt27a+13v27Onb3rZt24ArbJJk0aJFR80xa9as3HTTTXn00UfT3NycL37xi/nEJz6R6dOnp729Pd/61rfS0tKS5FDcmTlz5qBrWbRoUZ555pls3LgxTz31VHbt2pXFixdnwoQJ2bx5cx566KHs27cvNTU1WbZsWerq6t77HwAAAAAAAMApVNHws2rVqjz77LOD7tu4cWM2btw44GuDhZ8kufXWW7N79+4888wzaWlpyde+9rWjxjQ1NeXWW2895lpqa2vz+c9/Pvfee2+am5vzwgsv5IUXXhgwZvTo0bntttuyYMGCoT8YAAAAwAnq7u0d8PrwL7CWrLGxMWPHjq32MgDgjFTR8DNcamtrs3z58lx99dV5+umn09zcnL1792bixImZM2dOrrvuuhOKNZMmTco999yTVatWZe3atWlra0tXV1caGhpyySWXZOnSpTnvvPNOwScCAAAAzhRb9g28bf3tt99epZWcOqtXr878+fOrvQwAOCNVNPzcddddueuuu4ZtvssvvzyXX375e5qjrq4uS5YsyZIlS4ZpVQAAAAAAACNDbbUXAAAAAAAAwPA4LW71BgAAAFCKB66Yk8bx9dVexrBqfXt/7vhec7WXAQBE+AEAAAA4pRrH12f+xHHVXgYAUCi3egMAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAoxKhqLwAAAACA01t3b++A1y0tLVVayanR2NiYsWPHVnsZADAo4QcAAACA92TLvu4Br2+//fYqreTUWL16debPn1/tZQDAoNzqDQAAAAAAoBDCDwAAAAAAQCHc6g0AAACAYfXAFXPSOL6+2ssYNq1v788d32uu9jIA4IQIPwAAAAAMq8bx9Zk/cVy1lwEAZyThB4B0dXWltbW12suomJaWlmovAQAAAABOCeEHgLS2tqapqanaywAAAAAA3qPaai8AAAAAAACA4SH8AAAAAAAAFMKt3gA4ygNXzEnj+PpqL2PYPNexN3dveK3aywAAAACAihN+ADhK4/j6zJ84rtrLGDY/eaur2ksAAAAAgFPCrd4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCGEHwAAAAAAgEIIPwAAAAAAAIUQfgAAAAAAAAoh/AAAAAAAABRC+AEAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRhV7QUAAAAAwEjW3ds74HVLS0uVVnJqNDY2ZuzYsdVeBgDvkvADAAAAAEPYsq97wOvbb7+9Sis5NVavXp358+dXexkAvEtu9QYAAAAAAFAI4QcAAAAAAKAQbvUGcBxdXV1pbW2t9jIqqvT7UwMAAAynB66Yk8bx9dVexrBpfXt/7vhec7WXAcAwEX4AjqO1tTVNTU3VXgYAAAAjROP4+syfOK7aywCAQbnVGwAAAAAAQCGEHwAAAAAAgEK41RvASSrtXs5J8lzH3ty94bVqLwMAAAAAeI+EH4CTVOK9nH/yVle1lwAAAAAADAO3egMAAAAAACiE8AMAAAAAAFAI4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAohPADAAAAAABQCOEHAAAAAACgEMIPAAAAAABAIYQfAAAAAACAQgg/AAAAAAAAhRB+AAAAAAAACiH8AAAAAAAAFEL4AQAAAAAAKITwAwAAAAAAUAjhBwAAAAAAoBDCDwAAAAAAQCFGVXsBAAAAAED1dPf2Dnjd0tJSpZWcOo2NjRk7dmy1lwFQEcIPAAAAAJzBtuzrHvD69ttvr9JKTp3Vq1dn/vz51V4GQEW41RsAAAAAAEAhhB8AAAAAAIBCuNUbAAAAANDngSvmpHF8fbWXMaxa396fO77XXO1lAJwSwg8AAAAA0KdxfH3mTxxX7WUA8C651RsAAAAAAEAhXPEDvGddXV1pbW2t9jIqpqWlpdpLAAAAAAA4IcIP8J61tramqamp2ssAAAAAADjjudUbAAAAAABAIYQfAAAAAACAQrjVG5wCw/0MnNra2nR0dCRJdu7cmd7e3mGb+9048hk4D1wxJ43j66u0muH3XMfe3L3htWovAwAAAADguIQfOAXOtGfgNI6vz/yJ46q9jGHzk7e6qr0EAAAAAIAT4lZvAAAAAAAAhRB+AAAAAAAACuFWb1AFnoEDAAAAAEAlCD9QBZ6BAwAAAHDqdPf2Dnjd0tLynuarra1NR0dHkmTnzp3pPWL+amtsbMzYsWOrvQygSs7I8LNjx4585zvfyUsvvZSOjo6MGjUqM2bMyDXXXJNf+IVfSH19OVdinA66urrS2tpa7WVU1Hv9YQIAAACAd2/Lvu4Br2+//fYqreTU+Iu/+Iucf/751V5GRYlbcGxnXPh58cUX88d//MfZt29f39f279+f5ubmNDc3Z9WqVfmd3/mdzJgxo4qrPLO0tramqamp2ssAAAAAgCKUHraSZPXq1Zk/f361lzFszoRfju9PuKusMyr8tLS05Gtf+1q6u7szduzY/NIv/VIuueSSdHd357vf/W5WrVqVrVu35t57783v//7vZ9y4cm7FBQAAAADAyHSm/XJ8aeFupDmjws9f/uVfpru7O3V1dfnd3/3dzJs3r2/fJZdckpkzZ+bBBx/M1q1b8/jjj+eWW26p4moBAAAAgEp44Io5aRxfzuMenuvYm7s3vFbtZQAjxBkTfjZv3pxXXnklSfKxj31sQPQ57Bd/8RfzzDPPpK2tLd/5znfyy7/8yxk16oz5IxoxSvuLN/GXLwAAAMBI0ji+PvMnlnO3n5+81TXgdYn/fa317f2543vN1V4GnBbOmKqxbt26vu2Pfexjg46pra3NRz/60XzjG9/IW2+9lR/96Ef52Z/92VO1RP5/pf3Fmxz9ly8AAAAAVEqJ/32tu7d3wOuWlpYqraQyjvw8pcU74e7UOmPCz8aNG5Mk9fX1+Zmf+ZljjrvooosGHCP8AAAAAABU15Z93QNe33777VVayalRYrzj1Kmt9gJOlddffz1JMmPGjNTV1R1z3KxZs446BgAAAAAA4HRwRlzx093dnb179yZJpkyZMuTYCRMmpL6+Pvv3709HR8dJvc+JjJ88eXJfeKqtPWO625CO/HNofXt/lVZSOVu63hnwurTP6POd/kr/jD7f6a/0z+jznf5K/4ylf76k/M/o853+Sv+MPt/pr/TP6POd/kr/jKV/vuToz1i60v43PPLz1NbW+u/jFVRz8ODBg9VeRKXt2bMnd9xxR5Lkgx/8YD772c8OOf4zn/lMdu/enfPOOy9f/epXT/h9brnlluOO+cY3vpFRo86I3nbC3nnnnbS3t1d7GQAAAAAAnALTp0/P6NGjq72MYp0RBaK7+//d//FEosvhMf2PGy41NTXDPufpbvTo0Tn33HOrvQwAAAAAADjtnRHhZ8yYMX3bBw4cOO74w2P6H3ciVqxYcdwxLl9jOPT09GTXrl1JBt4+EGC4OM8AleY8A1SScwxQac4zwEh2RoSfsWPH9m13dXUdd/zhMf2POxHHe34QDJddu3Zl+fLlSQ4FR997wHBzngEqzXkGqCTnGKDSnGeAkeyMuPxkzJgxmThxYpKko6NjyLFvvvlm9u8/9KApJ2wAAAAAAOB0ckaEnyR9z5DZtm1benp6jjluy5YtRx0DAAAAAABwOjhjws/8+fOTJPv378///b//95jjNmzYcNQxAAAAAAAAp4MzJvwsXLiwb/uZZ54ZdExvb2+effbZJMlZZ52Viy+++JSsDQAAAAAAYDicMeFn7ty5ufDCC5McCj+bNm06aswTTzyRtra2JMn111+fUaNGndI1AgAAAAAAvBdnTPhJkl//9V/PmDFj0tPTk3vuuSePPPJINm3alB/+8Ie5//778+CDDyZJZs6cmRtvvLHKqwUAAAAAADg5Z9QlLeeff34++9nP5o//+I+zb9++/K//9b+OGjNz5sz8zu/8TsaNG1eFFQIAAAAAALx7NQcPHjxY7UWcajt27MiTTz6Zl156KZ2dnRk1alRmzJiRn//5n8/HP/7x1NfXV3uJAAAAAAAAJ+2MDD8AAAAAAAAlOqOe8QMAAAAAAFAy4QcAAAAAAKAQwg8AAAAAAEAhhB8AAAAAAIBCCD8AAAAAAACFEH4AAAAAAAAKIfwAAAAAAAAUQvgBAAAAAAAoxKhqLwBOZ7t3787mzZuzefPmNDc3p7m5OXv37k2SfPSjH81dd9113Dlef/31/PCHP8zmzZvz2muvZffu3dm7d29qa2vzvve9L3PmzMmHP/zhXHnllan5/9q795iq7/uP4y/ugoAIYg+i0ClCuahVEKumXoJzRV1nN2O7S6dr1qRxm8nSmM25ZbYzoUaz2DZ2W7dsbiGmNZuts1N7QRFFQZHNC3hBcLXjIsjFA3K48/uDnO/v4LlwuLQ9njwfSZPvOZ/P93O+x4RXv9/z/n4/Hx+fIcfr7e1VXl6eTp8+rerqanV0dCgyMlKzZs1Sdna2pk2b5tZ3M5vNOnr0qM6fP6+GhgZJUnR0tObPn69Vq1YpLCzMrXEAjM5Y5IwznZ2devnll1VfXy9p4G987969bu137NgxFRUVqa6uTj09PYqKitK8efOUnZ2t6Ohotz6/oaFBR48eVWlpqRobG+Xv7y+TyaSFCxfqa1/7moKCgkb83QC4ZywyJj8/X2+99ZZbn7dp0yYtW7bMZR8yBvAun8e5zKVLl3Tq1Cldu3ZNLS0t8vX1VUREhOLi4jRr1iwtWbJE48aNc7o/OQN4l9HmTH19vX784x8P6zOHunYiZwB82Sj8AKPw4osvjnqMgwcP6vTp0w7b6uvrVV9fr7NnzyolJUUvv/yyy4KL2WxWTk6OKisrB71/584d3blzRydPntQLL7ygrKwsl8dUUVGhXbt2qaWlZdD7t2/f1u3bt3X8+HFt2bJFCQkJ7n1JACM2FjnjzLvvvmsUfdxVV1ennJwc1dbWDnq/pqZGNTU1ysvL0+bNm5Wenu5ynJKSEr355puyWCzGe52dncaFWl5enrZu3SqTyTSs4wMwPJ9nxowEGQN4n7HMmba2Nr311lsqKSmxa7NYLKqtrVVxcbESExP16KOPOhyDnAG8z5dxPjNlyhSnbeQMAE9A4QcYI5MmTVJsbKwuXrw4rP38/Pw0c+ZMJSUlKS4uThEREQoPD1dbW5tqamr08ccf67PPPlN5ebl27typV199Vb6+9rM09vX1affu3UbRJzMzUytWrFBoaKgqKip08OBB3bt3T2+//bYiIyM1d+5ch8dz9+5d7dy5U2azWX5+flq9erVxMnLhwgX961//UnNzs3bu3KnXXntNUVFRw/yXAjBSI80ZR27duqUjR44oICBA/v7+gy4mnLFYLIMuYLKysrR48WIFBgbqypUrev/992WxWLRnzx795je/cfqDy61bt7Rnzx51dXVp3LhxWrt2rdLS0tTV1aXCwkLl5eWptrZWOTk5eu211xQcHDzq7wtgaGORMdu2bdPEiROdtrs6byBjAO83mpxpb2/Xjh07VFVVJWngeueJJ57QI488Il9fXzU2Nqq8vFzFxcVOxyBnAO83kpyJjIzU7t27h+z3/vvvGzfuLl261GEfcgaAp6DwA4zCunXrNGPGDM2YMUMREREjejz4pZdekp+fn8O22bNna+XKlfrtb3+rc+fO6caNGyotLVVGRoZd3/z8fF27dk2StHLlSv3whz802hISEjR37lz97Gc/k8Vi0V/+8hfNnj3b4ee+8847MpvNkqTNmzdr4cKFRltycrKmT5+uPXv26N69e3rnnXdGNc0UgKGNRc48qK+vT3/4wx/U19endevW6cSJE24Vfv75z38aFzDf+9739PTTTxttiYmJSk1N1fbt29XZ2al9+/Zp+/btDsfZt2+furq65Ofnp1/+8pdKTEw02tLS0hQTE6Pc3FzV1tbq8OHDWr9+/ai+LwDnxjpjYmJiNHny5BHtS8YA3mmscubPf/6zqqqqFBAQoJ/+9Kd210QzZsxQZmamNmzYoL6+PodjkDOAdxptzvj7+ysuLs5ln76+PpWVlUmSgoODlZmZ6bAfOQPAU9g/NgDAbevXr1d6eroiIiJGPIazoo+Vr6/voBOFq1evOux3+PBhSVJoaKief/55u3aTyaRnnnlG0sBjx+fOnbPr09LSolOnTkmS5syZM6joY7Vo0SLNmTNHklRQUGA3HRyAsTUWOfOgI0eOqKqqSlOmTNHatWvd2qenp0dHjx6VJMXGxmrNmjV2fZKSkrR8+XJJUnl5uW7evGnX5+bNm0aOLV++fNAFjNWaNWsUGxsrSTp69Kh6enrcOkYAw/d5ZMxIkDGA9xqLnLl27ZoKCgokSc8++6zDG+GsfHx8HF5jkTOA9/oizmcuXbqk5uZmSdKCBQsUGBho14ecAeBJKPwADwHbR3a7u7vt2mtqalRdXS1JWrhwodPF/WwXU3ZU+CkpKVF/f78kGScirsbp7+93OL82AM/V0NCgd999V9LAXNj+/u49/FtWVqb29nZJA9MaOJpyUho6Z2zfc5Yzvr6+xtQJ9+/fN+6sA+C9yBgArhw7dkySFBISoqeeempEY5AzAEbDWnyWBueELXIGgCeh8AM8BAoLC41tRwsIWqd4k6SUlBSn40RERCgmJkaSdP369RGPY9tmuw8Az/enP/1JnZ2dWrJkiVJTU93ez918mDFjhlF8dpQz1veCgoI0ffp0p+PYfoajcQB4FzIGgDM9PT06f/68pIGpsK132ff19enu3buqr69XV1fXkOOQMwBGymKxGDkUHR2t5ORkh/3IGQCehDV+AA9lNptVV1envLw85efnS5LCwsL05JNP2vX93//+Z2xbH/V1JjY2VrW1tWpsbFRHR4fGjRtnN05ISIjLR6QnTpyo4OBgWSwW40kjAJ6vsLBQ//73vzV+/Hh9//vfH9a+7uaMn5+fTCaTPv30U4f5YB3HZDK5nOrStsht+9kAPNvvfvc71dTUyGw2KyQkRCaTSbNmzdLKlSsVGRnpdD8yBoAz//3vf41ZD+Li4tTe3q4DBw7o5MmTun//vqSB9TmSk5P1zW9+0+mNLeQMgJEqKipSZ2enJGnJkiXy8fFx2I+cAeBJKPwAHmT79u0qLy932BYWFqYtW7Zo/Pjxdm1NTU3GtqsfVSQpKipK0sA0bU1NTYNOFBobGwf1cWXSpEn67LPPjH0AeLa2tjbt27dPkvTd735X4eHhw9rfmjNBQUEOc8hWVFSUPv30U5nNZnV3dysgIECS1NXVpdbWVqOPK6GhoQoKClJnZyc5AzxEbKcZaW1tVWtrqyoqKnT48GFt3LhRX/3qVx3uR8YAcMb2x8y+vj5t3brVWDjdqqenR5cvX9aVK1f07W9/2+EahuQMgJGynebNOr2aI+QMAE9C4Qd4CGRnZ+tb3/qW0x9qLRaLsW37BI8jtuv/dHR0DGqzvh5qDNtxHhwDgGfKzc3VvXv3lJiYqKysrGHvb82Z4eSDNJAR1osY27xwZ5xx48aps7OTnAEeAo888ogyMzOVmJho/EhRX1+voqIiFRcXq7u7W3/84x/l4+OjFStW2O1PxgBwpq2tzdg+dOiQuru79fjjj2v9+vWKj4+XxWJRUVGR9u/fr/b2du3fv1+xsbGaP3/+oHHIGQAjcffuXeMG3aSkJJlMJqd9yRkAnoTCD+BBNm3aZPzP+v79+6qsrNTHH3+sY8eO6c6dO3rppZccTsFmnfpA0pALtVtPJiTZzYVtfe3OYu+2d6MA8Gzl5eU6ceKE/Pz89OKLLzqdmsAVa84MJx+kwRlhu+3OONY+5Azg2TIzM7V06VK7bElISNCiRYt04cIF7d69W729vfrrX/+qjIwMu/MZMgaAM9bplaSBrJg9e7Z+/vOfG4umBwQEaOXKlYqLi9Ovf/1r9ff3a//+/crIyBiUS+QMgJEoKChQf3+/pIFp3lwhZwB4Et8v+wAA/L/JkycrLi5OcXFxSk5O1po1a7Rr1y7NnTtXpaWl2rp1q8PHd21PGHp6elx+hm2RyLow6oOvhxrDdpwHxwDgWbq7u/X222+rv79f2dnZio+PH9E41pwZTj5IgzPCdtudcax9yBnAs4WEhLgsKKenp2vdunWSBn7APX78uF0fMgaAM7bXOtLAlLXWoo+txx57TAsWLJAkVVdX6/bt2w7HIWcADMepU6ckDWTIokWLXPYlZwB4Ego/gIcLDAzUpk2bFBQUpMbGRuXm5tr1CQ4ONraHerzX9o65Bx8btr525xFh6zjuPHoM4Mtz8OBB1dTUKCoqSuvXrx/xONacGU4+SIMzwnbbnXGGM/0kAM+2YsUKozjkaD1DMgaAM7bXOuHh4frKV77itO+cOXOM7crKSofjkDMA3HXz5k1VV1dLGriRZah1e8gZAJ6Eqd6Ah0B4eLiSkpJ06dIllZSUqKenZ9Ajv5GRkcZ2U1OTy0XbrU8M+fj4DNpPGlg48N69e24tCnj37l1jHwCe69ChQ5KkWbNm6cKFCw77WC8WOjo6VFhYKEmaMGGC0tLSjD7WvOjs7NT9+/ddXvRYMyQ8PHzQXbqBgYEKCwtTa2vrkDnT1tZmXAyRM8DDb8KECQoNDVVra6ux8LEtMgaAM7Z/o0P9vdq2m83mQW3kDIDhOnnypLG9dOnSIfuTMwA8CYUf4CFhLeZ0dnaqtbVVEydONNqmTp1qbFdXV+vRRx91Oo71bpWoqCi7O0KmTp2qqqoqtbe3q6WlxeF6QpLU3NxsLFoYGxs7kq8D4AtiffQ/Pz9f+fn5Lvu2trbq9ddflySlpKQMKvxMnTpVxcXFkgZyJDEx0eEYvb29qqurk+Q4H6ZOnaqrV6+qrq5Ovb298vPzczhOTU3NoH0APPxcTQdHxgBwZtq0acZ2X1+fy7627Q9OB0fOABiOnp4enTlzRtLADSyPP/74kPuQMwA8CVO9AQ8J27tjHyzYPPbYY8a2o+lTrFpaWlRbWytJSkpKsmt3dxzbNtt9AHgvd/OhsrLSuOvMUc5Y3+vs7FRVVZXTcWw/w9E4AB4uZrNZra2tkjTo5hUrMgaAM9HR0Zo0aZIkqb6+3lhk3ZE7d+4Y2w/ObkDOABiO0tJS49xl8eLFTosvtsgZAJ6Ewg/wEGhsbNSNGzckDVz42M5zLUlTpkwx7hI5e/bsoLlibdne7Z+ZmWnXnpGRYdyNe+LECafHYx3Hx8dHGRkZbn8PAF+8AwcODPlfdHS0pIF8sb63ffv2QeOkpqYqJCRE0sCUB85+dBkqZ2zfc5YzfX19xrQK48ePV2pqqtvfF4Bn+uSTT4zcSElJsWsnYwC4smDBAkmSxWLR5cuXnfY7d+6csf3gDWrkDIDhKCgoMLaXLVvm1j7kDABPQuEH+BLV1NToypUrLvu0t7frjTfeMKZrWrJkicN+X//61yUNzPGam5tr115XV6f33ntPkmQymRyeXEREROjJJ5+UJF28eFFFRUV2fc6ePauLFy8ax+JsOjgA3sXf31/Z2dmSBqYtOHz4sF2fGzduGBcmKSkpSkhIsOuTkJCg5ORkSQMXMdaitq0PPvjAmJYyOzt70JpmADxLfX29bt265bLPhQsX9Pe//13SwLz1y5cvt+tDxgBwZfXq1cYaGH/729/U3t5u16egoEBlZWWSpHnz5hlPCVmRMwDc1dbWptLSUklSXFycy+n0bZEzADwJqQCMwrVr14x5WaXBC4jW1dXZrafx4F0izc3NevXVVxUfH6/58+dr+vTpioiIkJ+fn1paWnT9+nUdP35cLS0tkgbmt167dq3DY1m2bJlOnDih69ev68MPP1RLS4uysrIUGhqqmzdv6h//+IcsFot8fHz0gx/8wOljys8995z+85//yGw26/XXX1dlZaXS09MlDfxw88EHH0gaWHPoueeeG8a/FoCRGG3OjKWnn35aZ86cUW1trXJzc1VXV6dFixYpMDBQZWVleu+999Tb26vAwEBt3LjR6TgbN27Ur371K3V1dWnHjh165plnlJqaqq6uLp05c0affPKJJCkmJsYoagP4fIw2YxoaGvTKK68oMTFR6enpio+P14QJEyQNTLlUVFSk4uJi447X559/3m76JSsyBvBOY3EuM2nSJD377LPKzc3V7du39Ytf/ELf+MY3FB8fr/b2dp07d04fffSRJCk4OFgbNmxweCzkDOCdxvqaqbCw0Lj5dunSpcM6FnIGgKfw6Xc1QS4Al/bu3Ws8WuuOAwcODHpdVlamV155xa19582bp02bNik8PNxpH7PZrJycHFVWVjpsDwgI0AsvvKCsrCyXn1VRUaFdu3YZBacHRUREaMuWLZo5c6Zbxw5g5EabM+740Y9+pIaGBkVHR2vv3r0u+9bV1SknJ8dYL+xBwcHB2rx5s1EwdqakpERvvvmmLBaLw/aYmBht3bpVJpPJvS8BYES+qHOZoKAgbdiwQStWrHDZj4wBvM9Ynsvs379fhw4dcjp90oQJE7RlyxanC6pL5Azgjcb6mmnbtm2qqKiQr6+vfv/73w97phNyBoAn4Ikf4EuUlJSkbdu26fLly6qsrFRTU5NaWlrU1dWl4OBgTZ48WTNnztTixYvt5qh2JDw8XDt27FBeXp5Onz6t6upqdXR0KDIyUmlpaVq1apWmTZs25DgzZ87U7t27deTIEZ0/f14NDQ2SpMmTJysjI0OrV69WWFjYqL8/gIePyWTSzp079eGHH6qoqEh1dXXq6elRVFSU5s6dq1WrVhlrBrmSkZFh5Expaamamprk7+8vk8mkJ554Qk899ZSCgoK+gG8EYDSmT5+un/zkJ7px44aqqqrU3Nys1tZW9fb2avz48Zo2bZrS0tKUlZVlPAnkChkDwJXvfOc7ysjI0EcffaSrV6+qpaVFAQEBiomJUUZGhrKzs431NZwhZwC4Ultbq4qKCknS7NmzRzS9PTkDwBPwxA8AAAAAAAAAAICX8P2yDwAAAAAAAAAAAABjg8IPAAAAAAAAAACAl6DwAwAAAAAAAAAA4CUo/AAAAAAAAAAAAHgJCj8AAAAAAAAAAABegsIPAAAAAAAAAACAl6DwAwAAAAAAAAAA4CUo/AAAAAAAAAAAAHgJCj8AAAAAAAAAAABegsIPAAAAAAAAAACAl6DwAwAAAAAAAAAA4CUo/AAAAAAAAAAAAHgJCj8AAAAAAAAAAABegsIPAAAAAAAAAACAl6DwAwAAAAAAAAAA4CUo/AAAAAAAAAAAAHgJCj8AAAAAAAAAAABegsIPAAAAAAAAAACAl6DwAwAAAAAAAAAA4CUo/AAAAAAAAAAAAHgJCj8AAAAAAAAAAABegsIPAAAAAAAAAACAl6DwAwAAAAAAAAAA4CUo/AAAAAAAAAAAAHgJCj8AAAAAAAAAAABe4v8AOxHD7V1u9KEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 428, "width": 831 } }, "output_type": "display_data" } ], "source": [ "plt.rcParams['figure.figsize'] = (10,5)\n", "plt.hist(sample_means50, edgecolor = 'black', linewidth = 1.2, bins = 25)\n", "plt.show();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we use Python to take 5000 samples of size 50 from the population, calculate the mean of each sample, and store each result in a variable called `sample_means50`. Next, we'll review how this set of code works." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "

Exercise 4

\n", " How many elements are there in sample_means50? Describe the sampling distribution, and be sure to specifically note its center. Would you expect the distribution to change if we instead collected 50,000 sample means?\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "

Exercise 5

\n", " Initialize a vector of 100 zeros called sample_means_small. Run a loop that takes a sample of size 50 from area and stores the sample mean in sample_means_small`, but only iterate from 1 to 100. Print the output. How many elements are there in this object called sample_means_small? What does each element represent?
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Sample size and the sampling distribution" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The sampling distribution that we computed tells us much about estimating the average living area in homes in Ames. Because the sample mean is an unbiased estimator, the sampling distribution is centered at the true average living area of the the population, and the spread of the distribution indicates how much variability is induced by sampling only 50 home sales.\n", "\n", "To get a sense of the effect that sample size has on our distribution, let's build up two more sampling distributions: one based on a sample size of 10 and another based on a sample size of 100." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "sample_means10 = [area.sample(10).mean() for i in range(0, 5000)]\n", "sample_means100 = [area.sample(100).mean() for i in range(0, 5000)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To see the effect that different sample sizes have on the sampling distribution, plot the three distributions on top of one another." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABn4AAAOJCAYAAAAz6Vz3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AACPVUlEQVR4nOzdeXxV9Z0//ncSVsEAYQcRFQRlsUUR3EVARnFcay2Vtoq2tozd7Fh1OmOxU1tr68zYmbF0bGeorfrTuoDi2iJQxQVQEa0ISBqpBghLWIWASe7vD77c5pJdEpIcn8/Hg8fjnHs+n895n8s9eM0rn8/JSqVSqQAAAAAAAKDFy27qAgAAAAAAAGgYgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAABoUrfccktkZWWl/7z33ntNXVKTe++99zLek1tuuaWpS/pEWrlyZfzjP/5jnHjiidGtW7do1apVxt/Lli1bmrrEj23Dhg0xe/bsmD59etx+++3x29/+Np5//vkoKytr6tIAADhArZq6AAAAAGhu7rjjjrjpppsOWhCyatWqWLRoUSxevDgWLVoUS5YsiV27dqWPT5s2rUECwDfffDNuvvnmePrpp+Ojjz6qdLxXr15x5ZVXxve///1o3779AZ8PAICDT/ADAAAAFTz88MPx3e9+t9HPM3/+/Ljtttti8eLFsXnz5kY/31133RX/+I//GLt37662zbp16+InP/lJPPbYY/Hwww/HkCFDGr0uAAAaluAHAAAAKrj55pvT2zk5OfGd73wnLr744ujZs2dkZ/9txfTc3NwDOs8bb7wRf/jDHw5ojLq655574utf/3rGa7m5uXHiiSdGXl5e5Ofnx+uvv54+9s4778Q555wTixcvjp49ex6UGgEAaBiCHwAAAPh/li1bFsuXL0/vf+Mb34if/vSnB7WGDh06RLdu3WL16tUNMt6bb74ZX/3qVzNe+8Y3vhE//OEPo1OnTunXli5dGpMnT4633347IiLef//9+OxnPxvPP/98g9QBAMDBIfgBAABoZo444ohIpVJNXcYn0muvvZaxf9FFFzXq+Vq3bh3Dhw+PE088MUaNGhUnnnhiDBkyJH73u9/FlClTGuQc//zP/5yxvNu3v/3t+I//+I9K7T71qU/F888/HyeccEK89957ERHxwgsvxOOPPx4XXHBBg9QCAEDjE/wAAADA/7N+/fqM/T59+jTaua644oqYOnVqtG3bttHO8dprr8UTTzyR3j/iiCPixz/+cbXt8/Ly4q677orzzjsv/dq0adMEPwAALUh27U0AAADgk2HHjh0Z+61bt260c3Xp0qVRQ5+IiPvvvz9j/2tf+1q0b9++xj4TJ06MwYMHp/ffeOONWLZsWaPUBwBAwzPjBwCAxFqxYkW88cYbsW7dutixY0e0atUqOnbsGP369Yujjz46jjnmmMjKyqrXmFu2bIk///nPsXLlyiguLo49e/ZE586do2fPnjF69Og47LDDGvQaysvL46WXXor8/PxYu3ZttG/fPoYPHx5nnHFGtGpV/df5VCoVr776arz++uuxadOm6NixYwwcODDGjh0b7dq1a5Dadu/eHS+88EKsXr06NmzYEF27do1BgwbFaaedFjk5OQ1yjrr68MMP48UXX4wPPvggNmzYEG3bto0ePXrEyJEjY9CgQQe1ljVr1sTrr78eq1evjm3btkVExCGHHBK9e/eOo446KoYPH97oP+xvTPvuq/Xr18eOHTuiW7du0b9//zj99NNrDRQaQ3l5eSxevDhWrFgR69evj1QqFT169IhBgwbF6NGjIzu7fr/vmLQl9mbPnp2xP3ny5Dr1mzx5cnz/+99P7z/++OMxZMiQBq0NAIBGkgIAgATZs2dP6o477kgNGDAgFRE1/unUqVPqkksuSf3hD3+occxly5albr755tQJJ5yQys7OrnHMIUOGpP7v//4v9dFHH9W55or9r7jiivR13H777al+/fpVeZ4+ffqkHnjggSrH+81vfpM64ogjqux36KGHpu64445UWVlZrXUVFBRk9J02bVoqlUqltm3blrr++utTXbt2rfIcPXr0SN1+++2p0tLSOl3/tGnTMvoXFBTUqV8qlUotWrQodd5556Xatm1b7d/J0UcfnZoxY0adrvlAzJw5M3XyySfX+rlr06ZN6owzzkj94he/qHas6t77/e3/3n2cP/s+czXZuXNn6sc//nHqyCOPrHacdu3apS6//PJ6/f0diM2bN6euv/76VLdu3aqtqWvXrqlvf/vbqU2bNtU4Vv/+/ev9vjX2dc6YMaNOn4GavPfeexljHHnkkXXuO2/evIy+Y8eOrff5AQBoGmb8AACQGBs2bIi/+7u/iyVLltSp/datW+PRRx+NsrKyOPvss6ts85e//KVev+W+bNmyuOqqq+Lee++Nhx56KPLy8urcd58dO3bE+eefH/Pnz6+2zZo1a2LSpElRUFAQN910U0RElJaWxhVXXFFpaaeKtm/fHtdff30sW7Ysfv3rX9d7xtP7778fZ599dqxYsaLaNuvXr48bb7wxZs6cGc8880x06tSpXueoi48++iiuvfba+NWvflVr23fffTemTJkSv/nNb2LWrFnRuXPnBq2lrKwsrrrqqvjtb39bp/Z79uyJ559/PpYuXRpTp05t0Foaw0svvRSf/exnY82aNTW2Kykpifvvvz8eeeSRmDFjRnz+859vtJqef/75uOSSS2LTpk01ttu0aVPceeedcc8998RDDz0U48aNa7SamqO33347Y3/UqFF17jtq1KjIyspKz4DafywAAJovwQ8AAImQSqXikksuqRT69OzZM4YPHx7dunWL7Ozs2Lp1a+Tn58eqVauitLS01nHLy8sz9nNycuLoo4+Oo446Kjp16hRlZWVRVFQUb7zxRmzdujXdbu7cuXHhhRfG/Pnz67XsWSqVikmTJqVDn44dO8ZJJ50U3bt3j+Li4njppZdi+/bt6fbf+9734qSTTooxY8bE1772tXTo06ZNmxg9enT07ds3Pvzww3j55Zdj48aN6X7/93//F6effnpceeWVda6tpKQkzjvvvHTo07Zt2zjppJOid+/esXnz5li0aFFs3rw53f6VV16Jc845J+bNm9dgy8vtq+P888+POXPmZLx+6KGHxsiRI6Nnz56xe/fuWL58ebzzzjvp43/605/izDPPjJdffjkOOeSQBqtn2rRplUKfDh06xIgRI6J3797Rpk2b2L59e6xZsyaWLVsWO3fubLBzN7bZs2fHZZddFiUlJRmvH3PMMTFo0KDo2LFjFBUVxcKFC9PPxtm9e3dMnjw5SktL44tf/GKD1/THP/4xLrjggko1HXvssenlG1esWJERVGzevDkmTpwYjz76aJx33nkNXlNztX9Ae9RRR9W57yGHHBI9e/aMdevWRUREUVFRbN26tVGCXAAAGlgTzzgCAIAG8cQTT2QsSzRw4MDUnDlzUuXl5VW237FjR2rWrFmpz33uc6lLL7202nHffffdVLt27VJTpkxJzZ49O7Vz584q2+3Zsyf14IMPpg4//PCMOn7605/WWnvF9p07d04vB3b77bendu3aldF2+/btqSuuuCKjz+jRo1MPPvhgKiJSWVlZqRtuuCG1ZcuWSvXdeOONGf169+5d43Js+y83tq+2rKys1Le+9a1K59i9e3fqv/7rv1KHHHJIRr+bbrqpxuuv71JvX/3qVzPa9+vXL3X//fdXubze0qVLU6eeempG+6985Ss1jl8fmzZtSrVp0yY9dseOHVN33313avfu3VW2Ly0tTb3wwgup6667LnXEEUdUO25dl3rbvHlzqqCgoM5/VqxYkRo+fHjG2P/0T/9U5dgrV65MdezYMaPtVVddlfrLX/5SqW1JSUnqjjvuyHgvOnTokFqxYkXtb2I9FBUVpXr06JFR0wknnJB69dVXK7V94403UieeeGJG27y8vFRhYWGltu+//376PfrWt76V0eeFF16o8r2sz3KOH0dDLPV27bXXZoxR0/KCVRk5cmRG/6reZwAAmh/BDwAAifC1r30t/cPJVq1aVfnD6ersH65U9OGHH6Y2bNhQ57GKiopSAwcOTNfSt2/fWn9AXPEHqxGRys7OTj355JPVti8vL0+ddNJJVYYyv/rVr2o812c+85mMfk899VS1bfcPH/b9+dnPflbjOZ599tlU69atM/4+Vq1aVW37+gQ/zzzzTEbbT33qU7U+v2X37t2pCRMmZPR76623auxTVw888EDGuL/73e/q3Lemz11dg5/6KC8vT33+85/PGPess86qNqTa/zP261//utZz/PGPf0zl5OSk+9QUqn4cV199dUZNJ598curDDz+stv3OnTtTp512Wkafyy+/vMZzHMgzpxpSQwQ/X/jCFzLGeOihh+rV/9xzz83o/9xzz9W7BgAADr7sAACABPjrX/+a3v70pz8dRx55ZJ371rQM2SGHHBLdunWr81g9evSIf//3f0/vFxYWxoIFC+rcPyLi2muvjYkTJ1Z7PCsrK7797W9nvLZly5a46KKL4stf/nKNY19//fUZ+zU9R6gqY8aMqTTG/iZMmBDf/OY30/ulpaXxP//zP/U6T3V+/OMfp7fbt28fs2bNqvU5Sm3atInf/e53Gcu7/ed//meD1FPxcxcRcfHFF9e5b0Muf1cXN954Y/x//9//l94fNmxYzJw5M9q0aVOp7bx58+KVV15J70+dOjWuvvrqWs8xfvz4uO6669L7M2fOrPQefVybNm2K++67L73fvn37uP/++2tctq99+/Zx3333ZbR56KGHYu3atQ1SU3O3b/m9fer7mWvfvn2N4wEA0DwJfgAASJwNGzY06fnPOeecaNu2bXp/4cKF9er/ne98p9Y2Y8eO/Vj9Ro8eHR06dEjvL126tF61/cu//Eud2v3TP/1TtG7dOr1f8Qf2H9eyZcvi+eefT+9fffXVccQRR9Spb48ePWLSpEnp/SeffPKA66lKU3/2qnPXXXfFz372s/T+YYcdFk8//XS1z2uZPn16ertVq1Yxbdq0Op/rG9/4Rnq7rKwsnnnmmY9RcWWPPPJIxnN9rrzyyjr9/R9++OFxzTXXpPc/+uijePDBBxukpubuww8/zNivb/Czf/v9xwMAoHkS/AAAkAiDBw9Ob69evTruuuuuRj/nzp07o6ioKFavXh3vvfde+k9hYWF06dIl3W758uV1HnPQoEF1+mF29+7d49BDD03vd+jQIU455ZRa+2VlZWU84L0+QUX37t3jrLPOqlPbrl27xrhx49L7a9asOeCZH/PmzcvYv/TSS+vV//TTT8+op6Cg4IDqicj83EVE3HTTTVFWVnbA4zakmTNnZszA6tSpUzz11FNx2GGHVdun4kyw0047LXr27Fnn8x1++OHRv3//9P6LL75Yv4Kr8dJLL2Xsf/7zn69z38svv7zGsT4psrKyDqh9KpVqyHIAAGgkrZq6AAAAaAiTJk2K//iP/0jvf/3rX49Zs2bFlClT4txzz80IYj6upUuXxv333x8LFiyIt956K7Zv316nfps3b67zOY455pg6t83NzU3XMGDAgMjJyalzv322bdtW5/Mdf/zxkZ1d998dO/HEEzNme7z22mtx+OGH17n//vYPEDp16hTvvfdenfvv/0Ps9957r15LAlZl3Lhx0a1bt9i4cWNERDz44IOxdOnS+OpXvxoXXXRRnWckNZaXX345Jk+eHOXl5RGxd9m7mTNnxvDhw6vts3LlyoxAsH///vV6nyMiunTpEqtXr46IqHff6rz22mvp7ZycnBg5cmSd+44YMSLatm0bu3fvrjRWklWc3RcRsWvXrnr13799x44dD7gmAAAan+AHAIBEGDVqVPzDP/xD/OIXv0i/NmfOnJgzZ05kZ2fH8OHD49RTT40zzjgjzjrrrOjRo0edx/7ggw/iG9/4RsyaNetj1VafcKW6pbeq0qrV377Of9x+H330UZ37DRgwoM5tIyIGDhyYsb9+/fp69d/fBx98kLE/YsSIAxqvuLj4gPpH7P3B+l133RWTJk1Kz4ZYvnx5XHfddXHdddfFEUccEaeddlqcfvrpMWbMmBg0aNABn7OuVq5cGeeff376h/dZWVkxY8aMWmdt7f8+33PPPXHPPfd87Doa4n2OyJyd1rdv30rPn6lJq1at4qijjop33nmn0lhJtn/wU3GpvLrYv73gBwCgZbDUGwAAifHf//3f8aMf/ajSw97Ly8tj6dKl8Ytf/CImTZoUvXv3jrPOOisefvjhWpcueu+99+K000772KHPvvPXVX1m1DREv/qoOFOoLvYPo7Zs2XJA52+oAGGfhnpQ/WWXXRaPPfZYlUunvffee3HvvffGV7/61Rg8eHAMHTo0/v3f/z127tzZIOeuzvr16+Pcc8+NTZs2pV/7yU9+UmnJs6o01/e54uenvp/FiMzP4/bt26O0tLQhymrW9r8H981Mq6v9A7L6BMwAADQdwQ8AAImRlZUV3/ve9+Ivf/lL3H777XHyySdnzG7Zp7y8PObPnx+f/exn48wzz4y1a9dWO+ZVV12VXrIqYu8PnKdOnRoPPfRQvPnmm7Fx48bYuXNnlJeXRyqVSv+p+IwTGkZ9ZifVRUM+r+T888+Pd999N+65556YOHFitTMjli1bFv/4j/8YxxxzTLz88ssNdv6KPvzwwzjvvPPiL3/5S/q1a6+9Nm644YY69W/O7zP1s/8svffff79e/fdvX99ZfwAANA1LvQEAkDg9e/aMG264IW644YbYsWNHLFq0KF544YWYN29evPjiixm/6f/CCy/EOeecE4sWLYq2bdtmjLNgwYKYN29een/YsGHxhz/8IXr37l1rDXV9/k9LUp8l6yIitm7dmrHfuXPnAzp/Xl5exv7OnTvrtdxXY2vXrl186Utfii996UtRWloab7zxRrz44osxf/78mDNnTsbMl/fffz/9uRs8eHCD1VBaWhqXXXZZvPrqq+nXLrroovjP//zPOo+x//t8ww03xO23395gNX5cnTt3jqKiooio/2cxIvPzeOihh1YZCifN/s8MqxgG1mbnzp0ZyzP27NnzgO9hAAAODjN+AABItI4dO8bYsWNj2rRpMX/+/Fi7dm3ceuutGYHBm2++Gf/3f/9Xqe+TTz6Zsf/LX/6yTqFPSUnJAS9r1hzl5+fXq/2qVasy9uvzXKWq7N+/vstWHUytWrWKkSNHxre+9a2YOXNmbNy4MX73u99Fv3790m22bdsW3//+9xv0vFOnTo2nnnoqvX/yySfH/fffX6+lAJvr+9y9e/f0dmFhYfrZRXVRWloaBQUFVY6VZEOHDs3YX7hwYZ37Ll68OGOZyiFDhjRYXQAANC7BDwAAnyjdunWLf/7nf45f/epXGa/Pnj27UtuKwUXHjh3j1FNPrdM59v+BaVK89tpr9bquxYsXZ+yfcMIJB3T+k046KWO/Pj/Ebmpt27aNL3zhCzFnzpyMZ1A99dRTUVZW1iDn+Nd//df49a9/nd4fNGhQPP744/WeFTVs2LDo0KFDer+5vM8VPz9lZWXx2muv1bnvG2+8ESUlJVWOlWT9+/ePgQMHpvcLCgqisLCwTn1feOGFjP0JEyY0aG0AADQewQ8AAJ9In/vc5zKWdnvvvfcqtdl/aai6uu+++w6otuZq48aNGUvf1WTTpk3x3HPPpff79OkThx9++AGdf/z48Rn7v//97w9ovKYwaNCgOPnkk9P7O3bsiE2bNh3wuDNmzIhp06al93v06BFPP/10dOvWrd5jtW7dOs4888z0/ttvvx1vv/32Add4oE455ZSM/QcffLDOfe+///6M/Yp/B0l3wQUXZOzfe++9deq3/79j+48DAEDzJfgBAOATqVWrVhmzGtq0aVOpTcXnWaxfv75Oy7etWLEifvvb3zZEic3SrbfeWqd2t912W3z00Ufp/cmTJx/wuU888cQ4/vjj0/uPPPJIs5mNUh+5ubkZ+1V99urj2WefjWuuuSa936FDh3jyySfjqKOO+thjfvWrX83Yv/HGGyOVSn3s8RrCJZdcEu3atUvvz5gxIz744INa+xUWFmbM8GvVqlV87nOfa5Qam6PPf/7zGfu//OUva10m76mnnorly5en9z/96U9b6g0AoAUR/AAAkAjTp0+PDRs21Ln9008/HcXFxen9wYMHV2ozfPjw9HZZWVn853/+Z41jbtiwIT772c/W69kjLc38+fPjjjvuqLHNH//4x4z3qlWrVhnBxIGoOKulvLw8Lr744njrrbfqNcaqVati/vz5DVLPww8/HMuWLatz+6KiooyZUD179swIGOtryZIlcemll0ZpaWlE7H2vf//738fIkSM/9pgRe2d3VAzZnnzyybjuuuvqtSxdaWlp3H///enaDlS3bt0yQowPP/wwJk+enLGE2/5KSkpi8uTJsWPHjvRrl156afTp06dBamoJRo4cGX//93+f3n/vvffie9/7XrXtN2/eHF//+tczXrvlllsaqzwAABqB4AcAgES4/fbb4/DDD4/JkyfHrFmzYvv27VW2Ky0tjd/+9reVfgv+C1/4QqW2l1xySWRlZaX3f/CDH8RPf/rT2L17d0a78vLyePzxx+Okk06Kt956K9q1axcdO3ZsgKtqXvYFFDfccENcd911GUvhRUTs2bMn7rrrrrjooosyZvtcf/31Gc8ZORAXXHBBRoi0du3aGD16dHz/+9+PtWvXVttv/fr18Zvf/Cb+/u//PgYPHhzPPPNMg9TzxBNPxLBhw2L8+PHxq1/9qsYaXnjhhRg7dmxs27Yt/dqBzoSaOHFiRqhx4403xpAhQ+K9996r85+NGzdWOfZ9992XMTvp5z//eZx++unxzDPPVBsAlZaWxiuvvBI33nhjHHnkkTF58uQGC34i9s4k6969e3r/+eefjzFjxsQbb7xRqe2bb74ZY8aMiT/96U/p17p06VJrcHmwffDBB3X6e9myZUuV7eoy6+lHP/pRxtKWd955Z3zrW9/K+CxGRCxdujTOOOOMKCgoSL92+umnx4UXXniAVwkAwMGUlWrq+foAANAAjjjiiFi9enV6PysrKwYNGhRHHnlkdOnSJSL2hgRLliypFFhcdNFFMXPmzCrH/dKXvhS/+93vMl7r0qVLnHTSSZGXlxebN2+O1157LYqKitLH//u//zt+9rOfpes588wza5xhUjFcuuKKK+I3v/lNva+5tnNUVPGH4f3796/y+UYRe2cGHHnkken9G2+8MZ544on0817atm0bp5xySvTq1Ss2b94cCxcujM2bN2eMcdJJJ8W8efMyluja3y233BI/+MEP0vsFBQVxxBFHVNt+z5498ZnPfCaeeOKJSseOOeaYGDhwYHTq1ClKSkpi8+bNsXz58lizZk1GuxtvvDF+8pOfVHuOurryyivjnnvuyXitb9++ccwxx0ReXl60adMmiouL480334zCwsKMdv3794+lS5dGp06dKo27/3s/bdq0KmddVPzsfFw1feb+8Ic/xGc+85mMcCli7zOvjj/++OjRo0e0bt06tm7dGmvWrIlly5ZVCkZ37dpV499/fT3zzDNx0UUXVTrP0KFDY/DgwZGVlRUrV66sNBOsdevW8fDDD9f6rJr6fh4P1P7/dtVXTfdwRffcc09ceeWVGa/l5ubGqFGjIi8vL/Lz8+O1117LON6vX79YtGhR9OrV62PXBwDAwdeqqQsAAIDGkEqlYsWKFbFixYoa233uc5+r9IP7in75y1/GX/7yl3jxxRfTr23evDmefvrpKtv/8Ic/jGuvvTZ+9rOffbzCm7F27drFk08+GePHj49Vq1bF7t27Y968edW2P+mkk+Lpp59u0B/6R+x9Js5jjz0W3//+9+P222/PmFGyfPnyjGeTVOdAllerTWFhYaWQZ3/Dhw+PJ554osrQpzmZMGFCvPLKK/HZz3423nnnnfTr27dvz5hJU53c3NzIzm7YhSbOOeecePrpp+PSSy/NWK7x7bffToeS++vcuXP8/ve/j7PPPrtBa2lJrrjiiti+fXtcf/316dBs27ZtMWfOnCrbH3vssfHwww8LfQAAWiBLvQEAkAiPPfZYTJs2LU466aRo3bp1jW2zs7Nj3Lhx8eSTT8YDDzyQsQTS/g455JCYN29efP/736/2h/Q5OTlx9tlnx7x58+Jf/uVfDug6mrv+/fvHq6++Gt/+9rfTM6n216NHj/jJT34SL7zwQqMFLNnZ2XHrrbfGihUr4pprromuXbvW2D4rKyuOO+64uOGGG+Ktt96Km266qUHq+NGPfhT/9V//Feecc07GsmjVGT58ePzXf/1XvP7663H44Yc3SA2NbejQofHWW2/F7373uzjxxBNrDXI6d+4cF198cfz2t7+NtWvXRps2bRq8prPOOivefffd+M53vlPj331eXl5885vfjHffffcTHfrs8/Wvfz0WLVoU559/frRqVfXvgfbs2TNuuummePXVV2PIkCEHuUIAABqCpd4AAEickpKS+POf/xyrVq2KdevWxY4dO6J169bRqVOnGDhwYBx//PGRl5dX73F37doVL730UrzzzjuxdevWyMvLiz59+sTo0aMT+VvxtS03tnv37nj++edj9erVsWHDhujatWscffTRccYZZ0ROTs5BrTWVSsXSpUtj2bJlsXHjxti2bVsccsgh0aVLlzj66KNjyJAhH+vvvD7Ky8tj+fLl8e6778b777+ffs7UoYceGv369YtPf/rT0b9//0at4WDYvHlzvPTSS7F27drYtGlTlJeXR25ubvTp0yeOPfbYOProow/q3395eXksXLgwVqxYERs2bIiIiO7du8egQYNi9OjRB/2z2FKsX78+Xnnllfjggw9i27Zt0atXrzjyyCPj1FNPrTYUAgCgZRD8AAAAVarrc2YAAABoPiz1BgAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQmSlUqlUUxcBAAAAAADAgTPjBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJESrpi7gkyqVSkV5eXlTl1FJTk5ORESUlZU1cSVATdyr0HK4X6FlcK9Cy+F+hZbBvQoth/u16WVnZ0dWVlaDjSf4aSLl5eVRVFTU1GVkyM7Ojl69ekVExIYNG5plMAW4V6Elcb9Cy+BehZbD/Qotg3sVWg73a/PQs2fPdADXECz1BgAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQrRq6gIAAEi2kpKSWL16dVOXcVD1798/2rVr19RlAAAA8Akk+AEAoFGtXr06xo4d29RlHFRz586NwYMHN3UZAAAAfAJZ6g0AAAAAACAhBD8AAAAAAAAJYak3AAAOslkRMbCpi2hgqyLioqYuAgAAAAQ/AAAcbAMjYmhTFwEAAACJZKk3AAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICFaHcyTbdy4MebOnRuvv/56bNiwIUpKSiI3Nze6d+8eQ4cOjZNPPjkOP/zwavsvWbIk5syZE/n5+bFt27bIzc2NAQMGxPjx42PEiBF1qqGsrCyee+65WLBgQRQWFkZJSUnk5eXF8OHD49xzz41+/fo11OUCAAAAAAAcVAct+Hn66afj/vvvj927d2e8vmnTpti0aVMsX748du3aFVdeeWWlvuXl5XH33XfH3LlzM14vLi6O4uLiWLx4cYwdOzauueaayM6ufhLTtm3b4rbbbov8/PyM14uKiqKoqCj+9Kc/xVVXXRXjxo37+BcKAAAAAADQRA5K8PPII4/Egw8+GBERvXv3jnHjxsXAgQPjkEMOie3bt0dBQUEsXrw4srKyquz/wAMPpEOfI488Mi644ILo2bNnFBUVxeOPPx4FBQUxd+7cyM3Njcsvv7zKMcrLy+OOO+5Ihz6jRo2K8ePHR8eOHePdd9+NRx99NLZu3Rp333135OXl1XkGEQAAAAAAQHPR6MHPW2+9lQ59zjjjjPja174WrVplnnb48OFxwQUXRGlpaaX+a9asidmzZ0dExIABA+IHP/hBtGnTJiIiBg4cGCNHjoxbbrkl8vPzY/bs2TF27Njo1atXpXHmz58fy5cvj4iICRMmxJe//OX0sYEDB8aIESPixhtvjF27dsWMGTPiuOOOi5ycnIZ5EwAAAAAAAA6C6tdFawDl5eXx61//OiIi+vfvH1OnTq0U+lRU1bGnnnoqysrKIiJiypQp6dBnn7Zt28aUKVMiYu/ze5544okqx94XHnXs2DG++MUvVjreq1evuPjiiyMiYt26dbFo0aLaLg8AAAAAAKBZadTg580334y1a9dGRMSFF15Y7xk0qVQqFi9eHBERffv2jUGDBlXZbtCgQdGnT5+IiHj11VcjlUplHF+zZk0UFhZGRMTJJ58cbdu2rXKcMWPGpLcFPwAAAAAAQEvTqMHPyy+/HBERWVlZccIJJ6Rf37FjR6xduzZ27NhRY//169fH5s2bIyLi2GOPrbHtkCFDIiKiuLg4NmzYkHFs3xJvFdtVpXPnztG7d++IiFixYkWN5wMAAAAAAGhuGvUZP++++25ERHTv3j3at28fCxYsiJkzZ8b777+fbtO7d+8YN25cnHvuudG6deuM/h988EF6u2/fvjWea9+Mn339evTo8bHG6du3b6xduzY2bdoUJSUl0a5duxrbAwAAAAAANBeNFvyUl5enl1c79NBDY8aMGfH0009Xard27dq49957Y/HixXHTTTdFhw4d0sc2bdqU3u7atWuN5+vWrVuV/SL2zgLaJy8vr8Zx9p0nlUpFcXFxRqBUm/3PW5XOnTunl7zLzm7UCVf1VrGe5lYb8DfuVWg53K97fRKvPTs7+xN53S2VexVaDvcrtAzuVWg53K/J1GjBz86dO9PP2vnrX/8a+fn50aVLl/jCF74QI0aMiDZt2sSqVavivvvui3fffTdWrFgR06dPj+uvvz49RklJSXq7tpk3FZ/bU7FfRMSuXbsaZJzaTJ06tdY206dPj65du0ZOTk706tWrXuMfTBVnTAHNl3sVWo5P8v1al1+OSZpu3bo16+96VO+TfK9CS+N+hZbBvQoth/s1ORotwtu9e3d6+6OPPoq2bdvGtGnT4vTTT4+OHTtGmzZtYsiQITFt2rTo379/REQsWrQovTxcRMSePXvS261a1ZxRVVwmrmK/fedviHEAAAAAAACas0ab8bP/83rGjh1b5bJpbdq0ic9//vPxk5/8JCIiXnrppTj66KPTx/YpLS2t8XwVw52K/favpbS0tNLxuo5Tm+nTp9fapnPnzhERUVZWFhs2bKjX+I0tOzs7nequX78+ysvLm7gioCruVWg53K97bdy4salLOOg2btwY69ata+oyqCP3KrQc7ldoGdyr0HK4X5uH7t27px8R0xAaLfhp3759xv6nPvWpatsOGzYscnJyoqysLPLz89OvV1yWrbZl1yrOMNp/ObeKtZSUlNQY6NQ0Tm1qew7R/przTVReXt6s6wP2cq9Cy/FJvl8/idf9Sf77bun83UHL4X6FlsG9Ci2H+zU5Gm2pt9atW0dubm56v6ZQpE2bNnHooYdGRMS2bduq7FPb2vAVf5N0/3Pl5eWlt4uLi2scZ995srKyMvoBAAAAAAA0d40W/ERE9OvXL71dW1K473jF6UyHHXZYeruwsLDG/mvWrKmyX33H2Xe8a9eu9Z7xAwAAAAAA0JQaNfg59thj09tFRUXVttu5c2ds3749IjJn5/To0SO6dOkSERHvvPNOjefadzwvLy+6d++eceyYY45Jby9btqzaMbZs2RJr166NiIjBgwfXeD4AAAAAAIDmplGDn9GjR6e3Fy1aVG27RYsWRSqViojMkCYrKytOPPHEiNg7E2flypVV9l+5cmV6ps7IkSMjKysr43ifPn2ib9++ERHx8ssvZzzHp6L58+ent0eNGlVtvQAAAAAAAM1RowY//fv3jxEjRkRExIsvvhhvvfVWpTZbtmyJBx98MCIiWrVqFWeddVbG8YkTJ0Z29t4yZ8yYEXv27Mk4vmfPnpgxY0ZE7F0m7rzzzquylvPPPz8iInbs2BH33ntvpePr1q2LmTNnRkREr169BD8AAAAAAECL06qxT3DFFVfEypUr48MPP4yf/OQncd5558WIESOiTZs2sWrVqpg1a1Zs2rQpIiI+97nPZSz1FrF3ts4FF1wQs2bNivz8/Lj55pvjwgsvjJ49e0ZRUVE89thjUVBQEBF7w53evXtXWceYMWNi3rx5sWLFinj22Wdjy5YtMW7cuOjYsWOsWrUqHnnkkdi1a1dkZWXFlClTMp41BAAAAAAA0BI0evDTp0+fuPHGG+Pf/u3fYuvWrTFr1qyYNWtWRpusrKy4+OKL48ILL6xyjEmTJsXWrVtj3rx5UVBQEHfeeWelNmPHjo1JkyZVW0d2dnZ897vfjdtuuy3y8/Nj4cKFsXDhwow2rVu3jquuuio9SwkAAAAAAKAlafTgJ2Lvc3v+/d//PZ5++ulYvHhxrF+/PkpLS6NLly4xZMiQOPfcc+PII4+stn92dnZMnTo1Ro8eHXPmzIn8/PzYvn17HHrooTFgwIA4++yz6xTW5Obmxq233hrPPfdcLFiwIAoLC6OkpCTy8vJi2LBhMXHixOjXr19DXjoAAAAAAMBBc1CCn4iIQw89NC677LK47LLLPvYYxx9/fBx//PEHVEdOTk5MmDAhJkyYcEDjAAAAAAAANDfZTV0AAAAAAAAADUPwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABIiFZNXQAAALR8uzP2CgoKmqiOg6N///7Rrl27pi4DAACAKgh+AADggL2fsXf11Vc3UR0Hx9y5c2Pw4MFNXQYAAABVsNQbAAAAAABAQgh+AAAAAAAAEsJSbwAA0OBmRcTApi6iAa2KiIuauggAAADqQPADANDESkpKYvXq1U1dRqMpKCho6hKawMCIGNrURQAAAPAJJPgBAGhiq1evjrFjxzZ1GQAAAEACeMYPAAAAAABAQgh+AAAAAAAAEsJSbwAAzc6s2PuMmKSYGxHfbOoiAAAA4BNB8AMA0OwMjIihTV1EA1rV1AUAAADAJ4al3gAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIVo1dQEAAEBztztjr6CgoInqaBzZ2dmxadOmiIjYuHFjlJeXR//+/aNdu3ZNXBkAAED9CX4AAIBavJ+xd/XVVzdRHQfP3LlzY/DgwU1dBgAAQL1Z6g0AAAAAACAhBD8AAAAAAAAJYak3AACgnmZFxMCmLqKBrYqIi5q6CAAAgAMm+AEAmr2SkpJYvXp1U5dRb1U9ML4qBQUFB7MsaAADI2JoUxcBAABAFQQ/AECzt3r16hg7dmxTlwEAAADQ7HnGDwAAAAAAQEIIfgAAAAAAABLCUm8AQAs0K5L1YPm5EfHNpi4CAAAASADBDwDQAiXtwfKrmroAAAAAICEs9QYAAAAAAJAQgh8AAAAAAICEaNSl3i677LI6tRsyZEjccsstNbZZsmRJzJkzJ/Lz82Pbtm2Rm5sbAwYMiPHjx8eIESPqdJ6ysrJ47rnnYsGCBVFYWBglJSWRl5cXw4cPj3PPPTf69etXp3EAAAAAAACao2b/jJ/y8vK4++67Y+7cuRmvFxcXR3FxcSxevDjGjh0b11xzTWRnVz+Badu2bXHbbbdFfn5+xutFRUVRVFQUf/rTn+Kqq66KcePGNcp1AAAAAAAANLaDEvxMmDAhJkyYUO3xdu3aVXvsgQceSIc+Rx55ZFxwwQXRs2fPKCoqiscffzwKCgpi7ty5kZubG5dffnmVY5SXl8cdd9yRDn1GjRoV48ePj44dO8a7774bjz76aGzdujXuvvvuyMvLq/MMIgAAAAAAgObkoAQ/ubm5cfjhh9e735o1a2L27NkRETFgwID4wQ9+EG3atImIiIEDB8bIkSPjlltuifz8/Jg9e3aMHTs2evXqVWmc+fPnx/LlyyNibwj15S9/OX1s4MCBMWLEiLjxxhtj165dMWPGjDjuuOMiJyfn41wqAAAAAABAk6l+bbRm4KmnnoqysrKIiJgyZUo69Nmnbdu2MWXKlIjY+/yeJ554ospx9oVHHTt2jC9+8YuVjvfq1SsuvvjiiIhYt25dLFq0qMGuAQAAAAAA4GBptsFPKpWKxYsXR0RE3759Y9CgQVW2GzRoUPTp0yciIl599dVIpVIZx9esWROFhYUREXHyySdH27ZtqxxnzJgx6W3BDwAAAAAA0BI12+Bn/fr1sXnz5oiIOPbYY2tsO2TIkIiIKC4ujg0bNmQc27fEW8V2VencuXP07t07IiJWrFjxsWoGAAAAAABoSgflGT+vvPJKvPzyy7Fhw4bIzs6Ozp07x6BBg2LMmDExbNiwKvt88MEH6e2+ffvWOP6+GT/7+vXo0eNjjdO3b99Yu3ZtbNq0KUpKSqJdu3Y1tgcAAAAAAGhODkrwUzF8idj7HJ1169bF888/HyeeeGJce+21ccghh2S02bRpU3q7a9euNY7frVu3KvtF7J0FtE9eXl6N4+w7TyqViuLi4oxAqS72P3dVOnfuHDk5ORERkZ3dvCZcVaynudUG/I17lU8in3XgYMvOzvZvDzRDvgtDy+BehZbD/ZpMjRr8tG3bNk444YQYPnx49O3bN9q1axfbtm2LZcuWxR//+MfYvn17LF68OH7605/Gv/zLv0SrVn8rp6SkJL1d28ybis/tqdgvImLXrl0NMk5dTJ06tdY206dPj65du0ZOTk706tWr3uc4WCrOmgKaL/cqnxR1+eUKgIbUrVu3Zv19HfBdGFoK9yq0HO7X5GjU4OeXv/xldOjQodLrxx13XJxzzjlx2223RUFBQSxbtiz+8Ic/xMSJE9Nt9uzZ87ciW9VcZuvWravsFxHx0UcfNcg4AAAAAAAAzV2jBj9VhT77dO7cOb7zne/Et7/97SgrK4tnnnkmI/hp06ZNeru0tLTG81QMdyr2i8gMc0pLSysdr+s4dTF9+vRa23Tu3DkiIsrKymLDhg31Pkdjys7OTqe669evj/Ly8iauCKiKe5VPoo0bNzZ1CcAnzMaNG2PdunVNXQawH9+FoWVwr0LL4X5tHrp3755+RExDOCjP+KlOz54947jjjoslS5bEunXrori4OP0cnorLstW27Nru3bvT2/sv59a+ffuMcWoKdGoapy5qexbR/przTVReXt6s6wP2cq/ySeFzDhxs/hsLzZ/7FFoG9yq0HO7X5GjypzUddthh6e3i4uL0dsUQpbZ1/Sv+FvD+4cu+IGn/8auy7zxZWVkZ/QAAAAAAAFqCJg9+srKyqny9YiBUWFhY4xhr1qypsl99x9l3vGvXrh9rxg8AAAAAAEBTavLg54MPPkhvV5xl06NHj+jSpUtERLzzzjs1jrHveF5eXnTv3j3j2DHHHJPeXrZsWbVjbNmyJdauXRsREYMHD65j9QAAAAAAAM1HkwY/69evjzfffDMi9j7vp2Lwk5WVFSeeeGJE7J2Js3LlyirHWLlyZXqmzsiRIyvNIOrTp0/07ds3IiJefvnljOf4VDR//vz09qhRoz7eBQEAAAAAADShRgt+Xn311SgrK6v2+JYtW+Lf/u3forS0NCIi/u7v/q5Sm4kTJ0Z29t4SZ8yYEXv27Mk4vmfPnpgxY0ZEROTk5MR5551X5bnOP//8iIjYsWNH3HvvvZWOr1u3LmbOnBkREb169RL8AAAAAAAALVKrxhp4xowZ8atf/SpGjx4dgwYNih49ekSbNm1i27ZtsWzZsvjjH/8Y27dvj4i9y7FVFfz06dMnLrjggpg1a1bk5+fHzTffHBdeeGH07NkzioqK4rHHHouCgoKI2Bvu9O7du8paxowZE/PmzYsVK1bEs88+G1u2bIlx48ZFx44dY9WqVfHII4/Erl27IisrK6ZMmRI5OTmN9bYAAAAAAAA0mkYLfiIiNm/eHM8880w888wz1bYZPXp0fO1rX4vWrVtXeXzSpEmxdevWmDdvXhQUFMSdd95Zqc3YsWNj0qRJ1Z4jOzs7vvvd78Ztt90W+fn5sXDhwli4cGFGm9atW8dVV10VI0aMqNvFAQAAAAAANDONFvxce+21sWzZsli5cmUUFRXF9u3bY9euXdGuXbvo2rVrDBo0KMaMGRODBg2qcZzs7OyYOnVqjB49OubMmRP5+fmxffv2OPTQQ2PAgAFx9tln1ymsyc3NjVtvvTWee+65WLBgQRQWFkZJSUnk5eXFsGHDYuLEidGvX7+GunwAAAAAAICDrtGCnyFDhsSQIUMabLzjjz8+jj/++AMaIycnJyZMmBATJkxooKoAAAAAAACaj+ymLgAAAAAAAICGIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEqJVU5343nvvjccffzy9P23atBg6dGiNfZYsWRJz5syJ/Pz82LZtW+Tm5saAAQNi/PjxMWLEiDqdt6ysLJ577rlYsGBBFBYWRklJSeTl5cXw4cPj3HPPjX79+h3QdQEAAAAAADSVJgl+3nvvvXjyySfr3L68vDzuvvvumDt3bsbrxcXFUVxcHIsXL46xY8fGNddcE9nZ1U9i2rZtW9x2222Rn5+f8XpRUVEUFRXFn/70p7jqqqti3Lhx9bsgAAAAAACAZuCgBz/l5eXxP//zP1FWVhadOnWKrVu31trngQceSIc+Rx55ZFxwwQXRs2fPKCoqiscffzwKCgpi7ty5kZubG5dffnm1573jjjvSoc+oUaNi/Pjx0bFjx3j33Xfj0Ucfja1bt8bdd98deXl5dZ5BBAAAAAAA0Fwc9Gf8PP3005Gfnx99+/aNs846q9b2a9asidmzZ0dExIABA+KHP/xhnHrqqTFw4MA49dRT41//9V9jwIABERExe/bsWLduXZXjzJ8/P5YvXx4RERMmTIjrr78+Pv3pT8fAgQPj3HPPjR/+8IfRvn37SKVSMWPGjCgrK2ugKwYAAAAAADg4Dmrws3HjxnjwwQcjIuIrX/lKtGpV+4Sjp556Kh3CTJkyJdq0aZNxvG3btjFlypSI2Pv8nieeeKLKcfaFRx07dowvfvGLlY736tUrLr744oiIWLduXSxatKiOVwUAAAAAANA8HNSl3n79619HSUlJnHnmmTFkyJD485//XGP7VCoVixcvjoiIvn37xqBBg6psN2jQoOjTp0+sWbMmXn311bj66qsjKysrfXzNmjVRWFgYEREnn3xytG3btspxxowZE/fff39ERCxatChOPvnkel8jABxsJSUlsXr16qYuo1EVFBQ0dQlA4u3O2Ev6vzv9+/ePdu3aNXUZAABAIzhowc9LL70Ur7/+erUzbqqyfv362Lx5c0REHHvssTW2HTJkSKxZsyaKi4tjw4YN0aNHj/SxfUu87WtXnc6dO0fv3r1j7dq1sWLFijrVCABNbfXq1TF27NimLgOghXs/Y+/qq69uojoOjrlz58bgwYObugwAAKARHJSl3j788MP4zW9+ExERkydPjtzc3Dr1++CDD9Lbffv2rbFtnz59quxX33H2Hd+0aVOUlJTUqU4AAAAAAIDm4KDM+Ln33ntjy5YtMXjw4Hr9RvKmTZvS2127dq2xbbdu3arsFxFRXFyc3s7Ly6txnH3nSaVSUVxcnBEo1afe6nTu3DlycnIiIiI7+6A+YqlWFetpbrUBf+NeZX8+BwDUV3Z2tv9+0CL5Lgwtg3sVWg73azI1evDzzjvvxNy5cyMnJye+8pWvZDx7pzYVZ9zUtv50xef27D9TZ9euXQ0yTm2mTp1aa5vp06dH165dIycnJ3r16lWv8Q+mikvlAc2Xe5WIqn7xYFZEDGyCShrT3Ij4ZlMXAXyizIpk/Vu6KiIuSu9169atWf//CNSF78LQMrhXoeVwvyZHowY/paWlcffdd0cqlYrzzjsvDj/88Hr137NnT3q7VauaS23dunWV/SIiPvroowYZBwBahoERMbSpi2hgq5q6AOATJ4n/lgIAAJ8EjRr8PProo1FYWBjdunWLSy+9tN7927Rpk94uLS2tsW3FcKdiv4jMMKe0tLTS8bqOU5vp06fX2qZz584REVFWVhYbNmyo1/iNLTs7O53qrl+/PsrLy5u4IqAq7lX2t3HjxqYuAYAWZuPGjbFu3bqmLgPqzXdhaBncq9ByuF+bh+7du6cfEdMQGi34KSwsjFmzZkVExFVXXVXrEmtVqdintmXXdu/eXWW/iIj27dtnjFNToFPTOLWp7TlE+2vON1F5eXmzrg/Yy71KRPP+7wkAzZPvECSBzzG0DO5VaDncr8nRaMHPk08+GaWlpdGzZ8/YvXt3vPjii5XavP/+++ntP//5z7Fly5aIiDjhhBOiXbt2GUFK5ecXZKr42877BzB5eXnp7eLi4sjNza12nH3nycrKyugHAAAAAADQ3DVa8LNvybSioqL4+c9/Xmv7Rx55JL393//939GuXbs47LDD0q8VFhbW2H/NmjXp7Yr99t8vLCyMI444otpx9p2na9euH2uWEgAAAAAAQFPJbuoCatKjR4/o0qVLRES88847NbbddzwvLy+6d++eceyYY45Jby9btqzaMbZs2RJr166NiIjBgwd/rJoBAAAAAACaSqPN+Ln22mvj2muvrbHN73//+3j44YcjImLatGkxdOjQjONZWVlx4oknxh/+8IcoLCyMlStXxqBBgyqNs3LlyvRMnZEjR0ZWVlbG8T59+kTfvn2jsLAwXn755fjSl74Ubdu2rTTO/Pnz09ujRo2q03UCAAAAAAA0F816xk9ExMSJEyM7e2+ZM2bMiD179mQc37NnT8yYMSMiInJycuK8886rcpzzzz8/IiJ27NgR9957b6Xj69ati5kzZ0ZERK9evQQ/AAAAAABAi9NoM34aSp8+feKCCy6IWbNmRX5+ftx8881x4YUXRs+ePaOoqCgee+yxKCgoiIi94U7v3r2rHGfMmDExb968WLFiRTz77LOxZcuWGDduXHTs2DFWrVoVjzzySOzatSuysrJiypQpkZOTczAvEwAAAAAA4IA1++AnImLSpEmxdevWmDdvXhQUFMSdd95Zqc3YsWNj0qRJ1Y6RnZ0d3/3ud+O2226L/Pz8WLhwYSxcuDCjTevWreOqq66KESNGNPQlAAAAAAAANLoWEfxkZ2fH1KlTY/To0TFnzpzIz8+P7du3x6GHHhoDBgyIs88+u05hTW5ubtx6663x3HPPxYIFC6KwsDBKSkoiLy8vhg0bFhMnTox+/fodhCsCAAAAAABoeE0a/Fx22WVx2WWX1bn98ccfH8cff/wBnTMnJycmTJgQEyZMOKBxAAAAAAAAmpvspi4AAAAAAACAhiH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQrRpr4J07d8aSJUsiPz8/8vPzo7i4OLZt2xZ79uyJDh06xGGHHRYjRoyIsWPHxqGHHlrreCtWrIhnn302li9fHlu3bo1DDjkkjjjiiDjzzDPjtNNOq3NdCxYsiPnz58fq1atj586d0alTpzjmmGPinHPOiUGDBh3IJQMAAAAAADSpRgt+Vq1aFT//+c+rPLZt27ZYtmxZLFu2LB5//PH4xje+EZ/+9KerHev3v/99PPLII5FKpdKvbd26NZYuXRpLly6NBQsWxHe+851o06ZNtWPs2bMn/u3f/i2WLFmS8frGjRtjwYIF8eKLL8all14an/3sZ+t3oQAAAAAAAM1EowU/ERFdu3aNoUOHxlFHHRXdunWLzp07RyqVik2bNsUrr7wSixYtiu3bt8dPf/rT+PGPfxxHHHFEpTH++Mc/xsMPPxwRET179oyLL744Dj/88Ni8eXM89dRT8fbbb8frr78e06dPj29961vV1vKLX/wiHfoMHTo0Jk6cGF26dIm//vWvMXPmzCgqKoqHHnoounTpEuPHj2+U9wMAAAAAAKAxNVrwM2zYsJg+fXq1x0855ZRYtGhR3HHHHVFaWhoPP/xwXH/99RltduzYEffdd19ERHTr1i1+9KMfRW5ubvr4CSecED/72c/itddeixdffDHGjx8fQ4cOrXSuP//5z/HSSy+l+3z3u9+N7Oy9jzcaOHBgjBw5Mm666abYuHFj3HfffXHSSSdFx44dD/g9AAAAAAAAOJiyG23g7NqHHjVqVPTp0yciIt55551Kx5977rnYuXNnRERMnjw5I/TZd44vf/nL6XM9/vjjVZ5n9uzZERGRk5OT0X6f3NzcmDx5ckREfPjhhzF37txaawcAAAAAAGhuGi34qav27dtHRMRHH31U6djixYvTbUaPHl1l/65du8bw4cMjYu/Mnl27dmUc37VrV7z11lsRETF8+PDo2rVrleOMHj06XcuiRYs+xpUAAAAAAAA0rSYNftasWRPvvfdeRET07ds341hpaWmsWrUqIiIGDRoUrVpVvyrdkCFDImJveJSfn59xLD8/P0pLSzPaVaVVq1YxaNCgSn0AAAAAAABaikZ7xk91du/eHcXFxfHaa6/FY489FmVlZRERMXHixIx2a9asifLy8oioHArtr+LxwsLCGDZsWHr/gw8+SG/vW1auOn369ImlS5dGWVlZrFu3Lg477LC6XdT/s2nTplrbdO7cOXJyciKibsvhHUwV62lutQF/415lfz4HANRXdna2/37QIvkuDC2DexVaDvdrMh2U4Gf+/Pnxi1/8otrjF110UZx22mkZrxUXF6e38/Lyahy/4vJt+4cvFferW+atquMbN26sd/AzderUWttMnz49unbtGjk5OdGrV696jX8w9ejRo6lLAOrAvUpE3X7xAAAq6tatW7P+/xGoC9+FoWVwr0LL4X5NjoM+46eiI444Iq655poYOHBgpWMVn9XTrl27Gsdp27ZterukpORjj1Px+P7jAAAAAAAANHcHJfg58cQT44477oiIiD179kRRUVG8/PLLsWjRovj5z38eV155ZZxwwgkZfT766KO/FVnD830iIlq3bp3e3rNnz8cep+Lx/cepi+nTp9fapnPnzhERUVZWFhs2bKj3ORpTdnZ2OtVdv359eqk9oHlxr7K/jRs3NnUJALQwGzdujHXr1jV1GVBvvgtDy+BehZbD/do8dO/ePf2ImIZwUIKfDh06RIcOHdL7AwcOjFNPPTWef/75uOuuu+KnP/1pTJ06NcaMGZNuUzHMKS0trXH8iuFOmzZtMo7VZ5yKx/cfpy5qW0puf835JiovL2/W9QF7uVeJaN7/PQGgefIdgiTwOYaWwb0KLYf7NTma9GlNZ5xxRpx00kmRSqXif//3f2PHjh3pY+3bt09v17bs2u7du9Pb+y/nVp9xKh6vbVk4AAAAAACA5qZJg5+IvcvARewNb954443063l5eent4uLiGseo+FDr/WfdVNyv7eHXFY9369atxrYAAAAAAADNTZMHP7m5uentis+86dOnT2Rn7y2vsLCwxjEqHu/bt2/GscMOOyy9vWbNmhrH2Xc8JycnevXqVUvlAAAAAAAAzUuTBz8VZ/NUXF6tVatWMXDgwIiIWLlyZY3P51m2bFlE7H2ez4ABAzKODRgwIFq1apXRriqlpaWxcuXKSn0AAAAAAABaiiYPfl5++eX09uGHH55xbN8ycLt27YqFCxdW2X/Tpk3x1ltvRUTEsGHDMp7pE7H3GT/Dhw+PiIi33nqr2uXeFi5cGLt27YqIiFGjRn2MKwEAAAAAAGhajRb8zJ8/P/bs2VNjmyeeeCKWLFkSERE9evSIY489NuP4uHHj4pBDDomIiPvvvz+2b9+ecby8vDx+/etfR3l5eUREXHDBBVWe5/zzz4+IiLKysvjf//3fdPt9tm3bFvfdd19ERHTo0CHGjh1bl0sEAAAAAABoVhptPbOHHnoofvvb38bo0aPjmGOOiZ49e0a7du2ipKQk/vrXv8YLL7wQK1as2FtEq1ZxzTXXpJ/ps0/Hjh1j8uTJ8atf/So2bNgQ3/ve9+KSSy6Jww8/PDZv3hxPPvlkvP322xERceqpp8bQoUOrrGXYsGFxyimnxEsvvRSvvvpq/PCHP4zzzjsvunTpEn/961/j0UcfjY0bN0ZExOTJk6Njx46N9bYAAAAAAAA0mkZ9kM2OHTviueeei+eee67aNl27do2pU6fGcccdV+Xxs88+OzZv3hyPPPJIFBUVxfTp0yu1GTFiREydOrXGWv7hH/4hdu3aFUuWLIm33347HRjtk5WVFZ/5zGdi/PjxdbgyAAAAAACA5qfRgp9//ud/jtdffz2WL18eRUVFsWXLltixY0e0adMmcnNz44gjjogTTjghTj755Gjbtm2NY1122WXxqU99Kp599tl45513YuvWrdGhQ4fo379/jBkzJk477bRa62nTpk380z/9UyxYsCDmz58fq1evjg8//DA6deoUxx57bJxzzjkxaNCghrp8AAAAAACAg67Rgp8+ffpEnz594u///u8bZLzBgwfH4MGDD3ic0047rU5BEQAAAAAAQEuTXXsTAAAAAAAAWgLBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABKiVVMXAAAAQGPbnbFXUFDQRHUcHP3794927do1dRkAANAkBD8AAACJ937G3tVXX91EdRwcc+fOjcGDBzd1GQAA0CQs9QYAAAAAAJAQgh8AAAAAAICEsNQbAADAJ86siBjY1EU0oFURcVFTFwEAAM2C4AcAAOATZ2BEDG3qIgAAgEZgqTcAAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACdGqqQsAgMZWUlISq1evbuoyGk1BQUFTlwAAAABAMyH4ASDxVq9eHWPHjm3qMgAAAACg0VnqDQAAAAAAICEEPwAAAAAAAAlhqTcAPoFmRcTApi6iAc2NiG82dREAAAAANAOCHwA+gQZGxNCmLqIBrWrqAgAAAABoJiz1BgAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhWjV1AQAAAHBgdmfsFRQUNFEdB0///v2jXbt2TV0GAADNkOAHAACAFu79jL2rr766ieo4eObOnRuDBw9u6jIAAGiGLPUGAAAAAACQEIIfAAAAAACAhLDUGwAAAAkzKyIGNnURDWxVRFzU1EUAANACNGrwk5+fH0uWLInly5fHBx98ENu2bYucnJzIy8uLwYMHx9ixY+OYY46p83hLliyJOXPmRH5+fmzbti1yc3NjwIABMX78+BgxYkSdxigrK4vnnnsuFixYEIWFhVFSUhJ5eXkxfPjwOPfcc6Nfv34f93IBAABoFgZGxNCmLgIAAJpEowU/06ZNi3feeafS66WlpbF27dpYu3ZtzJ8/P84444z42te+Fq1aVV9KeXl53H333TF37tyM14uLi6O4uDgWL14cY8eOjWuuuSays6tfvW7btm1x2223RX5+fsbrRUVFUVRUFH/605/iqquuinHjxtXzagEAAAAAAJpeowU/xcXFERHRpUuXOPnkk+OYY46Jbt26RXl5eaxcuTKeeOKJKC4ujueffz7KysriW9/6VrVjPfDAA+nQ58gjj4wLLrggevbsGUVFRfH4449HQUFBzJ07N3Jzc+Pyyy+vcozy8vK444470qHPqFGjYvz48dGxY8d4991349FHH42tW7fG3XffHXl5eXWeQQQAAAAAANBcNFrw07dv3/j85z8fJ510UqVZOIMGDYozzjgjbr755li7dm28+OKLcfbZZ8eQIUMqjbNmzZqYPXt2REQMGDAgfvCDH0SbNm0iImLgwIExcuTIuOWWWyI/Pz9mz54dY8eOjV69elUaZ/78+bF8+fKIiJgwYUJ8+ctfTh8bOHBgjBgxIm688cbYtWtXzJgxI4477rjIyclpsPcDAAAAAACgsVW/LtoBuummm+KUU06pdum13Nzc+NKXvpTef+WVV6ps99RTT0VZWVlEREyZMiUd+uzTtm3bmDJlSkTsfX7PE088UeU4+8Kjjh07xhe/+MVKx3v16hUXX3xxRESsW7cuFi1aVNPlAQAAAAAANDuNFvzUxdChf3vYZlFRUaXjqVQqFi9eHBF7ZxANGjSoynEGDRoUffr0iYiIV199NVKpVMbxNWvWRGFhYUREnHzyydG2bdsqxxkzZkx6W/ADAAAAAAC0NE0a/JSWlqa3q5oZtH79+ti8eXNERBx77LE1jrVvmbji4uLYsGFDxrF9S7xVbFeVzp07R+/evSMiYsWKFbVUDwAAAAAA0Lw02jN+6mLZsmXp7b59+1Y6/sEHH9R4vKJ9M3729evRo8fHGqdv376xdu3a2LRpU5SUlES7du1qbF/Rpk2bam3TuXPn9LODqlsGr6lUrKe51Qb8jXu1/rxPAEDSZGdnfyK/4/guDC2DexVaDvdrMjVZ8FNeXh6zZs1K759yyimV2lQMUrp27VrjeN26dauyX8TeWUD75OXl1TjOvvOkUqkoLi7OCJRqM3Xq1FrbTJ8+Pbp27Ro5OTnRq1evOo99sFUMzoDmy71aN3UJ5gEAWpJu3bo16/+nPBh8F4aWwb0KLYf7NTmaLMJ78sknY9WqVRERMWrUqDjqqKMqtSkpKUlv1zbzpuJzeyr2i4jYtWtXg4wDAAAAAADQnDXJjJ9ly5bF/fffHxERnTp1iq985StVttuzZ096u1Wrmktt3bp1lf0iIj766KMGGac206dPr7VN586dIyKirKys0rOImlp2dnY61V2/fn2Ul5c3cUVAVdyr9bdx48amLgEAoEFt3Lgx1q1b19RlHHS+C0PL4F6FlsP92jx07949/YiYhnDQg5/3338/fvazn0VZWVm0bt06rrvuuujUqVOVbdu0aZPeLi0trXHciuFOxX4RmWFOaWlppeN1Hac2tS1Ht7/mfBOVl5c36/qAvdyrdeM9AgCSxvdA7wG0FO5VaDncr8lxUJd6W79+fdx6663x4YcfRnZ2dnz729+OIUOGVNu+4rJstS27tnv37ir7RUS0b9++QcYBAAAAAABozg5a8FNcXBw//OEPY/PmzZGVlRVTp06NE088scY+FWfQ1PZg7orL+Ow/8yYvLy+jjprsO09WVlZGPwAAAAAAgObuoAQ/27Zti1tvvTWKiooiImLKlClx5pln1trvsMMOS28XFhbW2HbNmjVV9qvvOPuOd+3a1YwfAAAAAACgRWn04Gfnzp3xox/9KD744IOIiLj88svjnHPOqVPfHj16RJcuXSIi4p133qmx7b7jeXl50b1794xjxxxzTHp72bJl1Y6xZcuWWLt2bUREDB48uE41AgAAAAAANBeNGvzs3r07brvttigoKIiIiEsuuSQuuuiiOvfPyspKLwdXWFgYK1eurLLdypUr0zN1Ro4cGVlZWRnH+/TpE3379o2IiJdffjnjOT4VzZ8/P709atSoOtcJAAAAAADQHDRa8FNaWhp33HFHrFixIiIiJk6cGJMmTar3OBMnTozs7L1lzpgxI/bs2ZNxfM+ePTFjxoyIiMjJyYnzzjuvynHOP//8iIjYsWNH3HvvvZWOr1u3LmbOnBkREb169RL8AAAAAAAALU6rxhr4zjvvjKVLl0ZExLBhw2Ls2LHx17/+tfpCWrWKPn36VHq9T58+ccEFF8SsWbMiPz8/br755rjwwgujZ8+eUVRUFI899lh6RtH5558fvXv3rnL8MWPGxLx582LFihXx7LPPxpYtW2LcuHHRsWPHWLVqVTzyyCOxa9euyMrKiilTpkROTk4DvAsAAAAAAAAHT6MFP4sWLUpv//nPf47rr7++xvbdu3ePu+66q8pjkyZNiq1bt8a8efOioKAg7rzzzkptxo4dW+OMouzs7Pjud78bt912W+Tn58fChQtj4cKFGW1at24dV111VYwYMaLGWgEAAAAAAJqjRgt+GlJ2dnZMnTo1Ro8eHXPmzIn8/PzYvn17HHrooTFgwIA4++yz6xTW5Obmxq233hrPPfdcLFiwIAoLC6OkpCTy8vJi2LBhMXHixOjXr99BuCIAAAAAAICG12jBz+9///sGH/P444+P448//oDGyMnJiQkTJsSECRMaqCoAAAAAAIDmIbupCwAAAAAAAKBhCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASolVTFwBA0yspKYnVq1c3dRmNpqCgoKlLAAA4QLsz9pL+/aZ///7Rrl27pi4DAKBFEvwAEKtXr46xY8c2dRkAAFTr/Yy9q6++uonqODjmzp0bgwcPbuoyAABaJEu9AQAAAAAAJITgBwAAAAAAICEs9QZAFWZFxMCmLqIBzY2IbzZ1EQAADWhWJOv72qqIuKipiwAASATBDwBVGBgRQ5u6iAa0qqkLAABoYEn7vgYAQEOx1BsAAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AADA/9/enQdZVZ75A/92sysgsmgDMUQhoIIYFNepuOCKxi3lEONMJioxM46WY2rKis5ojfnFFBpNjYllMrGS6KQoY1KTiNFo4gio0cQFNcaIgLSoEWhWWZSmG2h+f1B9p5tekW5uc/vzqbLq3Hve89znUD597j3POe8BAACAEqHxAwAAAAAAUCI0fgAAAAAAAEqExg8AAAAAAECJ0PgBAAAAAAAoERo/AAAAAAAAJULjBwAAAAAAoERo/AAAAAAAAJQIjR8AAAAAAIASofEDAAAAAABQIjR+AAAAAAAASoTGDwAAAAAAQInQ+AEAAAAAACgRGj8AAAAAAAAlQuMHAAAAAACgRGj8AAAAAAAAlAiNHwAAAAAAgBKh8QMAAAAAAFAiNH4AAAAAAABKhMYPAAAAAABAidD4AQAAAAAAKBEaPwAAAAAAACVC4wcAAAAAAKBEaPwAAAAAAACUiJ6dGXz9+vVZvHhxFi9enMrKylRWVmbjxo1JkpNPPjlXX331LsV79dVX8+STT6aysjIbNmzIwIEDM3r06Jx++umZNGlSu2Js27Yts2fPzrPPPpulS5dm8+bNGTx4cI444ohMnTo1Bx100C7vJwAAAAAAQFfQqY2fK6+8skPi1NXV5d57782cOXMavb927dqsXbs2L730UqZMmZKvfvWrKS9v+SamDRs2ZMaMGamsrGz0/ooVK7JixYo8/fTTueKKK3Laaad1SN4AAAAAAAB7Uqc2fhoaOnRoRo4cmddee22Xt33wwQcLTZ+DDz44559/fg488MCsWLEiv/71r7NkyZLMmTMnAwcOzKWXXtpsjLq6utx5552Fps+xxx6b008/Pf37989bb72VX/3qV1m/fn3uvffeDB48uN13EAEAAAAAAHQVndr4ufjiizN69OiMHj06gwYNysqVK3PNNdfsUoxly5blkUceSZKMHj063/jGN9K7d+8kyZgxYzJ58uTccsstqayszCOPPJIpU6akoqKiSZynnnoqCxYsSJKceeaZ+cpXvlJYN2bMmEyaNClf//rXU11dnfvuuy8TJ05Mjx49Pu6uAwAAAAAA7HEtz4vWAaZNm5ajjz46gwYN+tgxHnvssWzbti1JcvnllxeaPvX69OmTyy+/PMmO5/c8+uijzcapbx71798/X/rSl5qsr6ioyEUXXZQkqaqqyosvvvixcwYAAAAAACiGTm387K7t27fnpZdeSpKMHDkyY8eObXbc2LFjM2LEiCTJvHnzsn379kbrly1blqVLlyZJTjjhhPTp06fZOKecckphWeMHAAAAAADY23Tpxs/KlSvzwQcfJEkOO+ywVscefvjhSZK1a9dm1apVjdbVT/HWcFxzBg0alOHDhydJFi5c+LFyBgAAAAAAKJYu3fh5//33C8sjR45sdWz9HT87b7ercerXr1mzJps3b253rgAAAAAAAMXWs9gJtGbNmjWF5SFDhrQ6dujQoc1ul+y4C6je4MGDW41T/znbt2/P2rVrGzWUdiXflgwaNCg9evRIkpSXd62+W8N8ulpuwP/pjFpV8wAAdCXl5eXNfkf1uxX2DmoV9h7qtTR16cZPwztu+vbt2+rYhs/t2flOnerq6g6J05arrrqqzTE/+MEPMmTIkPTo0SMVFRW7FH9POuCAA4qdAtAOHVWr7WlcAwDAnjJ06NA2fzP73Qp7B7UKew/1Wjq6dAuvtra2sNyzZ+s9ql69ejW7XZJs2bKlQ+IAAAAAAAB0ZV36jp/evXsXlrdu3drq2IbNnYbbJY2bOVu3bm2yvr1x2vKDH/ygzTGDBg1Kkmzbti2rVq3apfidrby8vNDVXblyZerq6oqcEdCczqjV1atX73YMAADoKKtXr05VVVWT9/1uhb2DWoW9h3rtGoYNG1Z4RExH6NKNn4bTsrU17VpNTU2z2yVJv379GsVpraHTWpy2tPUcop115SKqq6vr0vkBO3RUrap3AAC6kvZ8z/W7FfYOahX2Huq1dHTpqd4aNlLaev5Ew6vVd27ADB48uLC8du3aVuPUf05ZWVmj7QAAAAAAALq6Lt34+cQnPlFYXrp0aatjly1b1ux2uxqnfv2QIUN2+Y4fAAAAAACAYurSjZ8DDjgg+++/f5LkzTffbHVs/frBgwdn2LBhjdYdeuihheX58+e3GGPdunVZvnx5kmTcuHEfK2cAAAAAAIBi6dKNn7KyshxzzDFJdtyJs2jRombHLVq0qHCnzuTJk1NWVtZo/YgRIzJy5MgkyR//+MdGz/Fp6KmnniosH3vssbubPgAAAAAAwB7VpRs/SXLOOeekvHxHmvfdd19qa2sbra+trc19992XJOnRo0fOPffcZuOcd955SZIPP/wwM2fObLK+qqoqDz30UJKkoqJC4wcAAAAAANjr9OzM4AsWLEhVVVXh9YYNGwrLVVVVje6wSZJTTjmlSYwRI0bk/PPPz6xZs1JZWZmbb745F1xwQQ488MCsWLEiDz/8cJYsWZJkR3Nn+PDhzeZyyimnZO7cuVm4cGF+97vfZd26dTnttNPSv3//LF68OL/85S9TXV2dsrKyXH755enRo8fu/wMAAAAAAADsQZ3a+Jk9e3aefvrpZtctXLgwCxcubPRec42fJLnkkkuyfv36zJ07N0uWLMldd93VZMyUKVNyySWXtJhLeXl5rr/++syYMSOVlZV54YUX8sILLzQa06tXr1xxxRWZNGlS6zsGAAAAAADQBXVq46ejlJeX56qrrspxxx2XJ598MpWVldm4cWMGDBiQ0aNH54wzzmhXs2bgwIG59dZbM3v27Dz77LNZunRpNm/enMGDB2fChAk555xzctBBB+2BPQIAAAAAAOh4ndr4ufrqq3P11Vd3WLyjjjoqRx111G7F6NGjR84888yceeaZHZQVAAAAAABA17BX3PEDAAAAlLKaRq/qn+W7s/Ly8qxZsyZJsnr16tTV1XV6Zp1h1KhR6du3b7HTAABKlMYPAAAAUGR/bfRq+vTpRcpjz5gzZ07GjRtX7DQAgBJVXuwEAAAAAAAA6BgaPwAAAAAAACXCVG8AAABAFzMryZhiJ9GBFie5sNhJAADdhMYPAAAA0MWMSTK+2EkAAOyVTPUGAAAAAABQIjR+AAAAAAAASoTGDwAAAAAAQInQ+AEAAAAAACgRGj8AAAAAAAAlQuMHAAAAAACgRGj8AAAAAAAAlAiNHwAAAAAAgBKh8QMAAAAAAFAiehY7AYCubvPmzXn33XeLnUZBeXl51qxZkyRZvXp16urqdjvmkiVLdjsGAAAAAFB8Gj8AbXj33XczZcqUYqcBAAAAANAmU70BAAAAAACUCI0fAAAAAACAEmGqN4BdNivJmGIn0cHmJLm22EkAAAAAALtJ4wdgl41JMr7YSXSwxcVOAAAAAADoAKZ6AwAAAAAAKBEaPwAAAAAAACVC4wcAAAAAAKBEaPwAAAAAAACUCI0fAAAAAACAEqHxAwAAAAAAUCI0fgAAAAAAAEqExg8AAAAAAECJ0PgBAAAAAAAoERo/AAAAAAAAJULjBwAAAAAAoERo/AAAAAAAAJQIjR8AAAAAAIASofEDAAAAAABQIjR+AAAAAAAASoTGDwAAAAAAQInQ+AEAAAAAACgRGj8AAAAAAAAlQuMHAAAAAACgRGj8AAAAAAAAlAiNHwAAAAAAgBKh8QMAAAAAAFAiehY7AQAAAIDSVtPo1ZIlS4qUx54zatSo9O3bt9hpAEC3pPEDAAAA0Kn+2ujV9OnTi5THnjNnzpyMGzeu2GkAQLdkqjcAAAAAAIASofEDAAAAAABQIkz1BgAAALBHzUoypthJdLDFSS4sdhIAQDR+AAAAAPawMUnGFzsJAKBEmeoNAAAAAACgRGj8AAAAAAAAlAiNHwAAAAAAgBKh8QMAAAAAAFAiNH4AAAAAAABKhMYPAAAAAABAidD4AQAAAAAAKBEaPwAAAAAAACVC4wcAAAAAAKBE9Cx2AgAAAADs7WoavVqyZEmR8tgzRo0alb59+xY7DQBolsYPAAAAALvpr41eTZ8+vUh57Blz5szJuHHjip0GADTLVG8AAAAAAAAlQuMHAAAAAACgRJjqDQAAAIAONivJmGIn0YEWJ7mw2EkAQLto/AAAAADQwcYkGV/sJACgWzLVGwAAAAAAQInQ+AEAAAAAACgRpnoDdtvmzZvz7rvvFjuNTrNkyZJipwAAAAAA0C4aP8Bue/fddzNlypRipwEAAAAA0O2Z6g0AAAAAAKBEaPwAAAAAAACUCFO9AZ1gVpIxxU6iA81Jcm2xkwAAAAAAaJPGD9AJxiQZX+wkOtDiYicAAAAAANAuGj8AAAAA0KqaRq+WLFlSpDz2jFGjRqVv377FTgOAj0njBwAAAABa9ddGr6ZPn16kPPaMOXPmZNy4ccVOA4CPqbzYCQAAAAAAANAxNH4AAAAAAABKhKneAAAAAGCXzEoypthJdKDFSS4sdhIAdBCNHwAAAADYJWOSjC92EgDQLFO9AQAAAAAAlAiNHwAAAAAAgBKh8QMAAAAAAFAiNH4AAAAAAABKhMYPAAAAAABAidD4AQAAAAAAKBEaPwAAAAAAACVC4wcAAAAAAKBEaPwAAAAAAACUCI0fAAAAAACAEqHxAwAAAAAAUCI0fgAAAAAAAEpEz2InAAAAAAAUU02jV0uWLNmtaOXl5VmzZk2SZPXq1amrq9uteJ1h1KhR6du3b7HTAOgUGj8AAAAA0K39tdGr6dOnFymPPWfOnDkZN25csdMA6BTdsvGzatWqPP7443nllVeyZs2a9OzZMxUVFTnhhBNy1llnpU+fPsVOsVvZvHlz3n333WKnsUe5qgQAAAAAgM7Q7Ro/8+bNy913353q6urCezU1NamsrExlZWVmz56dG2+8MRUVFUXMsnt59913M2XKlGKnsUe5qgQAAAAAgM7QrRo/S5YsyV133ZXa2tr07ds3F154YSZMmJDa2to899xzmT17dpYvX54ZM2bktttuS79+/YqdMiVqd+fK7WpKbX8AAACge5uVZEyxk+hgi5NcWOwkAPaIbtX4uf/++1NbW5sePXrkpptuytixYwvrJkyYkOHDh2fmzJlZvnx5HnnkkUybNq2I2VLKusNcuQAAAMDeakyS8cVOAoCPqds0fhYvXpw333wzSXLqqac2avrU+9znPpe5c+dm6dKlefzxx/P5z38+PXt2m3+iLmRWSu+qkjlJri12EgAAAADdVE2jV6U+e4nnS0P31m26Gi+++GJh+dRTT212THl5eU4++eQ88MAD+eijj/LGG2/kyCOP3FMpUlCKV5UsLnYCAAAAAN3YXxu9KvXZWH784x/n4IMPLnYaHaq2tjZLly4tvB4xYkT69OlTxIw6VrH2r7y8PGvWrEmSrF69OnV1dZ3+mYnmZGfrNo2fhQsXJkn69OmTQw45pMVxhx9+eKNtNH7oHLNSWnc1uaMJAAAAoKso9cYWe785c+Zk3LhxxU6jZHWbxs/777+fJKmoqEiPHj1aHDdixIgm20DHK7W7mtzRBAAAAADQFXSLxk9tbW02btyYJBkyZEirY/v3758+ffqkpqamcItbe7Vn/KBBgwqNp/Ly8l2K39ka5rMnc2v6WaXYRHhvp9elto/2b+9X6vto//Z+pb6P9m/vV+r7WOr7l5T+Ptq/vV+p76P92/uV+j7av73fzvt4Z5KDipFIJ3kpO/YJ9g7l5eVd7vx4KSnbvn379mIn0dk2bNiQr3zlK0mSE088Mdddd12r46+88sqsX78+Bx10UL7zne+0+3OmTZvW5pgHHnggPXt2i35bu23ZsiUrVqwodhoAAAAAAOwBBx54YHr16lXsNEpWt+hA1NbWFpbb03SpH9Nwu45SVlbW4TH3dr169conPvGJYqcBAAAAAAB7vW7R+Ondu3dheevWrW2Orx/TcLv2+MEPftDmmK58+9q2bduybt26JI2npAO6FrUKew/1CnsHtQp7D/UKewe1CnsP9VqaukXjp2/fvoXlzZs3tzm+fkzD7dqjrecHdXXr1q3LVVddlWRHE2tv3x8oVWoV9h7qFfYOahX2HuoV9g5qFfYe6rU0dd3bTzpQ7969M2DAgCTJmjVrWh374YcfpqamJsne38gBAAAAAAC6l27R+ElSeIZMVVVVtm3b1uK4ZcuWNdkGAAAAAABgb9BtGj/jxo1LktTU1OTtt99ucdz8+fObbAMAAAAAALA36DaNn2OPPbawPHfu3GbH1NXV5emnn06S7Lvvvhk/fvweyQ0AAAAAAKAjdJvGz5gxY3LYYYcl2dH4WbRoUZMxjz76aJYuXZokmTp1anr27LlHcwQAAAAAANgd3abxkySXXXZZevfunW3btuXWW2/NQw89lEWLFuUvf/lL7r333sycOTNJMnz48Jx33nlFzhYAAAAAAGDXdKtbWg4++OBcd911ufvuu1NdXZ2f/exnTcYMHz48N954Y/r161eEDAEAAAAAAD6+su3bt28vdhJ72qpVq/LYY4/llVdeydq1a9OzZ89UVFTk+OOPz9lnn50+ffoUO0UAAAAAAIBd1i0bPwAAAAAAAKWoWz3jBwAAAAAAoJRp/AAAAAAAAJQIjR8AAAAAAIASofEDAAAAAABQIjR+AAAAAAAASoTGDwAAAAAAQInQ+AEAAAAAACgRGj8AAAAAAAAlomexE6Cx9evXZ/HixVm8eHEqKytTWVmZjRs3JklOPvnkXH311bsU79VXX82TTz6ZysrKbNiwIQMHDszo0aNz+umnZ9KkSe2KsW3btsyePTvPPvtsli5dms2bN2fw4ME54ogjMnXq1Bx00EHtirNhw4Y8/vjjeemll7Jq1aokybBhw3LMMcfknHPOyYABA3Zp36DYOqJea2pq8qc//Sl//vOf8/bbb6eqqiqbN29Ov379Mnz48Bx55JE588wzM2jQoHblVFNTk9/+9rd5/vnnU1VVla1bt2bIkCE56qijMnXq1AwbNqxdcVatWpXHH388r7zyStasWZOePXumoqIiJ5xwQs4666z06dOnXXGgK+joY2tDNTU1+dd//desXLkyyY7j2j333NOu7dQqNNUZ9frnP/85v//977NgwYKsW7cu5eXlGTRoUD75yU/miCOOyEknnZS+ffu2uL16haY6slZXrlyZJ554Iq+//npWrFiRmpqa9O3bNyNHjsxnPvOZnHHGGdlvv/3ajKNWoXmVlZV59dVXs2DBgrz//vvZsGFDevTokcGDB2fcuHGZMmVKDj300HbHc54JOkdH1KpzTDRUtn379u3FToL/M23atBbX7coX6Lq6utx7772ZM2dOi2OmTJmSr371qykvb/nGrw0bNmTGjBmprKxsdn2vXr1yxRVX5LTTTms1n7feeit33HFH1q1b1+z6/fffP9dff33GjBnTahzoSna3Xt99993cfPPN2bx5c6vj+vXrl3/8x3/MiSee2Oq4qqqqzJgxI8uXL28xzrXXXpujjz661Tjz5s3L3Xffnerq6mbXDx8+PDfeeGMqKipajQNdRUcdW5vz05/+NI8++mjhdXsaP2oVWtaR9frhhx/m+9//fubNm9fquG9/+9v51Kc+1ew69QrN66hafeaZZ3Lvvfemtra2xTH9+/fPddddl4kTJ7Y4Rq1C8/7jP/4jb775ZpvjTjrppPzTP/1TevZs+fpw55mg83RErTrHxM7c8dOFDR06NCNHjsxrr722y9s++OCDhYPxwQcfnPPPPz8HHnhgVqxYkV//+tdZsmRJ5syZk4EDB+bSSy9tNkZdXV3uvPPOwsH42GOPzemnn57+/fvnrbfeyq9+9ausX78+9957bwYPHtzilR2rV6/O7bffXuhUn3vuuYU/Ci+//HJ+85vf5IMPPsjtt9+e2267LUOGDNnl/YVi+zj1Wl1dXTggjxs3LkcffXQOOeSQDBgwIBs2bMgLL7yQ2bNnp7q6Ot/73vfSr1+/Fuusurq60QH5tNNOy9/8zd+kd+/e+ctf/pJZs2aluro6d911V775zW+2eIJryZIlueuuu1JbW5u+ffvmwgsvzIQJE1JbW5vnnnsus2fPzvLlyzNjxozcdttt6dev3679Q0GR7c6xdWdLlizJY489ll69eqVnz54tfpFtSK1C++1OvW7atCm33npr3n777SQ7vscef/zxOfDAA1NeXp41a9Zk/vz5eeGFF1qMoV6hfT5urS5YsCD33HNPtm/fnrKyspx88sk55phjsv/++2f16tV5+umn8/LLL+fDDz/Mt7/97XznO9/JgQce2CSOWoWWrV27NsmOJsgJJ5yQQw89NEOHDk1dXV0WLVqURx99NGvXrs0zzzyTbdu25V/+5V9ajOU8E3SejqhV55jYmcZPF3PxxRdn9OjRGT16dAYNGpSVK1fmmmuu2aUYy5YtyyOPPJIkGT16dL7xjW+kd+/eSZIxY8Zk8uTJueWWW1JZWZlHHnkkU6ZMabar+tRTT2XBggVJkjPPPDNf+cpXCuvGjBmTSZMm5etf/3qqq6tz3333ZeLEienRo0eTOA8++GA2bNiQJLn22mtzwgknFNYddthhOeSQQ3LXXXdl/fr1efDBB3frymvYk3a3XsvKynLCCSfkb//2b/OJT3yiyfojjzwykyZNyp133pm6urr85Cc/yfe+972UlZU1GfvrX/+6cED++7//+5x//vmFdWPHjs348eNzyy23pKamJvfff39uueWWZnO6//77U1tbmx49euSmm27K2LFjC+smTJiQ4cOHZ+bMmVm+fHkeeeSRVq/2hK6iI46tO6urq8sPf/jD1NXV5eKLL87cuXPb1fhRq9C6jqrXn/zkJ3n77bfTq1evfO1rX8vkyZMbrR89enSOPfbYfPnLX05dXV2zMdQrtKwjanXWrFmpn4DkiiuuyFlnnVVYN2bMmBx//PGFO2tra2vz6KOPZvr06U3iqFVo2ciRI/PFL34xxx9/fJO7cMaOHZuTTjopN998c5YvX57nnnsuZ5xxRg4//PAmcZxngs7VEbXqHBM7a/neS4pi2rRpOfroo9s912JzHnvssWzbti1JcvnllxcOxvX69OmTyy+/PMmOeVUbTlHTUP1BvX///vnSl77UZH1FRUUuuuiiJDtu/3vxxRebjFm3bl1+//vfJ9nxB6bhwbjeiSeemCOPPDLJjlv9W7pNF7qa3a3XcePG5Wtf+1qzB+R6xxxzTI499tgkyYoVK7JkyZImY7Zu3ZrHH388yY4vC5/73Oea/axTTz01STJ//vwsXry4yZjFixcXbi0+9dRTGx2Q633uc5/LyJEjkySPP/54tm7d2tZuQtF1xLF1Z4899ljefvvtjBgxIhdeeGG7tlGr0LaOqNcFCxbkmWeeSZJ84QtfaNL0aaisrKzZE0rqFVrXEbW6cOHCJMmAAQMaNX0auvjiiwvLixYtarJerULrbrjhhpx44oktTr02cODA/MM//EPh9fPPP9/sOOeZoHN1RK06x8TONH5KzPbt2/PSSy8l2VGczRVVsqM7O2LEiCQ75lrc+VFPy5Yty9KlS5MkJ5xwQosP2TrllFMKy80dkBvGrv+D0Fqc7du3tzkPO3Q348ePLyyvWLGiyfo33ngjmzZtSrJjTvWWvii0Va8N32upXsvLy3PyyScnST766KO88cYbbe8AlJhVq1bl5z//eZLkyiuvbHUu9IbUKuwZv/3tb5Mk++yzT84+++yPFUO9QuerP7lzwAEHtDhmn332KTycvbmTQWoVdl9bvzedZ4Kuoa1a7ag4jq2lQ+OnxKxcuTIffPBBkh23t7am/pbAtWvXZtWqVY3W1d9623BccwYNGpThw4cn+b8rtj5OnIbrGm4DNP6R29wBt711Nnr06MKX6+bqtf69Pn365JBDDmkxTsPPaC4OlLof/ehHqampyUknndToS3Nb1Cp0vq1btxZOTk2cOLFwRXJdXV1Wr16dlStXtvoQ+XrqFTpf/QnilStXtjhm06ZN2bhxY6PxDalV2H1t/d50ngm6hrZqtaPiOLaWDo2fEvP+++8XlutvlWtJwy/ODbfb1Tj169esWVN4iNjOcfbZZ59WpwHYf//9Cw/wqr8CBNhh/vz5heXm6rG99dqjR4/CPMvN1Vl9nIqKimanvanX2t8OKHXPPfdcXn311ey7776NbrVvD7UKne+dd97Jli1bkiSf/OQns2nTptx///2ZPn16/vmf/znXXHNNLrvssnzzm99s9YpC9Qqd74wzzkiSbNy4MU888USzY375y182Gd+QWoXd11G/NxPnmaAztVWrHRXHsbV0aPyUmDVr1hSWhwwZ0urYoUOHNrtdsuPqjHqDBw9uNU7952zfvr3Rdg3jtpVLw3x2zgW6s3feeSevvPJKkh0nsJqbq7W+7vr06ZN999231Xj1tbhhw4bCibEkqa2tLVxN2Va99u/fv3BVh3qlO/nwww9z//33J0n+7u/+LgMHDtyl7dUqdL6GPxbr6upy44035rHHHstHH31UeH/r1q15/fXX8//+3//LrFmzmo2jXqHzTZkyJSeddFKS5Mc//nH+67/+K/PmzUtlZWVeeOGF3HHHHYXngXz+85/PxIkTm8RQq7B76urqGh0LTzzxxCZjnGeC4mtPrbaHc0zdS/smpWev0fBKiL59+7Y6tuF8qjtfQVFdXd0hcepftxWjYZydY0B3tWXLlvzwhz9MXV1dkuSSSy5pdlx9ve5KnSU7aq1Xr16F5XrtidO3b9/U1NSoV7qVmTNnZv369Rk7dmxOO+20Xd5erULn+/DDDwvLDz/8cLZs2ZLPfOYzmTZtWkaNGpXq6uo8//zzeeCBB7Jp06Y88MADGTlyZI455phGcdQrdL7y8vJcc801mTx5ch566KHMmTMnc+bMaTRm/Pjxueiii5pt+iRqFXbXb37zm8JD2Y899thmp2NyngmKrz212hbnmLofd/yUmIZzlrf1sOn6Ytx5uySNurS7E6f+dXsefF0fpz3zrkN38OMf/ziVlZVJdjxQb/Lkyc2Oq6/XXamzpHGt7crfjoZj1Cvdxfz58zN37tz06NEjV155ZcrKynY5hlqFzldTU1NY3rJlSyZOnJgbbrghY8aMSa9evTJw4MCceeaZueGGGwp1/MADDzR5ALV6hT3j/fffz9NPP5333nuv2fWLFi3KnDlzmlzxX0+twsc3f/78PPDAA0mS/fbbL1deeWWz45xnguJqb622xTmm7scdPyWm/gG2SeOHdTWn4UG34XZJ48LdunVrk/XtjdO7d+/U1NS0mUvDOK19FnQX9Vc9JjsemDd9+vQWx9bX667UWdK41nblb0fDMeqV7mDLli259957s3379kydOjWjRo36WHHUKnS+ht9hkx3TMjb30NpDDz00xx13XJ5//vksXbo07733XqPaVq/Q+d58883cfvvt2bRpU4YNG5YvfOELmThxYvr375/169dn3rx5+fnPf54//OEPefPNN3PTTTfloIMOahRDrcLH89e//jV33HFHtm3bll69euVrX/ta9ttvv2bHOs8ExbMrtdoa55i6J3f8lJiGt8+1dXtcwysid77trv4BeLsbp/51e27Vq4/TnlsAoZT97//+b372s58l2fEgvRtvvLHVuqiv112ps6Rxre3K346GY9Qr3cGvfvWrLFu2LEOGDMm0adM+dhy1Cp2v4XfYgQMH5uCDD25x7JFHHllYrr/6cec46hU6x5YtW/Ld7343mzZtyqBBg/Ktb30rJ510UgYNGpSePXtmyJAhOeuss/KNb3wjvXr1ygcffJB77rmnSRy1Crtu5cqVufXWW/PRRx+lvLw81113XQ4//PAWxzvPBMWxq7XaEueYui93/JSYhg/MauuBWKtXr252u6Txg/bWrl3b6gOs6z+nrKysyQP6hgwZkvXr17fr4Vz1+bTnAX1Qqp599tn86Ec/SpIMGzYsN910U5sPkK+vu5qamnz00UetPnyvvhYHDhzY6Iqr3r17Z8CAAdm4cWOb9frhhx8WDu7qle7g4YcfTpIcccQRefnll5sdU/9FdfPmzXnuueeS7LgNf8KECYUxahU6X8P/19v6/77h+g0bNjRap16hc/3pT38qTN929tlnZ9CgQc2OO+igg/LZz342c+bMydtvv5133nknn/rUpwrr1SrsmrVr1+ab3/xmPvjgg5SVleWqq65q8py7nTnPBHvex6nV5jjH1L2546fEfOITnygsL126tNWxy5Yta3a7XY1Tv37IkCFNOrP1cTZt2pR169a1GOODDz4oPDxs5MiRrX4elKp58+blnnvuyfbt27P//vvn5ptvbtdBr731um3btlRVVSVpvs7q41RVVWXbtm0txmntbweUovrbzp966ql897vfbfa/jRs3Jkk2btxYeO9//ud/GsVRq9D5Gk4DVf/g2pY0XL/zdHDqFTpXw7pq6wHVDdc3rJVErcKu2LBhQ2699dasWLEiSXL55Zfn5JNPbnM755lgz/q4tboz55jQ+CkxBxxwQPbff/8kO+ZMbk39+sGDB2fYsGGN1h166KGF5fnz57cYY926dVm+fHmSZNy4cU3WtzdOw3UNt4Hu4vXXX89//ud/Ztu2bRkwYEBuuummVFRUtGvb9tZZZWVl4SqK5uq1/r2ampq8/fbbLcZp+BnNxQGap1ah8w0bNixDhw5NsmN6jO3bt7c4tv7HdJImVxOrV+hcDZutrZ0M2nn9zk1atQrts2nTpnzrW9/K+++/nyS59NJLc/bZZ7drW+eZYM/ZnVptyDkmEo2fklNWVla49W/p0qVZtGhRs+MWLVpU6NpOnjw5ZWVljdaPGDGi0K394x//2GjOxoaeeuqpwvKxxx7bZH3D2HPnzm0x7/o4ZWVlmTx5covjoBQtXLgw3/72t7Nly5bss88++fd///cmD65tzfjx47PPPvskSZ5++ukWT3K1Va8N32upXuvq6vL0008nSfbdd9+MHz++3XnC3uoXv/hFm//V/7AdNmxY4b1bbrmlURy1CnvGcccdlySprq7O66+/3uK4F198sbC88wkh9Qqd64ADDigst3UiueEJoYbbJWoV2qOmpiYzZszIkiVLkiSf//znc+GFF7Z7e+eZYM/Y3Vqt5xwT9TR+StA555xTuBLqvvvuS21tbaP1tbW1ue+++5IkPXr0yLnnnttsnPPOOy/JjrkWZ86c2WR9VVVVHnrooSRJRUVFs0U+aNCgfPazn02SvPbaa3n++eebjPnjH/+Y1157LUkKD/SE7uKdd97JbbfdlpqamvTp0yc33HBDm9Nd7Kxnz56ZOnVqkh1fxB955JEmYxYtWlQ40B5++OEZM2ZMkzFjxozJYYcdlmTHQbm5L/SPPvpo4cv81KlT07OnR8VBe6lV2DPOPffcwhzjP/3pT7Np06YmY5555pm88cYbSZKjjjqqcJdQPfUKneuII45Inz59kux46PR7773X7LhXX3210KQdPHhwo+f7JGoV2rJ169bceeedWbhwYZId54suueSSXY7jPBN0ro6qVeeYaMi/ZhezYMGCwvyISeMHzVZVVTXqpibJKaec0iTGiBEjcv7552fWrFmprKzMzTffnAsuuCAHHnhgVqxYkYcffrjQPT7vvPMyfPjwZnM55ZRTMnfu3CxcuDC/+93vsm7dupx22mnp379/Fi9enF/+8peprq5OWVlZLr/88vTo0aPZOJdcckn+9Kc/ZcOGDfnud7+bysrKHH300UmSl19+OY8++miSHQ8C+zh/1KBYdrdeq6qq8q1vfSsfffRRkh21ss8++7T4wzfZ8bD4/fbbr8n7559/fv7whz9k+fLlmTlzZqqqqnLiiSemd+/eeeONN/LQQw9l27Zt6d27dy677LIW41922WW5+eabU1tbm1tvvTUXXXRRxo8fn9ra2vzhD3/Ik08+mSQZPnx44Us7dHUdcWztKGoVWtcR9Tp06NB84QtfyMyZM/Pee+/l3/7t33LBBRdk1KhR2bRpU1588cU88cQTSZJ+/frly1/+crO5qFdo2e7W6r777psLLrggv/jFL1JdXZ2bbropZ599diZOnJj+/ftn3bp1mTdvXmbPnl240vjSSy9tMtVbolahNXfddVehATJhwoRMmTKl1d+bPXv2zIgRI5q87zwTdK6OqFXnmNhZ2fbWJr5mj7vnnnsKt7i1xy9+8Ytm36+rq8sPf/jDVm97nTJlSr761a82++W53oYNGzJjxoxUVlY2u75Xr1654oorctppp7Wa51tvvZU77rijxQfvDRo0KNdff30+/elPtxoHupLdrdennnoq3//+93fpMy+++OJMmzat2XVVVVWZMWNGYT7knfXr1y/XXntt4QtxS+bNm5e777678CDMnQ0fPjw33nhju+eHhWLrqGNra66++uqsWrUqw4YNyz333NPqWLUKLevIen3ggQfy8MMPtzg9xX777Zfrr78+Y8eObTGGeoXmdUStbt++Pf/93/+dxx9/vNXncfXo0SNf/OIXc/7557c4Rq1C81r67diS1r7LOs8EnacjatU5Jnbmjp8SVV5enquuuirHHXdcnnzyyVRWVmbjxo0ZMGBARo8enTPOOCOTJk1qM87AgQNz6623Zvbs2Xn22WezdOnSbN68OYMHD86ECRNyzjnntGueyE9/+tO5884789hjj+Wll17KqlWrkuyYo3ny5Mk599xzM2DAgN3eb+jOKioqcvvtt+d3v/tdnn/++VRVVWXr1q0ZMmRIJk2alHPOOafJAzabM3ny5EK9vvLKK1m7dm169uyZioqKHH/88Tn77LMLU3MAu06twp5x6aWXZvLkyXniiSfy5ptvZt26denVq1eGDx+eyZMnZ+rUqYX5y1uiXqHzlJWV5bLLLstJJ52U2bNnZ8GCBVm9enVqamrSt2/fVFRU5PDDD8/pp5/e7B0IDalV6HzOM0H34ti693PHDwAAAAAAQIlo+d5LAAAAAAAA9ioaPwAAAAAAACVC4wcAAAAAAKBEaPwAAAAAAACUCI0fAAAAAACAEqHxAwAAAAAAUCI0fgAAAAAAAEqExg8AAAAAAECJ0PgBAAAAAAAoERo/AAAAAAAAJULjBwAAAAAAoERo/AAAAAAAAJQIjR8AAAAAAIASofEDAAAAAABQIjR+AAAAAAAASoTGDwAAAAAAQInQ+AEAAAAAACgRGj8AAAAAAAAlQuMHAAAAAACgRGj8AAAAAAAAlAiNHwAAAAAAgBKh8QMAAAAAAFAiNH4AAAAAAABKhMYPAAAAAABAidD4AQAAAAAAKBH/H+EBR1CPXCWjAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 452, "width": 831 } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABn4AAAOJCAYAAAAz6Vz3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AACN20lEQVR4nOzdeXiV5Z0//k8WCLsQdhBRQUAUW2TTai0GZBRHq50uVrqhrS1jO13GVqcdix1trdWZ6TKW1jqli/qrtS4V1xaBKm7gbo2ApIFqgAAJqxAwyfn9wZczOZAVEk54fL2ui+t6lvu+n885HB6SvHPfT04qlUoFAAAAAAAAh73cbBcAAAAAAABA6xD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAQFZdc801kZOTk/6zatWqbJeUdatWrcp4T6655ppsl/SutGLFivjXf/3XmDBhQvTp0yfy8/Mz/l42b96c7RIP2IYNG2LevHkxZ86cuOGGG+I3v/lNPP7441FTU5Pt0gAAOEj52S4AAAAA2pubbroprrrqqjYNQq655pr4zne+c0B9u3btGtu3b29xv1deeSWuvvrqePjhh+Odd97Z7/yAAQPiM5/5THz729+Ozp07H1BtAABklxk/AAAAUMcf/vCH+PrXv5642S8333xzTJw4Me6///56Q5+IiHXr1sX3v//9GDduXBQXFx/iCgEAaA1m/AAAAEAdV199dXo7Ly8vvva1r8WFF14Y/fv3j9zc//v9yR49emSjvAPy61//Or74xS9mHOvRo0dMmDAhCgsLo6SkJF544YX0uddffz3OPvvsWLp0afTv3/9QlwsAwEEQ/AAAAMD/U1xcHMuWLUvvf+lLX4of/OAHh+TaTzzxRBx55JHNals3gGrKK6+8Ep///Oczjn3pS1+Ka6+9No444oj0sZdffjlmzJgRr732WkREvPnmm/GRj3wkHn/88WZfCwCA7BP8AAAAtDNHH310pFKpbJfxrvT8889n7F9wwQWH7NpHHnlkHH300a0+7re+9a3YtWtXev8rX/lK/Pd///d+7d7znvfE448/HuPGjYtVq1ZFxJ4w6v7774/zzz+/1esCAKBteMYPAAAA/D/r16/P2B80aFCWKmkdzz//fDzwwAPp/aOPPjq+973vNdi+sLAwbr755oxjs2fPbrP6AABofYIfAAAA+H+2b9+esd+hQ4csVdI67rjjjoz9L3zhC9G5c+dG+0yfPj1GjhyZ3n/ppZeiuLi4TeoDAKD1WeoNAIDEWr58ebz00kuxbt262L59e+Tn50e3bt1iyJAhcdxxx8WoUaMiJyenRWNu3rw5/vrXv8aKFSuisrIydu/eHT179oz+/fvHpEmTmv18juaqra2Np556KkpKSmLt2rXRuXPnGDNmTJxxxhmRn9/wl/OpVCqee+65eOGFF6KioiK6desWw4cPj6KioujUqVOr1LZr16544oknYvXq1bFhw4bo3bt3jBgxIk4//fTIy8trlWs019tvvx1PPvlkvPXWW7Fhw4YoKCiIfv36xfjx42PEiBGHtJY1a9bECy+8EKtXr46tW7dGRESXLl1i4MCBceyxx8aYMWOioKDgkNbUmvb+u1q/fn1s3749+vTpE0OHDo33v//9TQYKbaG2tjaWLl0ay5cvj/Xr10cqlYp+/frFiBEjYtKkSS16Fk5EJG6JvXnz5mXsz5gxo1n9ZsyYEd/+9rfT+/fff3+MHj26VWsDAKCNpAAAIEF2796duummm1LDhg1LRUSjf4444ojUhz70odSf/vSnRscsLi5OXX311alx48alcnNzGx1z9OjRqV/+8pepd955p9k11+3/6U9/Ov06brjhhtSQIUPqvc6gQYNSv/vd7+od71e/+lXq6KOPrrdf9+7dUzfddFOqpqamybpKS0sz+s6ePTuVSqVSW7duTV1xxRWp3r1713uNfv36pW644YZUdXV1s17/7NmzM/qXlpY2q18qlUotWbIkde6556YKCgoa/Ds57rjjUnPnzm3Waz4Y9957b+rUU09t8nPXsWPH1BlnnJH66U9/2uBYDb33+9r3vTuQP3s/c43ZsWNH6nvf+17qmGOOaXCcTp06pS6++OIW/f0djE2bNqWuuOKKVJ8+fRqsqXfv3qmvfOUrqYqKikbHGjp0aIvft9Z4nQfz2W+OVatWZYx/zDHHNLvvwoULM/oWFRW1am0AALQdM34AAEiMDRs2xD/8wz/Eiy++2Kz2W7ZsiXvuuSdqamrirLPOqrfN3/72txb9lntxcXFccsklcdttt8Vdd90VhYWFze671/bt2+O8886LRYsWNdhmzZo1cdFFF0VpaWlcddVVERFRXV0dn/70p/db2qmubdu2xRVXXBHFxcVx6623tnjG05tvvhlnnXVWLF++vME269evjyuvvDLuvffeeOSRR+KII45o0TWa45133onLL788fvGLXzTZ9o033oiZM2fGr371q7jvvvuiZ8+erVpLTU1NXHLJJfGb3/ymWe13794djz/+eLz88ssxa9asVq2lLTz11FPxkY98JNasWdNou6qqqrjjjjvi7rvvjrlz58bHP/7xNqvp8ccfjw996ENRUVHRaLuKior44Q9/GL/+9a/jrrvuiilTprRZTe3Ra6+9lrE/ceLEZvedOHFi5OTkpGdA7TsWAADtl+AHAIBESKVS8aEPfWi/0Kd///4xZsyY6NOnT+Tm5saWLVuipKQkVq5cGdXV1U2OW1tbm7Gfl5cXxx13XBx77LFxxBFHRE1NTZSXl8dLL70UW7ZsSbdbsGBBfPCDH4xFixa1aNmzVCoVF110UTr06datW5xyyinRt2/fqKysjKeeeiq2bduWbv/Nb34zTjnllJg8eXJ84QtfSIc+HTt2jEmTJsXgwYPj7bffjqeffjo2btyY7vfLX/4y3v/+98dnPvOZZtdWVVUV5557bjr0KSgoiFNOOSUGDhwYmzZtiiVLlsSmTZvS7Z955pk4++yzY+HCha22vNzeOs4777yYP39+xvHu3bvH+PHjo3///rFr165YtmxZvP766+nzf/nLX+IDH/hAPP3009GlS5dWq2f27Nn7hT5du3aNsWPHxsCBA6Njx46xbdu2WLNmTRQXF8eOHTta7dptbd68efHRj340qqqqMo6PGjUqRowYEd26dYvy8vJ49tln08/G2bVrV8yYMSOqq6vjk5/8ZKvX9Oc//znOP//8/Wo6/vjj08s3Ll++PCOo2LRpU0yfPj3uueeeOPfcc1u9ptZy3XXXRXFxcZSUlMSmTZuie/fu0adPn3jPe94TkydPjo997GPRu3fvZo+3b0B77LHHNrtvly5don///rFu3bqIiCgvL48tW7a0SZALAEAry/KMIwAAaBUPPPBAxrJEw4cPT82fPz9VW1tbb/vt27en7rvvvtTHPvax1Ic//OEGx33jjTdSnTp1Ss2cOTM1b9681I4dO+ptt3v37tSdd96ZOuqoozLq+MEPftBk7XXb9+zZM70c2A033JDauXNnRttt27alPv3pT2f0mTRpUurOO+9MRUQqJycn9Y1vfCO1efPm/eq78sorM/oNHDiw0eXY9l1ubG9tOTk5qS9/+cv7XWPXrl2pn/zkJ6kuXbpk9Lvqqqsaff0tXe7q85//fEb7IUOGpO644456l9d7+eWXU6eddlpG+8997nONjt8SFRUVqY4dO6bH7tatW+qWW25J7dq1q9721dXVqSeeeCL11a9+NXX00Uc3OG5zl3rbtGlTqrS0tNl/li9fnhozZkzG2P/2b/9W79grVqxIdevWLaPtJZdckvrb3/62X9uqqqrUTTfdlPFedO3aNbV8+fKm38QWKC8vT/Xr1y+jpnHjxqWee+65/dq+9NJLqQkTJmS0LSwsTJWVle3X9s0330y/R1/+8pcz+jzxxBP1vpctWc6xIS1dqq9r166pr3/96/vdFxpy+eWXZ/RvbHnB+owfPz6jf33vMwAA7Y/gBwCARPjCF76Q/uFkfn5+vT+cbkhjP0R9++23Uxs2bGj2WOXl5anhw4enaxk8eHCTPyDe94e7ubm5qQcffLDB9rW1talTTjml3lDmF7/4RaPX+qd/+qeMfg899FCDbfcNH/b+ufHGGxu9xqOPPprq0KFDxt/HypUrG2zfkuDnkUceyWj7nve8p8nnt+zatSs1bdq0jH6vvvpqo32a63e/+13GuL/97W+b3bexz11zg5+WqK2tTX384x/PGPfMM89sMKTa9zN26623NnmNP//5z6m8vLx0n8ZC1QNx6aWXZtR06qmnpt5+++0G2+/YsSN1+umnZ/S5+OKLG71GWz93p7FrNffP2LFjU6tXr25y/E984hMZ/e66664W1XfOOedk9H/ssccO9KUCAHAI5QYAACTA3//+9/T2e9/73jjmmGOa3bexZci6dOkSffr0afZY/fr1i//6r/9K75eVlcXixYub3T8i4vLLL4/p06c3eD4nJye+8pWvZBzbvHlzXHDBBfHZz3620bGvuOKKjP3GniNUn8mTJ+83xr6mTZsW//Iv/5Ler66ujp///Octuk5Dvve976W3O3fuHPfdd1+Tz1Hq2LFj/Pa3v81Y3u3HP/5xq9RT93MXEXHhhRc2u29rLn/XHFdeeWX8f//f/5feP/HEE+Pee++Njh077td24cKF8cwzz6T3Z82aFZdeemmT15g6dWp89atfTe/fe++9+71HB6qioiJuv/329H7nzp3jjjvuaHTZvs6dO8ftt9+e0eauu+6KtWvXtkpNreWYY46Jf/mXf4nf/va3sWTJklixYkW88sor8cgjj8S3vvWtGDx4cEb7F198MaZPn56x7GN99i6/t1dLP3OdO3dudDwAANonwQ8AAImzYcOGrF7/7LPPjoKCgvT+s88+26L+X/va15psU1RUdED9Jk2aFF27dk3vv/zyyy2q7d///d+b1e7f/u3fokOHDun9uj+wP1DFxcXx+OOPp/cvvfTSOProo5vVt1+/fnHRRRel9x988MGDrqc+2f7sNeTmm2+OG2+8Mb1/5JFHxsMPP9zg81rmzJmT3s7Pz4/Zs2c3+1pf+tKX0ts1NTXxyCOPHEDF+7v77rsznuvzmc98pll//0cddVRcdtll6f133nkn7rzzzlap6WBNnDgxFixYEH/729/iRz/6UXziE5+ICRMmxHHHHRdjxoyJf/iHf4jrrrsuSkpK4sorr8zo+9prr8UXv/jFRsd/++23M/ZbGvzs237f8QAAaJ8EPwAAJMLIkSPT26tXr46bb765za+5Y8eOKC8vj9WrV8eqVavSf8rKyqJXr17pdsuWLWv2mCNGjGjWD7P79u0b3bt3T+937do13ve+9zXZLycnJ+MB7y0JKvr27Rtnnnlms9r27t07pkyZkt5fs2bNQc/8WLhwYcb+hz/84Rb1f//7359RT2lp6UHVE5H5uYuIuOqqq6Kmpuagx21N9957b8YMrCOOOCIeeuihOPLIIxvsU3cm2Omnnx79+/dv9vWOOuqoGDp0aHr/ySefbFnBDXjqqacy9j/+8Y83u+/FF1/c6FjZMn369Gb9myooKIjvf//7cf3112ccv+222+L1119v9vVycnJaVN++7VOpVIv6AwCQHfnZLgAAAFrDRRddFP/93/+d3v/iF78Y9913X8ycOTPOOeecjCDmQL388stxxx13xOLFi+PVV19tcpmlvTZt2tTsa4waNarZbXv06JGuYdiwYZGXl9fsfntt3bq12dc7+eSTIze3+b87NmHChIzZHs8//3wcddRRze6/r30DhCOOOCJWrVrV7P77/hB71apVLVoSsD5TpkyJPn36xMaNGyMi4s4774yXX345Pv/5z8cFF1zQ7BlJbeXpp5+OGTNmRG1tbUTsWfbu3nvvjTFjxjTYZ8WKFRmB4NChQ1v0PkdE9OrVK1avXh0R0eK+DXn++efT23l5eTF+/Phm9x07dmwUFBTErl279hvrcHLVVVfFvHnz0sFVbW1t/PKXv8yYzVVX3dl9ERE7d+5s0fX2bd+tW7cW9QcAIDsEPwAAJMLEiRPjn//5n+OnP/1p+tj8+fNj/vz5kZubG2PGjInTTjstzjjjjDjzzDOjX79+zR77rbfeii996Utx3333HVBtLQlXGlp6qz75+f/35fyB9nvnnXea3W/YsGHNbhsRMXz48Iz99evXt6j/vt56662M/bFjxx7UeJWVlQfVP2LPD9ZvvvnmuOiii9KzIZYtWxZf/epX46tf/WocffTRcfrpp8f73//+mDx5cowYMeKgr9lcK1asiPPOOy/9w/ucnJyYO3dukzNM9n2ff/3rX8evf/3rA66jNd7niMzZaYMHD97v+TONyc/Pj2OPPTY9O6a9LsnXHF/72tcyZizNnz+/wbb7Bj91l8prjn3bC34AAA4PlnoDACAx/ud//ie++93v7vew99ra2nj55Zfjpz/9aVx00UUxcODAOPPMM+MPf/hDk0sXrVq1Kk4//fQDDn32Xr+5WjKjpjX6tUTdmULNsW8YtXnz5oO6fmsFCHu11oPqP/rRj8Yf//jHepdOW7VqVdx2223x+c9/PkaOHBknnHBC/Nd//Vfs2LGjVa7dkPXr18c555wTFRUV6WPf//7391vyrD7t9X2u+/lp6WcxIvPzuG3btqiurm6Nsg65qVOnZuz/9a9/bbDtvv8G985Ma659A7KWBMwAAGSP4AcAgMTIycmJb37zm/G3v/0tbrjhhjj11FMzZrfsVVtbG4sWLYqPfOQj8YEPfCDWrl3b4JiXXHJJesmqiD0/cJ41a1bcdddd8corr8TGjRtjx44dUVtbG6lUKv2n7jNOaB0tmZ3UHK35vJLzzjsv3njjjfj1r38d06dPb3BmRHFxcfzrv/5rjBo1Kp5++ulWu35db7/9dpx77rnxt7/9LX3s8ssvj2984xvN6t+e32f2hC89e/ZM71dXVzcYqu47S+/NN99s0bX2bd/SWX8AAGSHpd4AAEic/v37xze+8Y34xje+Edu3b48lS5bEE088EQsXLownn3wy4zf9n3jiiTj77LNjyZIlUVBQkDHO4sWLY+HChen9E088Mf70pz/FwIEDm6yhuc//OZy0ZMm6iIgtW7Zk7Nf9YfWBKCwszNjfsWNHi5b7amudOnWKT33qU/GpT30qqqur46WXXoonn3wyFi1aFPPnz8+Y+fLmm2+mP3cjR45stRqqq6vjox/9aDz33HPpYxdccEH8+Mc/bvYY+77P3/jGN+KGG25otRoPVM+ePaO8vDwiWv5ZjMj8PHbv3r3eUPhw0blz54ywZ+fOnfX++9r3mWF1w8Cm7NixI2N5xv79+x/0v2EAAA4NM34AAEi0bt26RVFRUcyePTsWLVoUa9eujeuuuy4jMHjllVfil7/85X59H3zwwYz9n/3sZ80Kfaqqqg56WbP2qKSkpEXtV65cmbHfkucq1Wff/i1dtupQys/Pj/Hjx8eXv/zluPfee2Pjxo3x29/+NoYMGZJus3Xr1vj2t7/dqtedNWtWPPTQQ+n9U089Ne64444WLQXYXt/nvn37prfLysrSzy5qjurq6igtLa13rMNNKpXKWMIvIqJ37971tj3hhBMy9p999tlmX2fp0qUZy1SOHj26BVUCAJBNgh8AAN5V+vTpE9/61rfiF7/4RcbxefPm7de2bnDRrVu3OO2005p1jX1/YJoUzz//fIte19KlSzP2x40bd1DXP+WUUzL2W/JD7GwrKCiIT3ziEzF//vyMZ1A99NBDUVNT0yrX+I//+I+49dZb0/sjRoyI+++/v8Wzok488cTo2rVrer+9vM91Pz81NTXx/PPPN7vvSy+9FFVVVfWOdbh55ZVXYvfu3en93r17R8eOHettO3To0Bg+fHh6v7S0NMrKypp1nSeeeCJjf9q0aQdQLQAA2SD4AQDgXeljH/tYxtJuq1at2q/NvktDNdftt99+ULW1Vxs3bsxY+q4xFRUV8dhjj6X3Bw0aFEcdddRBXX/fh9r//ve/P6jxsmHEiBFx6qmnpve3b9++3+yNAzF37tyYPXt2er9fv37x8MMPR58+fVo8VocOHeIDH/hAev+1116L11577aBrPFjve9/7MvbvvPPOZve94447Mvbr/h0cbvZ93WeccUaj7c8///yM/dtuu61Z19n3PrbvOAAAtF+CHwAA3pXy8/MzZjXU9xvzdZ9nsX79+mYt37Z8+fL4zW9+0xoltkvXXXdds9pdf/318c4776T3Z8yYcdDXnjBhQpx88snp/bvvvrvdzEZpiR49emTsNzRbo7keffTRuOyyy9L7Xbt2jQcffDCOPfbYAx7z85//fMb+lVdeGalU6oDHaw0f+tCHolOnTun9uXPnxltvvdVkv7KysowZfvn5+fGxj32sTWpsa6tWrYr/+Z//yTh27rnnNtrn4x//eMb+z372syaXyXvooYdi2bJl6f33vve9lnoDADiMCH4AAEiEOXPmxIYNG5rd/uGHH47Kysr0/siRI/drM2bMmPR2TU1N/PjHP250zA0bNsRHPvKRFj175HCzaNGiuOmmmxpt8+c//znjvcrPz88IJg5G3VkttbW1ceGFF8arr77aojFWrlwZixYtapV6/vCHP0RxcXGz25eXl2fMhOrfv39GwNhSL774Ynz4wx+O6urqiNjzXv/+97+P8ePHH/CYEXtmd9QN2R588MH46le/2qJl6aqrq+OOO+5I13aw+vTpkxFivP322zFjxoyMJdz2VVVVFTNmzIjt27enj334wx+OQYMGtUpNB+O2226L9evXN7t9WVlZnHfeebFt27b0saOOOio++clPNtpv/Pjx8Y//+I/p/VWrVsU3v/nNBttv2rQpvvjFL2Ycu+aaa5pdJwAA2Sf4AQAgEW644YY46qijYsaMGXHfffdl/HC0rurq6vjNb36z32/Bf+ITn9iv7Yc+9KHIyclJ73/nO9+JH/zgB7Fr166MdrW1tXH//ffHKaecEq+++mp06tQpunXr1gqvqn3ZG1B84xvfiK9+9asZS+FFROzevTtuvvnmuOCCCzJm+1xxxRUZzxk5GOeff35GiLR27dqYNGlSfPvb3461a9c22G/9+vXxq1/9Kv7xH/8xRo4cGY888kir1PPAAw/EiSeeGFOnTo1f/OIXjdbwxBNPRFFRUWzdujV97GBnQk2fPj0j1Ljyyitj9OjRsWrVqmb/2bhxY71j33777Rmzk370ox/F+9///njkkUcaDICqq6vjmWeeiSuvvDKOOeaYmDFjRqsFPxF7ZpL17ds3vf/444/H5MmT46WXXtqv7SuvvBKTJ0+Ov/zlL+ljvXr1ajK4PFRuvfXWOOaYY+LSSy+N+fPn73df2WvHjh3x05/+NE4++eT461//mj6ek5MTP/rRj5o1Y+y73/1uxtKWP/zhD+PLX/5yxmcxIuLll1+OM844I0pLS9PH3v/+98cHP/jBlr48AACyKD/bBQAAQGupqqqKO+64I+64447IycmJESNGxDHHHBO9evWKiD0hwYsvvrhfYHHBBRfEeeedt994J5xwQnziE5+I3/72txGxJ+C58sor4/vf/36ccsopUVhYGJs2bYrnn38+ysvL0/1uuummuPHGGzN+IJ8En//85+OBBx6I1157LX74wx/GnDlz4n3ve18MGDAgNm3aFM8++2xs2rQpo88pp5ySMUunNfzkJz+JNWvWxAMPPBARETt37oxrr702rr322hg1alQMHz48jjjiiKiqqopNmzbFsmXLYs2aNa1aQ12pVCoee+yx9EyewYMHx6hRo6KwsDA6duwYlZWV8corr0RZWVlGv6FDh8a3v/3tg7r2unXrMva/+93vxne/+90WjfHpT386fvWrX+13fNSoUXHXXXfFP/3TP6U/y08//XScc8450b179zj55JOjX79+0aFDh9iyZUusWbMmiouLGwwwWkP//v3jN7/5TVxwwQXp6zz77LMxduzYOOGEE2LkyJGRk5MTK1as2G8mWIcOHeJXv/pVDB48uM3qa6kdO3bEL3/5y/jlL38ZHTp0iNGjR8fgwYOjZ8+esWvXrigrK4sXXnghdu/evV/fG2+8MS644IJmXeekk06Kn//85/GZz3wmfezHP/5x/OpXv4qJEydGYWFhlJSUxPPPP5/Rb8iQIYfls7QAAN7tBD8AACRSKpWK5cuXx/Llyxtt97GPfSx+/etfN3j+Zz/7Wfztb3+LJ598Mn1s06ZN8fDDD9fb/tprr43LL788brzxxgMrvB3r1KlTPPjggzF16tRYuXJl7Nq1KxYuXNhg+1NOOSUefvjhjOeytIaOHTvGH//4x/j2t78dN9xwQ8aMkmXLlmU8m6QhB7O8WlPKysr2C3n2NWbMmHjggQfiiCOOaLM6WsO0adPimWeeiY985CPx+uuvp49v27YtYyZNQ3r06BG5ua270MTZZ58dDz/8cHz4wx/OWK7xtddei9dee63ePj179ozf//73cdZZZ7VqLa3pnXfeiZdffjlefvnlRtsVFhbG//7v/zY79Nnr05/+dGzbti2uuOKKdGi2devWmD9/fr3tjz/++PjDH/4QAwYMaNF1AADIPku9AQCQCH/84x9j9uzZccopp0SHDh0abZubmxtTpkyJBx98MH73u99lLIG0ry5dusTChQvj29/+doM/pM/Ly4uzzjorFi5cGP/+7/9+UK+jvRs6dGg899xz8ZWvfCU9k2pf/fr1i+9///vxxBNPtFnAkpubG9ddd10sX748Lrvssujdu3ej7XNycuKkk06Kb3zjG/Hqq6/GVVdd1Sp1fPe7342f/OQncfbZZ2csi9aQMWPGxE9+8pN44YUX4qijjmqVGtraCSecEK+++mr89re/jQkTJjQZ5PTs2TMuvPDC+M1vfhNr165t1lJkLXXmmWfGG2+8EV/72tca/bsvLCyMf/mXf4k33nij3YU+X/7yl+Oiiy5q9gyk4447Lm644YYoKSlpceiz1xe/+MVYsmRJnHfeeZGfX//vgfbv3z+uuuqqeO6552L06NEHdB0AALIrJ5VKpbJdBAAAtKaqqqr461//GitXrox169bF9u3bo0OHDnHEEUfE8OHD4+STT47CwsIWj7tz58546qmn4vXXX48tW7ZEYWFhDBo0KCZNmpTI34pftWpVHHPMMen92bNnZzzkfdeuXfH444/H6tWrY8OGDdG7d+847rjj4owzzoi8vLxDWmsqlYqXX345iouLY+PGjbF169bo0qVL9OrVK4477rgYPXr0Af2dt0RtbW0sW7Ys3njjjXjzzTfTz5nq3r17DBkyJN773vfG0KFD27SGQ2HTpk3x1FNPxdq1a6OioiJqa2ujR48eMWjQoDj++OPjuOOOO6R//7W1tfHss8/G8uXLY8OGDRER0bdv3xgxYkRMmjTpkH8WD8T69eujuLg4/v73v8fGjRtj586d0aFDh+jVq1cMGDAgJkyY0Or3mPXr18czzzwTb731VmzdujUGDBgQxxxzTJx22mkNhkIAABweBD8AAEC9mgp+AAAAaH8s9QYAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQELkpFKpVLaLAAAAAAAA4OCZ8QMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABIiP9sFvFulUqmora3NdhkcxvLy8iIioqamJsuVAEnlPgO0NfcZoC25xwBtzX0GaC25ubmRk5PTauMJfrKktrY2ysvLs10Gh6nc3NwYMGBARERs2LBBiAi0OvcZoK25zwBtyT0GaGvuM0Br6t+/fzpMbg2WegMAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBC5B/Ki23cuDEWLFgQL7zwQmzYsCGqqqqiR48e0bdv3zjhhBPi1FNPjaOOOqrB/i+++GLMnz8/SkpKYuvWrdGjR48YNmxYTJ06NcaOHdusGmpqauKxxx6LxYsXR1lZWVRVVUVhYWGMGTMmzjnnnBgyZEhrvVwAAAAAAIBD6pAFPw8//HDccccdsWvXrozjFRUVUVFREcuWLYudO3fGZz7zmf361tbWxi233BILFizIOF5ZWRmVlZWxdOnSKCoqissuuyxycxuexLR169a4/vrro6SkJON4eXl5lJeXx1/+8pe45JJLYsqUKQf+QgEAAAAAALLkkAQ/d999d9x5550RETFw4MCYMmVKDB8+PLp06RLbtm2L0tLSWLp0aeTk5NTb/3e/+1069DnmmGPi/PPPj/79+0d5eXncf//9UVpaGgsWLIgePXrExRdfXO8YtbW1cdNNN6VDn4kTJ8bUqVOjW7du8cYbb8Q999wTW7ZsiVtuuSUKCwubPYMIAAAAAACgvWjz4OfVV19Nhz5nnHFGfOELX4j8/MzLjhkzJs4///yorq7er/+aNWti3rx5ERExbNiw+M53vhMdO3aMiIjhw4fH+PHj45prromSkpKYN29eFBUVxYABA/YbZ9GiRbFs2bKIiJg2bVp89rOfTZ8bPnx4jB07Nq688srYuXNnzJ07N0466aTIy8trnTcBAAAAAADgEGh4XbRWUFtbG7feemtERAwdOjRmzZq1X+hTV33nHnrooaipqYmIiJkzZ6ZDn70KCgpi5syZEbHn+T0PPPBAvWPvDY+6desWn/zkJ/c7P2DAgLjwwgsjImLdunWxZMmSpl4eAAAAAABAu9Kmwc8rr7wSa9eujYiID37wgy2eQZNKpWLp0qURETF48OAYMWJEve1GjBgRgwYNioiI5557LlKpVMb5NWvWRFlZWUREnHrqqVFQUFDvOJMnT05vC34AAAAAAIDDTZsGP08//XREROTk5MS4cePSx7dv3x5r166N7du3N9p//fr1sWnTpoiIOP744xttO3r06IiIqKysjA0bNmSc27vEW9129enZs2cMHDgwIiKWL1/e6PUAAAAAAADamzZ9xs8bb7wRERF9+/aNzp07x+LFi+Pee++NN998M91m4MCBMWXKlDjnnHOiQ4cOGf3feuut9PbgwYMbvdbeGT97+/Xr1++Axhk8eHCsXbs2KioqoqqqKjp16tRoewAAAAAAgPaizYKf2tra9PJq3bt3j7lz58bDDz+8X7u1a9fGbbfdFkuXLo2rrroqunbtmj5XUVGR3u7du3ej1+vTp0+9/SL2zALaq7CwsNFx9l4nlUpFZWVlRqDUlH2vW5+ePXuml7zLzW3TCVckWN3Pjs8R0BbcZ4C25j4DtCX3GKCtuc8A7VmbBT87duxIP2vn73//e5SUlESvXr3iE5/4RIwdOzY6duwYK1eujNtvvz3eeOONWL58ecyZMyeuuOKK9BhVVVXp7aZm3tR9bk/dfhERO3fubJVxmjJr1qwm28yZMyd69+4deXl5MWDAgBaND/WpO7sNoC24zwBtzX0GaEvuMUBbc58B2ps2i6N37dqV3n7nnXeioKAgZs+eHe9///ujW7du0bFjxxg9enTMnj07hg4dGhERS5YsSS8PFxGxe/fu9HZ+fuMZVd1l4ur223v91hgHAAAAAACgPWuzGT/7Pq+nqKio3mXTOnbsGB//+Mfj+9//fkREPPXUU3Hcccelz+1VXV3d6PXqhjt1++1bS3V19X7nmztOU+bMmdNkm549e0ZERE1NTWzYsKFF48Neubm56d8mWb9+fdTW1ma5IiBp3GeAtuY+A7Ql9xigrbnPAK2pb9++6UfEtIY2C346d+6csf+e97ynwbYnnnhi5OXlRU1NTZSUlKSP112Wrall1+rOMNp3Obe6tVRVVTUa6DQ2TlOaeg7RvvyHQGuora31WQLalPsM0NbcZ4C25B4DtDX3GaC9abOl3jp06BA9evRI7zcWinTs2DG6d+8eERFbt26tt09FRUWj19u4cWOD1yosLExvV1ZWNjrO3uvk5ORk9AMAAAAAAGjv2iz4iYgYMmRIerup1Hvv+brTmY488sj0dllZWaP916xZU2+/lo6z93zv3r1bPOMHAAAAAAAgm9o0+Dn++OPT2+Xl5Q2227FjR2zbti0iMmfn9OvXL3r16hUREa+//nqj19p7vrCwMPr27ZtxbtSoUent4uLiBsfYvHlzrF27NiIiRo4c2ej1AAAAAAAA2ps2DX4mTZqU3l6yZEmD7ZYsWRKpVCoiMkOanJycmDBhQkTsmYmzYsWKevuvWLEiPVNn/PjxkZOTk3F+0KBBMXjw4IiIePrppzOe41PXokWL0tsTJ05ssF4AAAAAAID2qE2Dn6FDh8bYsWMjIuLJJ5+MV199db82mzdvjjvvvDMiIvLz8+PMM8/MOD99+vTIzd1T5ty5c2P37t0Z53fv3h1z586NiD3LxJ177rn11nLeeedFRMT27dvjtttu2+/8unXr4t57742IiAEDBgh+AAAAAACAw05+W1/g05/+dKxYsSLefvvt+P73vx/nnntujB07Njp27BgrV66M++67LyoqKiIi4mMf+1jGUm8Re2brnH/++XHfffdFSUlJXH311fHBD34w+vfvH+Xl5fHHP/4xSktLI2JPuDNw4MB665g8eXIsXLgwli9fHo8++mhs3rw5pkyZEt26dYuVK1fG3XffHTt37oycnJyYOXNmxrOGAAAAAAAADgc5qb1rrLWhZcuWxX/+53/Gli1b6i8iJycuvPDCuOiii+o9X1tbGz//+c9j4cKFDV6jqKgoLrvssvTsoPps3bo1rr/++igpKan3fIcOHeKSSy6JKVOmNPJqWkdNTU2jzz2CxuTm5saAAQMiYs9stdra2ixXBCSN+wzQ1txngLbkHgO0NfcZoDX179+/VSejHJLgJyJi27Zt8fDDD8fSpUtj/fr1UV1dHb169YrRo0fHOeecE8ccc0yTY7zwwgsxf/78KCkpiW3btkX37t1j2LBhcdZZZ6WXlGtKTU1NPPbYY7F48eIoKyuLqqqqKCwsjBNPPDGmT58eQ4YMOdiX2uw6BD8cKF9cAG3NfQZoa+4zQFtyjwHamvsM0JoO2+CHTIIfDoYvLoC25j4DLVNVVRWrV6/OdhmHzNChQ6NTp04HNYb7DNCW3GOAtuY+A7Sm1g5+2vwZPwAAkHSrV6+OoqKibJdxyCxYsCBGjhyZ7TIAAACoR8MPxAEAAAAAAOCwIvgBAAAAAABICEu9AQBAK7t13LAY2qUg22W0mtU7dsVnny/JdhkAAAA0g+AHAABa2dAuBTGye+dslwEAAMC7kKXeAAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACREfrYLAAAAyLaqqqpYvXp1tss4ZIYOHRqdOnXKdhkAAEAbEPwAAADveqtXr46ioqJsl3HILFiwIEaOHJntMgAAgDZgqTcAAAAAAICEEPwAAAAAAAAkhKXeAAAA9nHruGExtEtBtstoNat37IrPPl+S7TIAAIBDQPADAACwj6FdCmJk987ZLgMAAKDFLPUGAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICHys10AAADQvu2urc3YLy0tPegxc3Nzo6KiIiIiNm7cGLX7XONQa43XBAAA0B4IfgAAgEat2bk7Y//SSy/NUiUAAAA0xVJvAAAAAAAACSH4AQAAAAAASAhLvQEAAC1y67hhMbRLQbbLaFVPVWyL2cVvZrsMAACAgyb4AQAAWmRol4IY2b1ztstoVaversp2CQAAAK3CUm8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJkZ/tAgAASLaqqqpYvXp1tstoU6WlpdkuAQAAACJC8AMAQBtbvXp1FBUVZbsMAAAAeFew1BsAAAAAAEBCCH4AAAAAAAASok2XevvoRz/arHajR4+Oa665ptE2L774YsyfPz9KSkpi69at0aNHjxg2bFhMnTo1xo4d26zr1NTUxGOPPRaLFy+OsrKyqKqqisLCwhgzZkycc845MWTIkGaNAwDAgbt13LAY2qUg22W0qqcqtsXs4jezXQYAAAC0/2f81NbWxi233BILFizIOF5ZWRmVlZWxdOnSKCoqissuuyxycxuewLR169a4/vrro6SkJON4eXl5lJeXx1/+8pe45JJLYsqUKW3yOgAA2GNol4IY2b1ztstoVaversp2CQAAABARhyj4mTZtWkybNq3B8506dWrw3O9+97t06HPMMcfE+eefH/3794/y8vK4//77o7S0NBYsWBA9evSIiy++uN4xamtr46abbkqHPhMnToypU6dGt27d4o033oh77rkntmzZErfccksUFhY2ewYRAAAAAABAe3JIgp8ePXrEUUcd1eJ+a9asiXnz5kVExLBhw+I73/lOdOzYMSIihg8fHuPHj49rrrkmSkpKYt68eVFUVBQDBgzYb5xFixbFsmXLImJPCPXZz342fW748OExduzYuPLKK2Pnzp0xd+7cOOmkkyIvL+9AXioAAAAAAEDWNLw2Wjvw0EMPRU1NTUREzJw5Mx367FVQUBAzZ86MiD3P73nggQfqHWdveNStW7f45Cc/ud/5AQMGxIUXXhgREevWrYslS5a02msAAAAAAAA4VNpt8JNKpWLp0qURETF48OAYMWJEve1GjBgRgwYNioiI5557LlKpVMb5NWvWRFlZWUREnHrqqVFQUP+DhCdPnpzeFvwAAAAAAACHo3Yb/Kxfvz42bdoUERHHH398o21Hjx4dERGVlZWxYcOGjHN7l3ir264+PXv2jIEDB0ZExPLlyw+oZgAAAAAAgGw6JM/4eeaZZ+Lpp5+ODRs2RG5ubvTs2TNGjBgRkydPjhNPPLHePm+99VZ6e/DgwY2Ov3fGz95+/fr1O6BxBg8eHGvXro2KioqoqqqKTp06NdoeAAAAAACgPTkkwU/d8CViz3N01q1bF48//nhMmDAhLr/88ujSpUtGm4qKivR27969Gx2/T58+9faL2DMLaK/CwsJGx9l7nVQqFZWVlRmBUnPse+369OzZM/Ly8iIiIje33U64op2r+9nxOQLagvsMrclnCNqf3Nxc/zZJNF/LAG3NfQZoz9o0+CkoKIhx48bFmDFjYvDgwdGpU6fYunVrFBcXx5///OfYtm1bLF26NH7wgx/Ev//7v0d+/v+VU1VVld5uauZN3ef21O0XEbFz585WGac5Zs2a1WSbOXPmRO/evSMvLy8GDBjQ4mvAvurOcANoC+4zHKzm/HIMcGj16dPH9yO8a/haBmhr7jNAe9Omwc/Pfvaz6Nq1637HTzrppDj77LPj+uuvj9LS0iguLo4//elPMX369HSb3bt3/1+R+Y2X2aFDh3r7RUS88847rTIOAAAAAABAe9emwU99oc9ePXv2jK997Wvxla98JWpqauKRRx7JCH46duyY3q6urm70OnXDnbr9IjLDnOrq6v3ON3ec5pgzZ06TbXr27BkRETU1NbFhw4YWXwMi9kwh3vvbJOvXr4/a2tosVwQkjfsMrWnjxo3ZLgHYx8aNG2PdunXZLgPajK9lgLbmPgO0pr59+6YfEdMaDskzfhrSv3//OOmkk+LFF1+MdevWRWVlZfo5PHWXZWtq2bVdu3alt/ddzq1z584Z4zQW6DQ2TnM09SyiffkPgdZQW1vrswS0KfcZDpbPD7Q/7u28m/i8A23NfQZob7L+5LEjjzwyvV1ZWZnerhuiNLUufN3fIt03fNkbJO07fn32XicnJyejHwAAAAAAwOEg68FPTk5OvcfrBkJlZWWNjrFmzZp6+7V0nL3ne/fufUAzfgAAAAAAALIp68HPW2+9ld6uO8umX79+0atXr4iIeP311xsdY+/5wsLC6Nu3b8a5UaNGpbeLi4sbHGPz5s2xdu3aiIgYOXJkM6sHAAAAAABoP7Ia/Kxfvz5eeeWViNjzvJ+6wU9OTk5MmDAhIvbMxFmxYkW9Y6xYsSI9U2f8+PH7zSAaNGhQDB48OCIinn766Yzn+NS1aNGi9PbEiRMP7AUBAAAAAABkUZsFP88991zU1NQ0eH7z5s3xn//5n1FdXR0REf/wD/+wX5vp06dHbu6eEufOnRu7d+/OOL979+6YO3duRETk5eXFueeeW++1zjvvvIiI2L59e9x22237nV+3bl3ce++9ERExYMAAwQ8AAAAAAHBYym+rgefOnRu/+MUvYtKkSTFixIjo169fdOzYMbZu3RrFxcXx5z//ObZt2xYRe5Zjqy/4GTRoUJx//vlx3333RUlJSVx99dXxwQ9+MPr37x/l5eXxxz/+MUpLSyNiT7gzcODAemuZPHlyLFy4MJYvXx6PPvpobN68OaZMmRLdunWLlStXxt133x07d+6MnJycmDlzZuTl5bXV2wIAAAAAANBm2iz4iYjYtGlTPPLII/HII4802GbSpEnxhS98ITp06FDv+Ysuuii2bNkSCxcujNLS0vjhD3+4X5uioqK46KKLGrxGbm5ufP3rX4/rr78+SkpK4tlnn41nn302o02HDh3ikksuibFjxzbvxQEAAAAAALQzbRb8XH755VFcXBwrVqyI8vLy2LZtW+zcuTM6deoUvXv3jhEjRsTkyZNjxIgRjY6Tm5sbs2bNikmTJsX8+fOjpKQktm3bFt27d49hw4bFWWed1aywpkePHnHdddfFY489FosXL46ysrKoqqqKwsLCOPHEE2P69OkxZMiQ1nr5AAAAAAAAh1ybBT+jR4+O0aNHt9p4J598cpx88skHNUZeXl5MmzYtpk2b1kpVAQAAAAAAtB+52S4AAAAAAACA1iH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEyM92AQAA73ZVVVWxevXqbJfRZkpLS7NdAgAAALxrCH4AALJs9erVUVRUlO0yAAAAgASw1BsAAAAAAEBCCH4AAAAAAAASwlJvAADtzK3jhsXQLgXZLqPVPFWxLWYXv5ntMgAAAOBdQfADANDODO1SECO7d852Ga1m1dtV2S4BAAAA3jUEPwAAAAm3u7Y2Y7+0tDRLlRwaQ4cOjU6dOmW7DAAAyArBDwAAQMKt2bk7Y//SSy/NUiWHxoIFC2LkyJHZLgMAALIiN9sFAAAAAAAA0DoEPwAAAAAAAAlhqTcAAIB3mVvHDYuhXQqyXUarWb1jV3z2+ZJslwEAAO2C4AcAAOBdZmiXghjZvXO2ywAAANqApd4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICHys3Xh2267Le6///70/uzZs+OEE05otM+LL74Y8+fPj5KSkti6dWv06NEjhg0bFlOnTo2xY8c267o1NTXx2GOPxeLFi6OsrCyqqqqisLAwxowZE+ecc04MGTLkoF4XAAAAAABAtmQl+Fm1alU8+OCDzW5fW1sbt9xySyxYsCDjeGVlZVRWVsbSpUujqKgoLrvsssjNbXgS09atW+P666+PkpKSjOPl5eVRXl4ef/nLX+KSSy6JKVOmtOwFAQAAAAAAtAOHPPipra2Nn//851FTUxNHHHFEbNmypck+v/vd79KhzzHHHBPnn39+9O/fP8rLy+P++++P0tLSWLBgQfTo0SMuvvjiBq970003pUOfiRMnxtSpU6Nbt27xxhtvxD333BNbtmyJW265JQoLC5s9gwgAAAAAAKC9OOTP+Hn44YejpKQkBg8eHGeeeWaT7desWRPz5s2LiIhhw4bFtddeG6eddloMHz48TjvttPiP//iPGDZsWEREzJs3L9atW1fvOIsWLYply5ZFRMS0adPiiiuuiPe+970xfPjwOOecc+Laa6+Nzp07RyqVirlz50ZNTU0rvWIAAAAAAIBD45AGPxs3bow777wzIiI+97nPRX5+0xOOHnrooXQIM3PmzOjYsWPG+YKCgpg5c2ZE7Hl+zwMPPFDvOHvDo27dusUnP/nJ/c4PGDAgLrzwwoiIWLduXSxZsqSZrwoAAAAAAKB9OKTBz6233hpVVVXxgQ98IEaPHt1k+1QqFUuXLo2IiMGDB8eIESPqbTdixIgYNGhQREQ899xzkUqlMs6vWbMmysrKIiLi1FNPjYKCgnrHmTx5cnpb8AMAAAAAABxuDlnw89RTT8ULL7zQ4Iyb+qxfvz42bdoUERHHH398o233BkmVlZWxYcOGjHN7l3ir264+PXv2jIEDB0ZExPLly5tVIwAAAAAAQHtxSIKft99+O371q19FRMSMGTOiR48ezer31ltvpbcHDx7caNu9M3727dfScfaer6ioiKqqqmbVCQAAAAAA0B40/ZCdVnDbbbfF5s2bY+TIkVFUVNTsfhUVFent3r17N9q2T58+9faL2DMLaK/CwsJGx9l7nVQqFZWVlRmBUkvqbUjPnj0jLy8vIiJycw/pSnskSN3Pjs8R0BbcZw4t7zFA68rNzXVvfZfztQzQ1txngPaszYOf119/PRYsWBB5eXnxuc99LnJycprdt+6Mm06dOjXatu5ze/adqbNz585WGacps2bNarLNnDlzonfv3pGXlxcDBgxo0fhQn379+mW7BCDh3GfaXnN+eQSA5uvTp4/vt0jztQzQ1txngPamTePo6urquOWWWyKVSsW5554bRx11VIv67969O72dn994RtWhQ4d6+0VEvPPOO60yDgAAAAAAQHvWpjN+7rnnnigrK4s+ffrEhz/84Rb379ixY3q7urq60bZ1w526/SIyw5zq6ur9zjd3nKbMmTOnyTY9e/aMiIiamprYsGFDi8aHvXJzc9O/TbJ+/fqora3NckVA0rjPHFobN27MdgkAibJx48ZYt25dtssgi3wtA7Q19xmgNfXt2zf9iJjW0GbBT1lZWdx3330REXHJJZc0ucRafer2aWrZtV27dtXbLyKic+fOGeM0Fug0Nk5TmnoO0b78h0BrqK2t9VkC2pT7TNvz/gK0Lv93UZfPA9DW3GeA9qbNgp8HH3wwqquro3///rFr16548skn92vz5ptvprf/+te/xubNmyMiYty4cdGpU6eMIKWpte/r/qbsvgFMYWFheruysjJ69OjR4Dh7r5OTk5PRDwAAAAAAoL1rs+Bn75Jp5eXl8aMf/ajJ9nfffXd6+3/+53+iU6dOceSRR6aPlZWVNdp/zZo16e26/fbdLysri6OPPrrBcfZep3fv3gc0SwkAAAAAACBbcrNdQGP69esXvXr1ioiI119/vdG2e88XFhZG3759M86NGjUqvV1cXNzgGJs3b461a9dGRMTIkSMPqGYAAAAAAIBsabMZP5dffnlcfvnljbb5/e9/H3/4wx8iImL27NlxwgknZJzPycmJCRMmxJ/+9KcoKyuLFStWxIgRI/YbZ8WKFemZOuPHj4+cnJyM84MGDYrBgwdHWVlZPP300/GpT30qCgoK9htn0aJF6e2JEyc263UCAAAAAAC0F+16xk9ExPTp0yM3d0+Zc+fOjd27d2ec3717d8ydOzciIvLy8uLcc8+td5zzzjsvIiK2b98et912237n161bF/fee29ERAwYMEDwAwAAAAAAHHbabMZPaxk0aFCcf/75cd9990VJSUlcffXV8cEPfjD69+8f5eXl8cc//jFKS0sjYk+4M3DgwHrHmTx5cixcuDCWL18ejz76aGzevDmmTJkS3bp1i5UrV8bdd98dO3fujJycnJg5c2bk5eUdypcJAAAAAABw0Np98BMRcdFFF8WWLVti4cKFUVpaGj/84Q/3a1NUVBQXXXRRg2Pk5ubG17/+9bj++uujpKQknn322Xj22Wcz2nTo0CEuueSSGDt2bGu/BAAAAAAAgDZ3WAQ/ubm5MWvWrJg0aVLMnz8/SkpKYtu2bdG9e/cYNmxYnHXWWc0Ka3r06BHXXXddPPbYY7F48eIoKyuLqqqqKCwsjBNPPDGmT58eQ4YMOQSvCAAAAAAAoPVlNfj56Ec/Gh/96Eeb3f7kk0+Ok08++aCumZeXF9OmTYtp06Yd1DgAAAAAAADtTW62CwAAAAAAAKB1CH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEiI/GwXAAAAAAdjd21txn5paWmWKjl0hg4dGp06dcp2GQAAtEOCHwAAAA5ra3buzti/9NJLs1TJobNgwYIYOXJktssAAKAdEvwAAO1eVVVVrF69OttltJl3w2+mAwAAAIeG4AcAaPdWr14dRUVF2S4DAAAAoN0T/AAAAJAot44bFkO7FGS7jFa1eseu+OzzJdkuAwCAw4DgBwAAgEQZ2qUgRnbvnO0yAAAgKwQ/AMBhJ2m/yf1UxbaYXfxmtssAAAAAEkDwAwAcdpL2m9yr3q7KdgkAAABAQuRmuwAAAAAAAABah+AHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABIiv60G3rFjR7z44otRUlISJSUlUVlZGVu3bo3du3dH165d48gjj4yxY8dGUVFRdO/evcnxli9fHo8++mgsW7YstmzZEl26dImjjz46PvCBD8Tpp5/e7LoWL14cixYtitWrV8eOHTviiCOOiFGjRsXZZ58dI0aMOJiXDAAAAAAAkFVtFvysXLkyfvSjH9V7buvWrVFcXBzFxcVx//33x5e+9KV473vf2+BYv//97+Puu++OVCqVPrZly5Z4+eWX4+WXX47FixfH1772tejYsWODY+zevTv+8z//M1588cWM4xs3bozFixfHk08+GR/+8IfjIx/5SMteKAAAAAAAQDvRZsFPRETv3r3jhBNOiGOPPTb69OkTPXv2jFQqFRUVFfHMM8/EkiVLYtu2bfGDH/wgvve978XRRx+93xh//vOf4w9/+ENERPTv3z8uvPDCOOqoo2LTpk3x0EMPxWuvvRYvvPBCzJkzJ7785S83WMtPf/rTdOhzwgknxPTp06NXr17x97//Pe69994oLy+Pu+66K3r16hVTp05tk/cDAAAAAACgLbVZ8HPiiSfGnDlzGjz/vve9L5YsWRI33XRTVFdXxx/+8Ie44oorMtps3749br/99oiI6NOnT3z3u9+NHj16pM+PGzcubrzxxnj++efjySefjKlTp8YJJ5yw37X++te/xlNPPZXu8/Wvfz1yc/c83mj48OExfvz4uOqqq2Ljxo1x++23xymnnBLdunU76PcAAAAAAADgUMpts4Fzmx564sSJMWjQoIiIeP311/c7/9hjj8WOHTsiImLGjBkZoc/ea3z2s59NX+v++++v9zrz5s2LiIi8vLyM9nv16NEjZsyYERERb7/9dixYsKDJ2gEAAAAAANqbNgt+mqtz584REfHOO+/sd27p0qXpNpMmTaq3f+/evWPMmDERsWdmz86dOzPO79y5M1599dWIiBgzZkz07t273nEmTZqUrmXJkiUH8EoAAAAAAACyK6vBz5o1a2LVqlURETF48OCMc9XV1bFy5cqIiBgxYkTk5ze8Kt3o0aMjYk94VFJSknGupKQkqqurM9rVJz8/P0aMGLFfHwAAAAAAgMPFIQ9+du3aFWvXro0HHnggZs+eHTU1NRERMX369Ix2a9asidra2ojYPxTaV93zZWVlGefeeuut9PbeZeUasvd8TU1NrFu3rolXAgAAAAAA0L40PI2mFS1atCh++tOfNnj+ggsuiNNPPz3jWGVlZXq7sLCw0fHrLt9WUVGRca7ufkPLvNV3fuPGjXHkkUc22n5f+167Pj179oy8vLyIaN5zkKA+dT87PkdAW2hv95n2UAMAtCe5ubn+f2xEe/taBkge9xmgPTskwU9Djj766Ljsssti+PDh+52r+6yeTp06NTpOQUFBeruqquqAx6l7ft9xmmPWrFlNtpkzZ0707t078vLyYsCAAS2+BuyrX79+2S4BSLj2cJ9pzi9XAMC7SZ8+fXxP2Uzt4WsZINncZ4D25pAEPxMmTIibbropIiJ2794d5eXl8fTTT8eSJUviRz/6UXzmM5+JcePGZfR55513/q/IRp7vExHRoUOH9Pbu3bsPeJy65/cdBwAAAAAAoL07JMFP165do2vXrun94cOHx2mnnRaPP/543HzzzfGDH/wgZs2aFZMnT063qRvmVFdXNzp+3XCnY8eOGedaMk7d8/uO0xxz5sxpsk3Pnj0jYs9zhDZs2NDia0DEninEe3+bZP369ennYQG0lvZ2n9m4cWNWrw8A7c3GjRs9m7YR7e1rGSB53GeA1tS3b9/0I2JaQ1aXejvjjDPi+eefj6effjr+93//N8aPHx/dunWLiIjOnTun2zW17NquXbvS2/su59aSceqeb2pZuPo09QyhffkPgdZQW1vrswS0qfZwn8n29QGgvWkP/z8fLrxXQFtznwHam6w/eWzChAkRsSe8eemll9LHCwsL09uVlZWNjlF33f99w5e6+009H6Du+T59+jTaFgAAAAAAoL3JevDTo0eP9Hbdpc8GDRoUubl7yisrK2t0jLrnBw8enHHuyCOPTG+vWbOm0XH2ns/Ly/OQTAAAAAAA4LCT9eCn7myeusur5efnx/DhwyMiYsWKFY0+n6e4uDgi9jzPZ9iwYRnnhg0bFvn5+Rnt6lNdXR0rVqzYrw8AAAAAAMDhIuvBz9NPP53ePuqoozLO7V0GbufOnfHss8/W27+ioiJeffXViIg48cQTM57pE7HnGT9jxoyJiIhXX321weXenn322di5c2dEREycOPEAXgkAAAAAAEB2tVnws2jRoti9e3ejbR544IF48cUXIyKiX79+cfzxx2ecnzJlSnTp0iUiIu64447Ytm1bxvna2tq49dZb0w9PO//88+u9znnnnRcRETU1NfG///u/+z1sbevWrXH77bdHRETXrl2jqKioOS8RAAAAAACgXWmz9czuuuuu+M1vfhOTJk2KUaNGRf/+/aNTp05RVVUVf//73+OJJ56I5cuX7ykiPz8uu+yy9DN99urWrVvMmDEjfvGLX8SGDRvim9/8ZnzoQx+Ko446KjZt2hQPPvhgvPbaaxERcdppp8UJJ5xQby0nnnhivO9974unnnoqnnvuubj22mvj3HPPjV69esXf//73uOeee2Ljxo0RETFjxozo1q1bW70tAAAAAAAAbaZNH2Szffv2eOyxx+Kxxx5rsE3v3r1j1qxZcdJJJ9V7/qyzzopNmzbF3XffHeXl5TFnzpz92owdOzZmzZrVaC3//M//HDt37owXX3wxXnvttXRgtFdOTk780z/9U0ydOrUZrwwAAAAAAKD9abPg51vf+la88MILsWzZsigvL4/NmzfH9u3bo2PHjtGjR484+uijY9y4cXHqqadGQUFBo2N99KMfjfe85z3x6KOPxuuvvx5btmyJrl27xtChQ2Py5Mlx+umnN1lPx44d49/+7d9i8eLFsWjRoli9enW8/fbbccQRR8Txxx8fZ599dowYMaK1Xj4AAAAAAMAh12bBz6BBg2LQoEHxj//4j60y3siRI2PkyJEHPc7pp5/erKAIAAAAAADgcJPbdBMAAAAAAAAOB4IfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEPnZLgAAAABo3O7a2oz90tLSLFVyaAwdOjQ6deqU7TIAAA5Lgh8AAABo59bs3J2xf+mll2apkkNjwYIFMXLkyGyXAQBwWLLUGwAAAAAAQEIIfgAAAAAAABLCUm8AAABwmLl13LAY2qUg22W0mtU7dsVnny/JdhkAAIkg+AEAAIDDzNAuBTGye+dslwEAQDtkqTcAAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgITzjBwAOc1VVVbF69epWHTM3NzcqKioiImLjxo1RW1vbquO3VGlpaVavDwAAAHC4EPwAwGFu9erVUVRUlO0yAAAAAGgHLPUGAAAAAACQEIIfAAAAAACAhLDUGwAkzK3jhsXQLgXZLqNVPVWxLWYXv5ntMgAAAADaPcEPACTM0C4FMbJ752yX0apWvV2V7RIAAAAADguWegMAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICHy23LwkpKSePHFF2PZsmXx1ltvxdatWyMvLy8KCwtj5MiRUVRUFKNGjWr2eC+++GLMnz8/SkpKYuvWrdGjR48YNmxYTJ06NcaOHdusMWpqauKxxx6LxYsXR1lZWVRVVUVhYWGMGTMmzjnnnBgyZMiBvlwAAAAAAICsarPgZ/bs2fH666/vd7y6ujrWrl0ba9eujUWLFsUZZ5wRX/jCFyI/v+FSamtr45ZbbokFCxZkHK+srIzKyspYunRpFBUVxWWXXRa5uQ1PYtq6dWtcf/31UVJSknG8vLw8ysvL4y9/+UtccsklMWXKlBa+WgAAAAAAgOxrs+CnsrIyIiJ69eoVp556aowaNSr69OkTtbW1sWLFinjggQeisrIyHn/88aipqYkvf/nLDY71u9/9Lh36HHPMMXH++edH//79o7y8PO6///4oLS2NBQsWRI8ePeLiiy+ud4za2tq46aab0qHPxIkTY+rUqdGtW7d444034p577oktW7bELbfcEoWFhc2eQQQAAAAAANBetFnwM3jw4Pj4xz8ep5xyyn6zcEaMGBFnnHFGXH311bF27dp48skn46yzzorRo0fvN86aNWti3rx5ERExbNiw+M53vhMdO3aMiIjhw4fH+PHj45prromSkpKYN29eFBUVxYABA/YbZ9GiRbFs2bKIiJg2bVp89rOfTZ8bPnx4jB07Nq688srYuXNnzJ07N0466aTIy8trtfcDAAAAAACgrTW8LtpBuuqqq+J973tfg0uv9ejRIz71qU+l95955pl62z300ENRU1MTEREzZ85Mhz57FRQUxMyZMyNiz/N7HnjggXrH2RsedevWLT75yU/ud37AgAFx4YUXRkTEunXrYsmSJY29PAAAAAAAgHanzYKf5jjhhBPS2+Xl5fudT6VSsXTp0ojYM4NoxIgR9Y4zYsSIGDRoUEREPPfcc5FKpTLOr1mzJsrKyiIi4tRTT42CgoJ6x5k8eXJ6W/ADAAAAAAAcbrIa/FRXV6e365sZtH79+ti0aVNERBx//PGNjrV3mbjKysrYsGFDxrm9S7zVbVefnj17xsCBAyMiYvny5U1UDwAAAAAA0L5kNfgpLi5Obw8ePHi/82+99Vaj5+vaO+Nn334tHWfv+YqKiqiqqmq0LQAAAAAAQHuSn60L19bWxn333Zfef9/73rdfm4qKivR27969Gx2vT58+9faL2DMLaK/CwsJGx9l7nVQqFZWVlRmBUlP2vW59evbsGXl5eRFR/ywnaI66nx2fI8B9AABImtzc3IP6Gsf3TEBbc58B2rOsBT8PPvhgrFy5MiIiJk6cGMcee+x+berOuOnUqVOj49V9bs++M3V27tzZKuM0ZdasWU22mTNnTvTu3Tvy8vJiwIABLRof6tOvX79slwBkWXN+8QAA4HDSp0+fVvue2fdMQFtznwHam6zE0cXFxXHHHXdERMQRRxwRn/vc5+ptt3v37vR2fn7jGVWHDh3q7RcR8c4777TKOAAAAAAAAO3ZIZ/x8+abb8aNN94YNTU10aFDh/jqV78aRxxxRL1tO3bsmN6urq5udNy64U7dfhGZYU51dfV+55s7TlPmzJnTZJuePXtGRERNTU1s2LChRePDXrm5uenfJlm/fn3U1tZmuSIgmzZu3JjtEgAAWtXGjRtj3bp1B9zf90xAW3OfAVpT375904+IaQ2HNPhZv359XHfddfH2229Hbm5ufOUrX4nRo0c32L7usmxNLbu2a9euevtFRHTu3DljnMYCncbGaUpTzyHal/8QaA21tbU+S/Au5x4AACRNa36f43smoK25zwDtzSFb6q2ysjKuvfba2LRpU+Tk5MSsWbNiwoQJjfapG6Q09fyCur/tvG8AU1hYmFFHY/ZeJycnJ6MfAAAAAABAe3dIgp+tW7fGddddF+Xl5RERMXPmzPjABz7QZL8jjzwyvV1WVtZo2zVr1tTbr6Xj7D3fu3fvFs/4AQAAAAAAyKY2D3527NgR3/3ud+Ott96KiIiLL744zj777Gb17devX/Tq1SsiIl5//fVG2+49X1hYGH379s04N2rUqPR2cXFxg2Ns3rw51q5dGxERI0eObFaNAAAAAAAA7UWbBj+7du2K66+/PkpLSyMi4kMf+lBccMEFze6fk5OTXg6urKwsVqxYUW+7FStWpGfqjB8/PnJycjLODxo0KAYPHhwREU8//XTGc3zqWrRoUXp74sSJza4TAAAAAACgPWiz4Ke6ujpuuummWL58eURETJ8+PS666KIWjzN9+vTIzd1T5ty5c2P37t0Z53fv3h1z586NiIi8vLw499xz6x3nvPPOi4iI7du3x2233bbf+XXr1sW9994bEREDBgwQ/AAAAAAAAIed/LYa+Ic//GG8/PLLERFx4oknRlFRUfz9739vuJD8/Bg0aNB+xwcNGhTnn39+3HfffVFSUhJXX311fPCDH4z+/ftHeXl5/PGPf0zPKDrvvPNi4MCB9Y4/efLkWLhwYSxfvjweffTR2Lx5c0yZMiW6desWK1eujLvvvjt27twZOTk5MXPmzMjLy2uFdwEAAABoyu7a2oz9vd/nH6jc3NyoqKiIiIiNGzdG7T7jZ9vQoUM9VxgAaDNtFvwsWbIkvf3Xv/41rrjiikbb9+3bN26++eZ6z1100UWxZcuWWLhwYZSWlsYPf/jD/doUFRU1OqMoNzc3vv71r8f1118fJSUl8eyzz8azzz6b0aZDhw5xySWXxNixYxutFQAAAGg9a3Zmru5x6aWXZqmSQ2PBggWeLQwAtJk2C35aU25ubsyaNSsmTZoU8+fPj5KSkti2bVt07949hg0bFmeddVazwpoePXrEddddF4899lgsXrw4ysrKoqqqKgoLC+PEE0+M6dOnx5AhQw7BKwIAAAAAAGh9bRb8/P73v2/1MU8++eQ4+eSTD2qMvLy8mDZtWkybNq2VqgIAAAAAAGgfDosZPwAAAMC7x63jhsXQLgXZLqPVrN6xKz77fEm2ywAA3iUEPwAAAEC7MrRLQYzs3jnbZQAAHJZys10AAAAAAAAArUPwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJkZ/tAgCgrVVVVcXq1auzXUabKS0tzXYJAAAAALQTgh8AEm/16tVRVFSU7TIAAAAAoM1Z6g0AAAAAACAhBD8AAAAAAAAJYak3AN51bh03LIZ2Kch2Ga3mqYptMbv4zWyXAQAAAEA7IPgB4F1naJeCGNm9c7bLaDWr3q7KdgkAAAAAtBOWegMAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvAD/P/t3XuQV/V9P/4nu8ACAiKILqIQBdmoqFEQo2m9YUxQY0zqGJs2jddOomkmnYyT2iQTkzpDnNiOqZPY2rTaDmOTTKMxWs1FQI33C6mJoiArQQWWq7CL7AVYfn/w2893172wwMJnOTweM5k5nz3v897XIfLi8/k8z3kfAAAAAAAKQvADAAAAAABQEIIfAAAAAACAghD8AAAAAAAAFITgBwAAAAAAoCAEPwAAAAAAAAUh+AEAAAAAACgIwQ8AAAAAAEBBCH4AAAAAAAAKQvADAAAAAABQEIIfAAAAAACAghD8AAAAAAAAFITgBwAAAAAAoCAEPwAAAAAAAAUh+AEAAAAAACgIwQ8AAAAAAEBBCH4AAAAAAAAKQvADAAAAAABQEIIfAAAAAACAghD8AAAAAAAAFITgBwAAAAAAoCAEPwAAAAAAAAUh+AEAAAAAACgIwQ8AAAAAAEBBCH4AAAAAAAAKQvADAAAAAABQEIIfAAAAAACAghD8AAAAAAAAFITgBwAAAAAAoCAG7s3JN27cmCVLlmTJkiWpra1NbW1tGhoakiRnn312brjhhl2a73e/+10effTR1NbWpr6+PiNHjsykSZNy/vnn55RTTunVHNu2bcvcuXPz5JNPZvny5Wlqasro0aNz4oknZtasWTnqqKN2+TwBAAAAAAD6g70a/Fx33XV9Mk9ra2vuuuuuzJs3r8PP169fn/Xr1+eFF17Ieeedl7/+679ORUX3NzHV19dn9uzZqa2t7fDzVatWZdWqVXn88cdz9dVXZ+bMmX1SNwAAAAAAwL60V4Of9g499NCMHz8+L7/88i4f++Mf/7gU+hx99NG55JJLcvjhh2fVqlX5xS9+kaVLl2bevHkZOXJkPvvZz3Y5R2tra2677bZS6DNjxoycf/75GT58eN54443cd9992bhxY+66666MHj2613cQAQAAAAAA9Bd7Nfi57LLLMmnSpEyaNCmjRo3K6tWr86UvfWmX5lixYkUefPDBJMmkSZPy7W9/O4MHD06STJ48OdOnT8/NN9+c2traPPjggznvvPNSXV3daZ7HHnssr7/+epLkggsuyLXXXlvaN3ny5Jxyyin52te+lsbGxtx999056aSTUllZubunDgAAAAAAsM91vy5aH7j88sszbdq0jBo1arfnePjhh7Nt27YkyVVXXVUKfdpUVVXlqquuSrLj+T0PPfRQl/O0hUfDhw/P5z73uU77q6ur86lPfSpJUldXl+eff363awYAAAAAACiHvRr87Knt27fnhRdeSJKMHz8+U6ZM6XLclClTcsQRRyRJXnzxxWzfvr3D/hUrVmT58uVJkjPOOCNVVVVdznPOOeeUtgU/AAAAAADA/qZfBz+rV6/Ou+++myQ57rjjehx7/PHHJ0nWr1+fNWvWdNjXtsRb+3FdGTVqVMaNG5ckWbRo0W7VDAAAAAAAUC79Ovh55513Stvjx4/vcWzbHT/vP25X52nbv27dujQ1NfW6VgAAAAAAgHIbWO4CerJu3brS9pgxY3oce+ihh3Z5XLLjLqA2o0eP7nGett+zffv2rF+/vkOgtCv1dmfUqFGprKxMklRU9OvcjX6s/X87/juCnfP3BACA/qSiosJ7VNjP+W4G6M/6dfDT/o6bIUOG9Di2/XN73n+nTmNjY5/MszNf/OIXdzrmzjvvzJgxY1JZWZnq6updmh+6cthhh5W7BOj3ehPMAwDAvnLooYf6TgAKxHczQH/Tr+PolpaW0vbAgT1nVIMGDeryuCTZsmVLn8wDAAAAAADQn/XrO34GDx5c2t66dWuPY9uHO+2PSzqGOVu3bu20v7fz7Mydd9650zGjRo1Kkmzbti1r1qzZpfmhTUVFRelqktWrV6e1tbXMFUH/tnbt2nKXAAAAJWvXrk1dXV25ywD2gO9mgL40duzY0iNi+kK/Dn7aL8u2s2XXmpubuzwuSYYOHdphnp4CnZ7m2ZmdPYfo/fyDQF9obW313xLshL8jAAD0Jz7HQbH4Ow30N/16qbf2QcrOns/Q/mru9wcwo0ePLm2vX7++x3nafs+AAQM6HAcAAAAAANDf9evg58gjjyxtL1++vMexK1as6PK4XZ2nbf+YMWN2+Y4fAAAAAACAcurXwc9hhx2WQw45JEny2muv9Ti2bf/o0aMzduzYDvs++MEPlrYXLlzY7RwbNmzIypUrkyQ1NTW7VTMAAAAAAEC59OvgZ8CAATnttNOS7LgTZ/HixV2OW7x4celOnenTp2fAgAEd9h9xxBEZP358kuSZZ57p8Byf9h577LHS9owZM/a0fAAAAAAAgH2qXwc/SXLhhRemomJHmXfffXdaWlo67G9pacndd9+dJKmsrMxFF13U5Tyf+MQnkiSbNm3KnDlzOu2vq6vL/fffnySprq4W/AAAAAAAAPudgXtz8tdffz11dXWl1/X19aXturq6DnfYJMk555zTaY4jjjgil1xySX7+85+ntrY23/zmN/PJT34yhx9+eFatWpUHHnggS5cuTbIj3Bk3blyXtZxzzjmZP39+Fi1alF/96lfZsGFDZs6cmeHDh2fJkiX52c9+lsbGxgwYMCBXXXVVKisr9/wPAAAAAAAAYB/aq8HP3Llz8/jjj3e5b9GiRVm0aFGHn3UV/CTJFVdckY0bN2b+/PlZunRpbr/99k5jzjvvvFxxxRXd1lJRUZEbb7wxs2fPTm1tbZ577rk899xzHcYMGjQoV199dU455ZSeTwwAAACgl1paWzu8bruAtcgmTpyYIUOGlLsMADgg7dXgp69UVFTki1/8Yk4//fQ8+uijqa2tTUNDQ0aMGJFJkyblox/9aK/CmpEjR+aWW27J3Llz8+STT2b58uVpamrK6NGjM3Xq1Fx44YU56qij9sEZAQAAAAeKFY0dl62/5pprylTJvjNv3rzU1NSUuwwAOCDt1eDnhhtuyA033NBn85166qk59dRT92iOysrKXHDBBbngggv6qCoAAAAAAID+oaLcBQAAAAAAANA39oul3gAAAACK4kfTJmXisKpyl9Gnlm1uzrUv1Za7DAAggh8AAACAfWrisKrUjBha7jIAgIKy1BsAAAAAAEBBCH4AAAAAAAAKQvADAAAAAABQEIIfAAAAAACAghD8AAAAAAAAFITgBwAAAAAAoCAEPwAAAAAAAAUh+AEAAAAAACgIwQ8AAAAAAEBBDCx3AQAAAADs31paWzu8Xrp0aZkq2TcmTpyYIUOGlLsMAOiS4AcAAACAPbKisaXD62uuuaZMlewb8+bNS01NTbnLAIAuWeoNAAAAAACgIAQ/AAAAAAAABWGpNwAAAAD61I+mTcrEYVXlLqPPLNvcnGtfqi13GQDQK4IfAAAAAPrUxGFVqRkxtNxlAMABSfADQJqamrJs2bJyl7HXLF26tNwlAAAAAMA+IfgBIMuWLct5551X7jIAAAAAgD1UUe4CAAAAAAAA6BuCHwAAAAAAgIKw1BsAnfxo2qRMHFZV7jL6zNPrGvKthW+XuwwAAAAA2OsEPwB0MnFYVWpGDC13GX3mj+81lbsEAAAAANgnLPUGAAAAAABQEIIfAAAAAACAghD8AAAAAAAAFITgBwAAAAAAoCAEPwAAAAAAAAUh+AEAAAAAACgIwQ8AAAAAAEBBCH4AAAAAAAAKQvADAAAAAABQEIIfAAAAAACAghD8AAAAAAAAFITgBwAAAAAAoCAEPwAAAAAAAAUh+AEAAAAAACgIwQ8AAAAAAEBBCH4AAAAAAAAKQvADAAAAAABQEIIfAAAAAACAghD8AAAAAAAAFITgBwAAAAAAoCAEPwAAAAAAAAUh+AEAAAAAACgIwQ8AAAAAAEBBCH4AAAAAAAAKQvADAAAAAABQEIIfAAAAAACAghD8AAAAAAAAFITgBwAAAAAAoCAEPwAAAAAAAAUh+AEAAAAAACgIwQ8AAAAAAEBBCH4AAAAAAAAKYmC5CwAAAACA/qyltbXD66VLl5apkn1j4sSJGTJkSLnLAGA3CX4AAAAAoAcrGls6vL7mmmvKVMm+MW/evNTU1JS7DAB2k6XeAAAAAAAACkLwAwAAAAAAUBCWegPYiaampixbtqzcZexVRV+fGgAAoC/9aNqkTBxWVe4y+syyzc259qXacpcBQB8R/ADsxLJly3LeeeeVuwwAAAD6iYnDqlIzYmi5ywCALlnqDQAAAAAAoCAEPwAAAAAAAAVhqTeAXVS0tZyT5Ol1DfnWwrfLXQYAAAAAsIcEPwC7qIhrOf/xvaZylwAAAAAA9AFLvQEAAAAAABSE4AcAAAAAAKAgBD8AAAAAAAAFIfgBAAAAAAAoCMEPAAAAAABAQQh+AAAAAAAACkLwAwAAAAAAUBCCHwAAAAAAgIIQ/AAAAAAAABSE4AcAAAAAAKAgBD8AAAAAAAAFIfgBAAAAAAAoCMEPAAAAAABAQQh+AAAAAAAACkLwAwAAAAAAUBCCHwAAAAAAgIIQ/AAAAAAAABSE4AcAAAAAAKAgBD8AAAAAAAAFIfgBAAAAAAAoiIHlLgAAAAAAKJ+W1tYOr5cuXVqmSvadiRMnZsiQIeUuA2CvEPwAAAAAwAFsRWNLh9fXXHNNmSrZd+bNm5eamppylwGwV1jqDQAAAAAAoCAEPwAAAAAAAAVhqTcAAAAAoORH0yZl4rCqcpfRp5Ztbs61L9WWuwyAfULwAwAAAACUTBxWlZoRQ8tdBgC7yVJvAAAAAAAABeGOH2CPNTU1ZdmyZeUuY69ZunRpuUsAAAAAAOgVwQ+wx5YtW5bzzjuv3GUAAAAAABzwLPUGAAAAAABQEIIfAAAAAACAgrDUG+wDff0MnIqKiqxbty5Jsnbt2rS2tvbZ3Lvj/c/A+dG0SZk4rKpM1fS9p9c15FsL3y53GQAAAAAAOyX4gX3gQHsGzsRhVakZMbTcZfSZP77XVO4SAAAAAAB6xVJvAAAAAAAABSH4AQAAAAAAKAhLvUEZeAYOAAAAAAB7g+AHysAzcAAAAAD2nZbW1g6vly5dukfzVVRUZN26dUmStWvXpvV985fbxIkTM2TIkHKXAZTJARn8rFmzJo888kgWLFiQdevWZeDAgamurs4ZZ5yRj33sY6mqKs6dGPuDpqamLFu2rNxl7FV7+mYCAAAAgN23orGlw+trrrmmTJXsG//+7/+eo48+utxl7FXCLejeARf8vPjii7njjjvS2NhY+llzc3Nqa2tTW1ubuXPn5qabbkp1dXUZqzywLFu2LOedd165ywAAAACAQih6sJUk8+bNS01NTbnL6DMHwsXx7Qnu9q4DKvhZunRpbr/99rS0tGTIkCG59NJLM3Xq1LS0tOSpp57K3Llzs3LlysyePTvf/e53M3RocZbiAgAAAACgfzrQLo4vWnDX3xxQwc8999yTlpaWVFZW5hvf+EamTJlS2jd16tSMGzcuc+bMycqVK/Pggw/m8ssvL2O1AAAAAMDe8KNpkzJxWHEe9/D0uoZ8a+Hb5S4D6CcOmOBnyZIlee2115Ik5557bofQp83FF1+c+fPnZ/ny5XnkkUfy6U9/OgMHHjB/RP1G0f7hTfzjCwAAANCfTBxWlZoRxVnt54/vNXV4XcTv15Ztbs61L9WWuwzYLxwwqcbzzz9f2j733HO7HFNRUZGzzz479957b9577728+uqrOfnkk/dVifz/ivYPb9L5H18AAAAA2FuK+P1aS2trh9dLly4tUyV7x/vPp2jhneBu3zpggp9FixYlSaqqqnLMMcd0O+7444/vcIzgBwAAAACgvFY0tnR4fc0115Spkn2jiOEd+05FuQvYV955550kSXV1dSorK7sdd8QRR3Q6BgAAAAAAYH9wQNzx09LSkoaGhiTJmDFjehw7fPjwVFVVpbm5OevWrdul39Ob8aNGjSoFTxUVB0zu1qP3/zks29xcpkr2nhVNWzq8Lto5Or/9X9HP0fnt/4p+js5v/1f0cyz6+SXFP0fnt/8r+jk6v/1f0c/R+e3/in6ORT+/pPM5Fl3R/j98//lUVFT4fnwvGrB9+/bt5S5ib6uvr8+1116bJDnzzDPzla98pcfx1113XTZu3Jijjjoq//iP/9jr33P55ZfvdMy9996bgQMPiLyt17Zs2ZJVq1aVuwwAAAAAAPaBww8/PIMGDSp3GYV1QCQQLS3/b/3H3oQubWPaH9dXBgwY0Odz7u8GDRqUI488stxlAAAAAADAfu+ACH4GDx5c2t66detOx7eNaX9cb9x55507HeP2NfrCtm3bsmHDhiQdlw8E6Cv6DLC36TPA3qTHAHubPgP0ZwdE8DNkyJDSdlNT007Ht41pf1xv7Oz5QdBXNmzYkC9+8YtJdgSO/tsD+po+A+xt+gywN+kxwN6mzwD92QFx+8ngwYMzYsSIJMm6det6HLtp06Y0N+940JSGDQAAAAAA7E8OiOAnSekZMnV1ddm2bVu341asWNHpGAAAAAAAgP3BARP81NTUJEmam5vz5ptvdjtu4cKFnY4BAAAAAADYHxwwwc+MGTNK2/Pnz+9yTGtrax5//PEkyUEHHZQTTjhhn9QGAAAAAADQFw6Y4Gfy5Mk57rjjkuwIfhYvXtxpzEMPPZTly5cnSWbNmpWBAwfu0xoBAAAAAAD2xAET/CTJlVdemcGDB2fbtm255ZZbcv/992fx4sV55ZVXctddd2XOnDlJknHjxuUTn/hEmasFAAAAAADYNQfULS1HH310vvKVr+SOO+5IY2Nj/vu//7vTmHHjxuWmm27K0KFDy1AhAAAAAADA7huwffv27eUuYl9bs2ZNHn744SxYsCDr16/PwIEDU11dnQ9/+MP5+Mc/nqqqqnKXCAAAAAAAsMsOyOAHAAAAAACgiA6oZ/wAAAAAAAAUmeAHAAAAAACgIAQ/AAAAAAAABSH4AQAAAAAAKAjBDwAAAAAAQEEIfgAAAAAAAApC8AMAAAAAAFAQgh8AAAAAAICCGFjuAmB/tnHjxixZsiRLlixJbW1tamtr09DQkCQ5++yzc8MNN+x0jnfeeSevvPJKlixZkrfffjsbN25MQ0NDKioqcvDBB2fSpEn5kz/5k0yfPj0DBgzY6Xzbtm3L3Llz8+STT2b58uVpamrK6NGjc+KJJ2bWrFk56qijenVu9fX1eeSRR/LCCy9kzZo1SZKxY8fmtNNOy4UXXpgRI0b0ah5gz/RFn+lOc3NzvvrVr2b16tVJdvwd/8EPftCr4375y1/m2WefTV1dXbZu3ZoxY8bk1FNPzaxZszJ27Nhe/f41a9bkkUceyYIFC7Ju3boMHDgw1dXVOeOMM/Kxj30sVVVVu31uQO/0RY957LHH8sMf/rBXv+/666/POeec0+MYPQaKZW+8l/n973+f3/72t3n99dezYcOGVFRUZNSoUZkwYUJOPPHEnHXWWRkyZEi3x+szUCx72mdWr16dL33pS7v0O3f22UmfAcpN8AN74LrrrtvjOe677748+eSTXe5bvXp1Vq9enWeeeSbHH398vvrVr/YYuNTX12f27Nmpra3t8PNVq1Zl1apVefzxx3P11Vdn5syZPdb0xhtv5Hvf+142bNjQ4edvvfVW3nrrrcybNy833nhjJk+e3LuTBHZbX/SZ7vzkJz8phT69VVdXl9mzZ2flypUdfr5ixYqsWLEic+fOzZe//OVMmzatx3lefPHF3HHHHWlsbCz9rLm5ufRBbe7cubnppptSXV29S/UBu2Zv9pjdocdA8fRln9m0aVN++MMf5sUXX+y0r7GxMStXrsxzzz2XKVOm5AMf+ECXc+gzUDzleD9zxBFHdLtPnwH6A8EP9JFDDz0048ePz8svv7xLx1VWVubYY49NTU1NJkyYkFGjRmXkyJHZtGlTVqxYkd/85jd5++23s3Dhwtx66635zne+k4qKzqs0tra25rbbbiuFPjNmzMj555+f4cOH54033sh9992XjRs35q677sro0aNzyimndFnP2rVrc+utt6a+vj6VlZW56KKLSm9GXnrppfzv//5v3n333dx666357ne/mzFjxuzinxSwu3a3z3Rl6dKlefjhhzNo0KAMHDiww4eJ7jQ2Nnb4ADNz5sx85CMfyeDBg/PKK6/k5z//eRobG3P77bfnH/7hH7r9wmXp0qW5/fbb09LSkiFDhuTSSy/N1KlT09LSkqeeeipz587NypUrM3v27Hz3u9/N0KFD9/h8gZ3rix7z9a9/PYcccki3+3t636DHQPHtSZ/ZvHlzbrnllrz55ptJdnze+fCHP5zDDz88FRUVWbduXRYuXJjnnnuu2zn0GSi+3ekzo0ePzm233bbTcT//+c9LF+6effbZXY7RZ4D+QvADe+Cyyy7LpEmTMmnSpIwaNWq3bg/+whe+kMrKyi73nXTSSbngggvyT//0T3n++eezePHiLFiwINOnT+809rHHHsvrr7+eJLngggty7bXXlvZNnjw5p5xySr72ta+lsbExd999d0466aQuf++Pf/zj1NfXJ0m+/OUv54wzzijtO+6443LMMcfk9ttvz8aNG/PjH/94j5aZAnauL/rM+7W2tuZf//Vf09ramssuuyzz58/vVfDzi1/8ovQB5i//8i9zySWXlPZNmTIlJ5xwQm6++eY0Nzfnnnvuyc0339zlPPfcc09aWlpSWVmZb3zjG5kyZUpp39SpUzNu3LjMmTMnK1euzIMPPpjLL798j84X6F5f95hx48blsMMO261j9Rgopr7qM//xH/+RN998M4MGDcrf/u3fdvpMNGnSpMyYMSOf//zn09ra2uUc+gwU0572mYEDB2bChAk9jmltbc2rr76aJBk6dGhmzJjR5Th9BugvOt82APTa5ZdfnmnTpmXUqFG7PUd3oU+bioqKDm8UXnvttS7HPfjgg0mS4cOH53Of+1yn/dXV1fnUpz6VZMdtx88//3ynMRs2bMhvf/vbJMnJJ5/cIfRpc+aZZ+bkk09OkjzxxBOdloMD+lZf9Jn3e/jhh/Pmm2/miCOOyKWXXtqrY7Zu3ZpHHnkkSTJ+/PhcfPHFncbU1NTk3HPPTZIsXLgwS5Ys6TRmyZIlpT527rnndvgA0+biiy/O+PHjkySPPPJItm7d2qsagV23N3rM7tBjoLj6os+8/vrreeKJJ5Ikn/nMZ7q8EK7NgAEDuvyMpc9Ace2L9zO///3v8+677yZJTj/99AwePLjTGH0G6E8EP7AfaH/L7pYtWzrtX7FiRZYvX54kOeOMM7p9uF/7hyl3Ffy8+OKL2b59e5KU3oj0NM/27du7XF8b6L/WrFmTn/zkJ0l2rIU9cGDvbv599dVXs3nz5iQ7ljXoasnJZOd9pv3PuuszFRUVpaUT3nvvvdKVdUBx6TFAT375y18mSYYNG5aPf/zjuzWHPgPsibbwOenYJ9rTZ4D+RPAD+4GnnnqqtN3VAwTblnhLkuOPP77beUaNGpVx48YlSRYtWrTb87Tf1/4YoP/70Y9+lObm5px11lk54YQTen1cb/vDpEmTSuFzV32m7WdVVVU55phjup2n/e/oah6gWPQYoDtbt27NCy+8kGTHUthtV9m3trZm7dq1Wb16dVpaWnY6jz4D7K7GxsZSHxo7dmyOO+64LsfpM0B/4hk/0E/V19enrq4uc+fOzWOPPZYkGTFiRP70T/+009h33nmntN12q293xo8fn5UrV2bdunVpamrKkCFDOs0zbNiwHm+RPuSQQzJ06NA0NjaW7jQC+r+nnnoqv/vd73LQQQflr/7qr3bp2N72mcrKylRXV2fZsmVd9oe2eaqrq3tc6rJ9yN3+dwP925133pkVK1akvr4+w4YNS3V1dU488cRccMEFGT16dLfH6TFAd/74xz+WVj2YMGFCNm/enJ/+9Kd5/PHH89577yXZ8XyO4447Lp/+9Ke7vbBFnwF217PPPpvm5uYkyVlnnZUBAwZ0OU6fAfoTwQ/0IzfffHMWLlzY5b4RI0bkxhtvzEEHHdRp3/r160vbPX2pkiRjxoxJsmOZtvXr13d4o7Bu3boOY3py6KGH5u233y4dA/RvmzZtyj333JMk+Yu/+IuMHDlyl45v6zNVVVVd9qH2xowZk2XLlqW+vj5btmzJoEGDkiQtLS1paGgojenJ8OHDU1VVlebmZn0G9iPtlxlpaGhIQ0ND3njjjTz44IO58sor89GPfrTL4/QYoDvtv8xsbW3NTTfdVHpweputW7fmD3/4Q1555ZX8+Z//eZfPMNRngN3Vfpm3tuXVuqLPAP2J4Af2A7Nmzcqf/dmfdftFbWNjY2m7/R08XWn//J+mpqYO+9pe72yO9vO8fw6gf5ozZ042btyYKVOmZObMmbt8fFuf2ZX+kOzoEW0fYtr3i97MM2TIkDQ3N+szsB84/PDDM2PGjEyZMqX0JcXq1avz7LPP5rnnnsuWLVvyb//2bxkwYEDOP//8TsfrMUB3Nm3aVNp+4IEHsmXLlnzoQx/K5ZdfnokTJ6axsTHPPvts7r333mzevDn33ntvxo8fn9NOO63DPPoMsDvWrl1bukC3pqYm1dXV3Y7VZ4D+RPAD/cj1119f+sf6vffeS21tbX7zm9/kl7/8ZVatWpUvfOELXS7B1rb0QZKdPqi97c1Ekk5rYbe97s3D3ttfjQL0bwsXLsz8+fNTWVmZ6667rtulCXrS1md2pT8kHXtE++3ezNM2Rp+B/m3GjBk5++yzO/WWyZMn58wzz8xLL72U2267Ldu2bct//ud/Zvr06Z3ez+gxQHfalldKdvSKk046KX/3d39Xemj6oEGDcsEFF2TChAn51re+le3bt+fee+/N9OnTO/QlfQbYHU888US2b9+eZMcybz3RZ4D+pKLcBQD/z2GHHZYJEyZkwoQJOe6443LxxRfne9/7Xk455ZQsWLAgN910U5e377Z/w7B169Yef0f7kKjtwajvf72zOdrP8/45gP5ly5Ytueuuu7J9+/bMmjUrEydO3K152vrMrvSHpGOPaL/dm3naxugz0L8NGzasx0B52rRpueyyy5Ls+AJ33rx5ncboMUB32n/WSXYsWdsW+rT3wQ9+MKeffnqSZPny5Xnrrbe6nEefAXbFb3/72yQ7esiZZ57Z41h9BuhPBD/Qzw0ePDjXX399qqqqsm7dusyZM6fTmKFDh5a2d3Z7b/sr5t5/23Db697cItw2T29uPQbK57777suKFSsyZsyYXH755bs9T1uf2ZX+kHTsEe23ezPPriw/CfRv559/fikc6up5hnoM0J32n3VGjhyZo48+utuxJ598cmm7tra2y3n0GaC3lixZkuXLlyfZcSHLzp7bo88A/Yml3mA/MHLkyNTU1OT3v/99XnzxxWzdurXDLb+jR48uba9fv77Hh7a33TE0YMCADsclOx4cuHHjxl49FHDt2rWlY4D+64EHHkiSnHjiiXnppZe6HNP2YaGpqSlPPfVUkuTggw/O1KlTS2Pa+kVzc3Pee++9Hj/0tPWQkSNHdrhKd/DgwRkxYkQaGhp22mc2bdpU+jCkz8D+7+CDD87w4cPT0NBQevBxe3oM0J32f0d39ve1/f76+voO+/QZYFc9/vjjpe2zzz57p+P1GaA/EfzAfqItzGlubk5DQ0MOOeSQ0r4jjzyytL18+fJ84AMf6HaetqtVxowZ0+mKkCOPPDJvvvlmNm/enA0bNnT5PKEkeffdd0sPLRw/fvzunA6wj7Td+v/YY4/lscce63FsQ0NDvv/97ydJjj/++A7Bz5FHHpnnnnsuyY4+MmXKlC7n2LZtW+rq6pJ03R+OPPLIvPbaa6mrq8u2bdtSWVnZ5TwrVqzocAyw/+tpOTg9BujOUUcdVdpubW3tcWz7/e9fDk6fAXbF1q1b8/TTTyfZcQHLhz70oZ0eo88A/Yml3mA/0f7q2PcHNh/84AdL210tn9Jmw4YNWblyZZKkpqam0/7eztN+X/tjgOLqbX+ora0tXXXWVZ9p+1lzc3PefPPNbudp/zu6mgfYv9TX16ehoSFJOly80kaPAbozduzYHHrooUmS1atXlx6y3pVVq1aVtt+/uoE+A+yKBQsWlN67fOQjH+k2fGlPnwH6E8EP7AfWrVuXxYsXJ9nxwaf9OtdJcsQRR5SuEnnmmWc6rBXbXvur/WfMmNFp//Tp00tX486fP7/betrmGTBgQKZPn97r8wD2vZ/+9Kc7/d/YsWOT7OgvbT+7+eabO8xzwgknZNiwYUl2LHnQ3ZcuO+sz7X/WXZ9pbW0tLatw0EEH5YQTTuj1+QL906OPPlrqG8cff3yn/XoM0JPTTz89SdLY2Jg//OEP3Y57/vnnS9vvv0BNnwF2xRNPPFHaPuecc3p1jD4D9CeCHyijFStW5JVXXulxzObNm/PP//zPpeWazjrrrC7HfeITn0iyY43XOXPmdNpfV1eX+++/P0lSXV3d5ZuLUaNG5U//9E+TJC+//HKeffbZTmOeeeaZvPzyy6VaulsODiiWgQMHZtasWUl2LFvw4IMPdhqzePHi0geT448/PpMnT+40ZvLkyTnuuOOS7PgQ0xZqt/fQQw+VlqWcNWtWh2eaAf3L6tWrs3Tp0h7HvPTSS/mf//mfJDvWrT/33HM7jdFjgJ5cdNFFpWdg/Nd//Vc2b97cacwTTzyRV199NUly6qmnlu4SaqPPAL21adOmLFiwIEkyYcKEHpfTb0+fAfoTXQH2wOuvv15alzXp+ADRurq6Ts/TeP9VIu+++26+853vZOLEiTnttNNyzDHHZNSoUamsrMyGDRuyaNGizJs3Lxs2bEiyY33rSy+9tMtazjnnnMyfPz+LFi3Kr371q2zYsCEzZ87M8OHDs2TJkvzsZz9LY2NjBgwYkKuuuqrb25SvuOKK/N///V/q6+vz/e9/P7W1tZk2bVqSHV/cPPTQQ0l2PHPoiiuu2IU/LWB37Gmf6UuXXHJJnn766axcuTJz5sxJXV1dzjzzzAwePDivvvpq7r///mzbti2DBw/OlVde2e08V155Zb75zW+mpaUlt9xySz71qU/lhBNOSEtLS55++uk8+uijSZJx48aVQm1g79jTHrNmzZp8+9vfzpQpUzJt2rRMnDgxBx98cJIdSy49++yzee6550pXvH7uc5/rtPxSGz0Giqkv3ssceuih+cxnPpM5c+bkrbfeyt///d/nk5/8ZCZOnJjNmzfn+eefz69//eskydChQ/P5z3++y1r0GSimvv7M9NRTT5Uuvj377LN3qRZ9BugvBmzvaYFcoEc/+MEPSrfW9sZPf/rTDq9fffXVfPvb3+7Vsaeeemquv/76jBw5stsx9fX1mT17dmpra7vcP2jQoFx99dWZOXNmj7/rjTfeyPe+971S4PR+o0aNyo033phjjz22V7UDu29P+0xv3HDDDVmzZk3Gjh2bH/zgBz2Oraury+zZs0vPC3u/oUOH5stf/nIpMO7Oiy++mDvuuCONjY1d7h83blxuuummVFdX9+4kgN2yr97LVFVV5fOf/3zOP//8HsfpMVA8ffle5t57780DDzzQ7fJJBx98cG688cZuH6ie6DNQRH39menrX/963njjjVRUVORf/uVfdnmlE30G6A/c8QNlVFNTk69//ev5wx/+kNra2qxfvz4bNmxIS0tLhg4dmsMOOyzHHntsPvKRj3Rao7orI0eOzC233JK5c+fmySefzPLly9PU1JTRo0dn6tSpufDCC3PUUUftdJ5jjz02t912Wx5++OG88MILWbNmTZLksMMOy/Tp03PRRRdlxIgRe3z+wP6nuro6t956a371q1/l2WefTV1dXbZu3ZoxY8bklFNOyYUXXlh6ZlBPpk+fXuozCxYsyPr16zNw4MBUV1fnwx/+cD7+8Y+nqqpqH5wRsCeOOeaY/M3f/E0WL16cN998M++++24aGhqybdu2HHTQQTnqqKMyderUzJw5s3QnUE/0GKAnn/3sZzN9+vT8+te/zmuvvZYNGzZk0KBBGTduXKZPn55Zs2aVnq/RHX0G6MnKlSvzxhtvJElOOumk3VreXp8B+gN3/AAAAAAAABRERbkLAAAAAAAAoG8IfgAAAAAAAApC8AMAAAAAAFAQgh8AAAAAAICCEPwAAAAAAAAUhOAHAAAAAACgIAQ/AAAAAAAABSH4AQAAAAAAKAjBDwAAAAAAQEEIfgAAAAAAAApC8AMAAAAAAFAQgh8AAAAAAICCEPwAAAAAAAAUhOAHAAAAAACgIAQ/AAAAAAAABSH4AQAAAAAAKAjBDwAAAAAAQEEIfgAAAAAAAApC8AMAAAAAAFAQgh8AAAAAAICCEPwAAAAAAAAUhOAHAAAAAACgIAQ/AAAAAAAABSH4AQAAAAAAKAjBDwAAAAAAQEH8f5ae6+r4frZXAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 452, "width": 831 } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABn4AAAOJCAYAAAAz6Vz3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AACWtElEQVR4nOzdeXxX1Z0//ncSVsEIAcImgoKACLYoglarNCKjOG6ttVS6iLZWxna6jK22MxY72trFdrpZOrYzdFG/2rpvaIuAigvgbkVA0kglQIAECAgBk3x+f/DjM/mQHRISrs/n48Hjce/nnnPu+/PJAWNeOedmpVKpVAAAAAAAAHDQy27rAgAAAAAAAGgZgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkRIe2LgAAAEiW66+/Pr7zne+kz4uKimLIkCFtV1A78Pbbb8eRRx6ZPp85c2Zcf/31bVfQ+9SKFSviv//7v+Opp56KoqKi2Lx5c1RVVaWvb9q0KXr06NF2Be6HDRs2xPPPPx+rV6+O8vLy6N+/fwwZMiROOeWUyMnJaZF7VFZWxrPPPhtvv/12rF27NnJzc+Pwww+Pk08+OXr37t0i9wAAYP8JfgAAAEi8m2++Oa699tqMoKc1rVy5MhYvXhxLliyJxYsXx8svvxw7duxIX2+p8O+1116L6667LubMmRPvvfderev9+vWLSy+9NL797W9H165d9+ke27dvjxtuuCFmz54dJSUlta537Ngxzj777LjxxhtjzJgx+3QPAABajuAHAACARLv77rvj61//eqvfZ8GCBXHTTTfFkiVLYtOmTa1+v1tuuSX+7d/+LXbu3Flvm3Xr1sX3v//9eOCBB+Luu++OUaNGNeseb7zxRlx00UWxbNmyetu899578eCDD8Zf/vKX+K//+q+48sorm3UPAABaluAHAACARLvuuuvSxzk5OfG1r30tLrzwwujbt29kZ//fo29zc3P36z6vvPJK/OUvf9mvMZrq97//fXzxi1/MeC03NzdOPPHEyMvLi8LCwnjppZfS1958880466yzYsmSJdG3b98m3WPt2rXxT//0T1FcXJzx+gknnBBHHXVUlJaWxpIlS2Lr1q0REVFRUREzZsyI3NzcuOSSS/bzHQIAsK8EPwAAACTW0qVLM1arfOlLX4of/vCHB7SGbt26Re/evWPVqlUtMt5rr70WX/jCFzJe+9KXvhQ33HBDHHbYYenXXn311Zg2bVq88cYbERHxzjvvxMc//vF46qmnGr1HKpWKj33sYxmhz5gxY+K2226L4447Lv3a5s2b47rrrotf/vKX6dcuv/zy+MAHPhDHHnvsPr9HAAD2XXbjTQAAANgfQ4YMiVQqlf7TEs92oWlefPHFjPMLLrigVe/XsWPHOP744+MLX/hC/M///E+89tprsWXLlhb9mv/7v/97xvZuX/nKV+LnP/95RugTEfGBD3wgnnrqqRgyZEj6taeffjoefPDBRu9x7733xnPPPZc+P/LII+PJJ5/MCH0iInr06BG/+MUv4l//9V/Tr1VUVGSssgIA4MAS/AAAAJBY69evzzgfMGBAq93rs5/9bGzdujVefPHF+PWvfx2XXXZZjBkzJnJyclrsHi+++GI8/PDD6fMhQ4bE9773vXrb5+XlxS233JLx2syZMxu9z3e+852M81tuuSV69uxZb/ubbropBg8enD6/77774pVXXmn0PgAAtDzBDwAAAIm1bdu2jPOOHTu22r169uwZnTt3brXxIyLuuOOOjPMrr7wyunbt2mCfKVOmxIgRI9Lnr7zySixdurTe9q+//nq8/vrr6fNjjjkmzj777Abvccghh8SVV17ZYK0AABwYnvEDAMBBY/ny5fHKK6/EunXrYtu2bdGhQ4fo3r17DBo0KI4++ugYOXJkZGVlNWvMzZs3x9/+9rdYsWJFlJWVxa5du6JHjx7Rt2/fmDBhQhx++OEt+h6qq6vj2WefjcLCwli7dm107do1xowZE6eddlp06FD/t+epVCpeeOGFeOmll6K0tDS6d+8ew4YNi4KCgujSpUuL1LZz5854+umnY9WqVbFhw4bo1atXDB8+PE499dQWXbHQFO+++24888wzsXr16tiwYUN07tw58vPzY9y4cTF8+PADWsuaNWvipZdeilWrVkV5eXlE7P4hd//+/eOoo46KMWPGtPoP+1vTnr9X69evj23btkXv3r1j8ODB8eEPf7jRQKE1VFdXx5IlS2L58uWxfv36SKVSkZ+fH8OHD48JEyZEdnbzfn8xlUq1UqVt46GHHso4nzZtWpP6TZs2Lb797W+nzx988MEYNWpUi9/jm9/8ZsY9DvTzlAAAiIgUAAC0Y7t27UrdfPPNqaFDh6YiosE/hx12WOqjH/1o6i9/+UuDYy5dujR13XXXpU444YRUdnZ2g2OOGjUq9b//+7+p9957r8k11+z/2c9+Nv0+fvCDH6QGDRpU530GDBiQuvPOO+sc73e/+11qyJAhdfY79NBDUzfffHOqqqqq0bqKiooy+s6cOTOVSqVS5eXlqauvvjrVq1evOu+Rn5+f+sEPfpCqrKxs0vufOXNmRv+ioqIm9UulUqnFixenzjnnnFTnzp3r/ZocffTRqdmzZzfpPe+P++67L3XyySc3Ou86deqUOu2001K/+tWv6h2rvs9+b3t/dvvyZ8+ca8j27dtT3/ve91JHHnlkveN06dIldckllzTr67c/Nm3alLr66qtTvXv3rremXr16pb7yla+kSktLGxxr8ODBzf7cWvt9zp49u0lzoCFvv/12xhhHHnlkk/vOnz8/o29BQUG9bSdOnJjR9sknn2zyffb+7P/xj380uS8AAC3DVm8AALRbGzZsiAkTJsTVV18dhYWFjbbfsmVL3HvvvbWeZ1HT3//+9xg1alTccMMN8eKLL0Z1dXWDYy5dujQuu+yy+Kd/+qcoKytr9nuI2L3V1OTJk+Oaa66Jd955p842a9asialTp8b3v//99GuVlZUxbdq0uPTSS+Ptt9+us9/WrVvj6quvjs9//vP7tLLhnXfeiRNPPDFuvvnmKC0trbPN+vXr45prrolTTz01tmzZ0ux7NMV7770XV1xxRYwfPz4eeeSRjAfX7+2tt96K6dOnR0FBQWzevLnFa6mqqorPfvazceGFF2Y83L4+u3btiqeeeipjpUN79uyzz8awYcPiW9/6VhQVFdXbrqKiIu64444YOXJk/L//9/9ataannnoqhg0bFjfffHNs3Lix3nalpaXx05/+NIYNGxZPPPFEq9bUHr3xxhsZ5+PHj29y3/Hjx2esiNx7rPruk52dHePGjWvyfU466aR6xwIA4MCw1RsAAO1SKpWKj370o/Hyyy9nvN63b98YM2ZM9O7dO7Kzs2PLli1RWFgYK1eujMrKykbH3TvoycnJiaOPPjqOOuqoOOyww6KqqipKSkrilVdeyQg55s2bF+eff34sWLCgWduepVKpmDp1aixYsCAiIrp37x4nnXRS9OnTJ8rKyuLZZ5+NrVu3ptt/61vfipNOOikmTpwYV155ZfoZGZ06dYoJEybEwIED4913343nnnsu4wfk//u//xsf/vCH49JLL21ybRUVFXHOOefE8uXLIyKic+fOcdJJJ0X//v1j06ZNsXjx4ti0aVO6/fPPPx9nnXVWzJ8/v8W2l9tTx7nnnhtz587NeP3QQw+NcePGRd++fWPnzp2xbNmyePPNN9PXn3zyyTj99NPjueeei0MOOaTF6pk5c2b84Q9/yHitW7duMXbs2Ojfv3906tQptm7dGmvWrImlS5fG9u3bW+zere2hhx6Kiy++OCoqKjJeHzlyZAwfPjy6d+8eJSUlsWjRovSzcXbu3BnTpk2LysrK+PSnP93iNf31r3+N8847r1ZNxxxzTHr7xuXLl2cECJs2bYopU6bEvffeG+ecc06L19Re7fm7usdRRx3V5L6HHHJI9O3bN9atWxcRESUlJbFly5Y47LDDMtpt2rQpNmzYkD7v27dvs/5+HXnkkbVqPuuss5rcHwCAFtDGK44AAKBODz/8cMZ2QcOGDUvNnTs3VV1dXWf7bdu2pe6///7UJz7xidRFF11U77hvvfVWqkuXLqnp06enHnroodT27dvrbLdr167UXXfdlTriiCMy6vjhD3/YaO012/fo0SO9HdgPfvCD1I4dOzLabt26NfXZz342o8+ECRNSd911VyoiUllZWalvfOMbqc2bN9eq75prrsno179//wa3Y9t7u7E9tWVlZaW+/OUv17rHzp07U7/4xS9ShxxySEa/a6+9tsH339yt3r7whS9ktB80aFDqjjvuqHN7vVdffTV1yimnZLT//Oc/3+D4zVFaWprq1KlTeuzu3bunbr311tTOnTvrbF9ZWZl6+umnU1/96ldTQ4YMqXfcpm71tmnTplRRUVGT/yxfvjw1ZsyYjLG/+c1v1jn2ihUrUt27d89oe9lll6X+/ve/12pbUVGRuvnmmzM+i27duqWWL1/e+IfYDCUlJan8/PyMmk444YTUCy+8UKvtK6+8kjrxxBMz2ubl5aWKi4trtX3nnXfSn9GXv/zljD5PP/10nZ9lc7Zz3BctsdXbVVddlTFGQ9sL1mXcuHEZ/ev6nJcsWZLRZvz48c26xy9/+cuM/l/84heb1R8AgP0n+AEAoF268sor0z847NChQ50/nK7P3uFKTe+++25qw4YNTR6rpKQkNWzYsHQtAwcObPQHxDV/6BkRqezs7NQjjzxSb/vq6urUSSedVGco85vf/KbBe33sYx/L6Pfoo4/W23bv8GHPnx/96EcN3uPxxx9PdezYMePrsXLlynrbNyf4eeyxxzLafuADH2j0+S07d+5MTZ48OaPf66+/3mCfprrzzjszxv3jH//Y5L4NzbumBj/NUV1dnfrkJz+ZMe5HPvKRekOqvefYb3/720bv8de//jWVk5OT7tNQqLovLr/88oyaTj755NS7775bb/vt27enTj311Iw+l1xySYP32J9nTrWklgh+PvWpT2WM8ec//7lZ/c8+++yM/k888UStNnPnzs1oc8455zTrHntC6z1/Pv3pTzerPwAA+88zfgAAaJf+8Y9/pI8/+MEP1to+qCENbUN2yCGHRO/evZs8Vn5+fvzkJz9JnxcXF8fChQub3D8i4qqrroopU6bUez0rKyu+8pWvZLy2efPmuOCCC+Jzn/tcg2NfffXVGed7tpRrqokTJ9YaY2+TJ0+Of/3Xf02fV1ZWxn//93836z71+d73vpc+7tq1a9x///2Rl5fXYJ9OnTrFH//4x4ztp37+85+3SD01511ExIUXXtjkvi25/V1TXHPNNRnP3hk9enTcd9990alTp1pt58+fH88//3z6fMaMGXH55Zc3eo9JkybFV7/61fT5fffdV+sz2lelpaVx++23p8+7du0ad9xxR4PbinXt2jVuv/32jDZ//vOfY+3atS1SU3u3Z/u9PZo757p27drgeAfqHgAAtC7BDwAA7V7N5020hbPOOis6d+6cPl+0aFGz+n/ta19rtE1BQcE+9ZswYUJ069Ytff7qq682q7b/+I//aFK7b37zm9GxY8f0ec0f2O+rpUuXxlNPPZU+v/zyy2PIkCFN6pufnx9Tp05Nnz/yyCP7XU9d2nru1eeWW26JH/3oR+nzww8/PObMmVPreS17zJo1K33coUOHmDlzZpPv9aUvfSl9XFVVFY899tg+VFzbPffck/Fcn0svvbRJX/8jjjgirrjiivT5e++9F3fddVeL1NTevfvuuxnnzQ1l9m6/93gH6h4AALQuwQ8AAO3SiBEj0serVq2KW265pdXvuX379igpKYlVq1bF22+/nf5TXFwcPXv2TLdbtmxZk8ccPnx4k36Y3adPnzj00EPT5926dYsPfehDjfbLysrKeMB7c4KKPn36xEc+8pEmte3Vq1ecccYZ6fM1a9bs98qP+fPnZ5xfdNFFzer/4Q9/OKOeoqKi/aonInPeRURce+21UVVVtd/jtqT77rsvYwXWYYcdFo8++mgcfvjh9fapuRLs1FNPjb59+zb5fkcccUQMHjw4ff7MM880r+B6PPvssxnnn/zkJ5vc95JLLmlwrPeLrKys/WqfSqXaxT0AAGhZHdq6AAAAqMvUqVPjv/7rv9LnX/ziF+P++++P6dOnx9lnn50RxOyrV199Ne64445YuHBhvP7667F169Ym9du0aVOT7zFy5Mgmt83NzU3XMHTo0MjJyWlyvz3Ky8ubfL/jjz8+srOb/rtgJ554YsZqjxdffDGOOOKIJvff294BwmGHHRZvv/12k/vv/QPmt99+u1lbAtbljDPOiN69e8fGjRsjIuKuu+6KV199Nb7whS/EBRdc0OQVSa3lueeei2nTpkV1dXVE7N727r777osxY8bU22fFihUZgeDgwYOb9TlHRPTs2TNWrVoVEdHsvvV58cUX08c5OTkxbty4JvcdO3ZsdO7cOXbu3FlrrCSrubovImLHjh3N6r93++7du7fJPQAAaF2CHwAA2qXx48fHv/zLv8SvfvWr9Gtz586NuXPnRnZ2dowZMyZOOeWUOO200+IjH/lI5OfnN3ns1atXx5e+9KW4//7796m25oQr9W29VZcOHf7v2/N97ffee+81ud/QoUOb3DYiYtiwYRnn69evb1b/va1evTrjfOzYsfs1XllZ2X71j9j9Q+9bbrklpk6dml6psGzZsvjqV78aX/3qV2PIkCFx6qmnxoc//OGYOHFiDB8+fL/v2VQrVqyIc889N/2D9aysrJg9e3ajq7b2/px///vfx+9///t9rqMlPueIzNVpAwcOrPVsmIZ06NAhjjrqqHjzzTdrjZVke4cyNbfKa4q92zcl+GmNewAA0Lps9QYAQLv1y1/+Mr773e/Weth7dXV1vPrqq/GrX/0qpk6dGv3794+PfOQjcffddze6rdDbb78dp5566j6HPnvu31TNWVHTEv2ao+ZKoabYO4zavHnzft2/pQKEPVrqIfIXX3xxPPDAA3Vunfb222/HbbfdFl/4whdixIgRceyxx8ZPfvKT2L59e4vcuz7r16+Ps88+O0pLS9Ovff/736+15Vld2uvnXHP+NHcuRmTOx61bt0ZlZWVLlNWu7f13cM/KtKbaOyCrK2A+EPcAAKB1CX4AAGi3srKy4lvf+lb8/e9/jx/84Adx8sknZ6xu2aO6ujoWLFgQH//4x+P000+PtWvX1jvmZZddlt6yKmL3D5xnzJgRf/7zn+O1116LjRs3xvbt26O6ujpSqVT6T81nnNAymrM6qSla8lki5557brz11lvx+9//PqZMmVLvqoWlS5fGv/3bv8XIkSPjueeea7H71/Tuu+/GOeecE3//+9/Tr1111VXxjW98o0n92/PnTPPsvUrvnXfeaVb/vdvXtervQNwDAIDWZas3AADavb59+8Y3vvGN+MY3vhHbtm2LxYsXx9NPPx3z58+PZ555JuM3/Z9++uk466yzYvHixdG5c+eMcRYuXBjz589Pn48ePTr+8pe/RP/+/RutoanP/zmYNGfLuoiILVu2ZJz36NFjv+6fl5eXcb59+/ZmbffV2rp06RKf+cxn4jOf+UxUVlbGK6+8Es8880wsWLAg5s6dm7Hy5Z133knPuxEjRrRYDZWVlXHxxRfHCy+8kH7tggsuiJ///OdNHmPvz/kb3/hG/OAHP2ixGvdVjx49oqSkJCKaPxcjMufjoYceWmconDR7PzOsZhjYmO3bt2dsz9i3b986/w7n5eVFnz590it31q1bF9u3b6+18rI+RUVFDdYMAEDrs+IHAICDSvfu3aOgoCBmzpwZCxYsiLVr18aNN96YERi89tpr8b//+7+1+j7yyCMZ57/+9a+bFPpUVFTs97Zm7VFhYWGz2q9cuTLjvDnPVarL3v2bu6XUgdShQ4cYN25cfPnLX4777rsvNm7cGH/84x9j0KBB6Tbl5eXx7W9/u0XvO2PGjHj00UfT5yeffHLccccdzdoKsL1+zn369EkfFxcXp59d1BSVlZUZAUPNsZLs2GOPzThftGhRk/suWbIkY5vKUaNGNek+1dXVGcFjY/auqaH7AADQOgQ/AAAc1Hr37h3//u//Hr/5zW8yXn/ooYdqta0ZXHTv3j1OOeWUJt1j7x+YJsWLL77YrPe1ZMmSjPMTTjhhv+5/0kknZZw354fYba1z587xqU99KubOnZuxEuLRRx+NqqqqFrnHf/7nf8Zvf/vb9Pnw4cPjwQcfbPaqqNGjR0e3bt3S5+3lc645f6qqquLFF19sct9XXnklKioq6hwryQYPHhzDhg1LnxcVFUVxcXGT+j799NMZ55MnT6637aRJkxrsW5933nkn3n777fT5iBEj4ogjjmhSXwAAWo7gBwCARPjEJz6RsbVbzR8+7rH31lBNdfvtt+9Xbe3Vxo0bM7a+a0hpaWk88cQT6fMBAwbs9w909/7h8p/+9Kf9Gq8tDB8+PE4++eT0+bZt26K0tHS/x509e3bMnDkzfZ6fnx9z5syJ3r17N3usjh07xumnn54+f+ONN+KNN97Y7xr314c+9KGM87vuuqvJfe+4446M85pfg6Q777zzMs5vu+22JvXb+9+xvcdp6FpT/w1szj0AAGg9gh8AABKhQ4cOGasaOnXqVKtNzedZrF+/vknbty1fvjz+8Ic/tESJ7dKNN97YpHY33XRTvPfee+nzadOm7fe9TzzxxDj++OPT5/fcc0+7WY3SHLm5uRnndc295nj88cfjiiuuSJ9369YtHnnkkTjqqKP2ecwvfOELGefXXHNNpFKpfR6vJXz0ox+NLl26pM9nz54dq1evbrRfcXFxxgq/Dh06xCc+8YlWqbE9+uQnP5lx/utf/7rRbfIeffTRWLZsWfr8gx/8YINbsI0ZMyZGjx6dPn/zzTdjzpw5Dd5jx44d8etf/zrjtUsuuaTBPgAAtA7BDwAA7dKsWbPSDxdvijlz5kRZWVn6fMSIEbXajBkzJn1cVVUVP//5zxscc8OGDfHxj3+8Wc8eOdgsWLAgbr755gbb/PWvf834rDp06JARTOyPmqtaqqur48ILL4zXX3+9WWOsXLkyFixY0CL13H333bF06dImty8pKclYCdW3b9+MgLG5Xn755bjooouisrIyInZ/1n/6059i3Lhx+zxmxO6VFzVDtkceeSS++tWvNmtbusrKyrjjjjvSte2v3r17Z4QY7777bkybNi1jC7e9VVRUxLRp02Lbtm3p1y666KIYMGBAi9R0MBg3blz88z//c/r87bffjm9961v1tt+0aVN88YtfzHjt+uuvb/Q+e7f54he/GJs2baq3/Te/+c1YtWpV+vyCCy6ID37wg43eBwCAlif4AQCgXfrBD34QRxxxREybNi3uv//+2Lp1a53tKisr4w9/+EOt34L/1Kc+VavtRz/60cjKykqff+c734kf/vCHsXPnzox21dXV8eCDD8ZJJ50Ur7/+enTp0iW6d+/eAu+qfdkTUHzjG9+Ir371qxlb4UVE7Nq1K2655Za44IILMlb7XH311RnPGdkf5513XkaItHbt2pgwYUJ8+9vfjrVr19bbb/369fG73/0u/vmf/zlGjBgRjz32WIvU8/DDD8fo0aNj0qRJ8Zvf/KbBGp5++ukoKCiI8vLy9Gv7uxJqypQpGaHGNddcE6NGjYq33367yX82btxY59i33357xuqkn/3sZ/HhD384HnvssXoDoMrKynj++efjmmuuiSOPPDKmTZvWYsFPxO6VZH369EmfP/XUUzFx4sR45ZVXarV97bXXYuLEifHkk0+mX+vZs2ejweWBtnr16iZ9XTZv3lxnu6asevrud7+bsbXlT3/60/jyl7+cMRcjIl599dU47bTToqioKP3ahz/84Tj//PMbvcdHP/rRjC30/v73v8fpp59eK5jdsmVLfOlLX4qf/exn6de6dOnS5NWEAAC0vKxUW6/vBwCAOgwZMiTjt8ezsrJi+PDhceSRR0bPnj0jYndI8PLLL9cKLC644IK477776hz3M5/5TPzxj3/MeK1nz55x0kknRV5eXmzatClefPHFKCkpSV//5S9/GT/60Y/S9Zx++ukNrjCpGS599rOfjd/97nfNfs+N3aOmmj8MHzx4cJ3PN4rYvTLgyCOPTJ9fc8018fDDD6ef99K5c+f40Ic+FP369YtNmzbFokWLav2G/0knnRTz58/P2KJrb9dff3185zvfSZ8XFRXFkCFD6m2/a9eu+NjHPhYPP/xwrWsjR46MYcOGxWGHHRYVFRWxadOmWLZsWaxZsyaj3TXXXBPf//73671HU1166aXx+9//PuO1gQMHxsiRIyMvLy86deoUZWVl8dprr0VxcXFGu8GDB8err74ahx12WK1x9/7sZ86cWeeqi5pzZ181NOf+8pe/xMc+9rGMcCli9zOvjj/++MjPz4+OHTvGli1bYs2aNbF06dJaweiOHTsa/Po312OPPRYXXHBBrfsce+yxMWLEiMjKyooVK1bUChw6duwYd999d6PPkWnufNxfe//b1VwN/R2u6fe//31ceumlGa/l5ubG+PHjIy8vLwoLC+PFF1/MuD5o0KBYvHhx9OvXr0m1rFmzJk488cSMv29ZWVlxwgknxFFHHRWlpaWxePHiWsH8bbfd1iLbQQIAsG86tHUBAADQFKlUKpYvXx7Lly9vsN0nPvGJWj+4r+nXv/51/P3vf49nnnkm/dqmTZvqfX7FDTfcEFdddVX86Ec/2rfC27EuXbrEI488EpMmTYqVK1fGzp07Y/78+fW2P+mkk2LOnDkt+kP/iN3PxHnggQfi29/+dvzgBz/IWFGybNmyjGeT1Gd/tldrTHFxca2QZ29jxoyJhx9+uM7Qpz2ZPHlyPP/88/Hxj3883nzzzfTrW7duzVhJU5/c3NzIzm7ZjSPOOuusmDNnTlx00UUZ2zW+8cYb6VBybz169Ig//elPceaZZ7ZoLQeTz372s7F169a4+uqr06FZeXl5zJ07t872xxxzTNx9991NDn0iIgYMGBCPP/54XHTRRel/e1OpVLzwwgvxwgsv1GrfpUuX+MlPfiL0AQBoY7Z6AwCgXXrggQdi5syZcdJJJ0XHjh0bbJudnR1nnHFGPPLII3HnnXdmbIG0t0MOOSTmz58f3/72t+v9IX1OTk6ceeaZMX/+/PiP//iP/Xof7d3gwYPjhRdeiK985SvplVR7y8/Pj+9///vx9NNPt1rAkp2dHTfeeGMsX748rrjiiujVq1eD7bOysuK4446Lb3zjG/H666/Htdde2yJ1fPe7341f/OIXcdZZZ2Vsi1afMWPGxC9+8Yt46aWX4ogjjmiRGlrbscceG6+//nr88Y9/jBNPPLHRIKdHjx5x4YUXxh/+8IdYu3ZtdOrUqcVr+shHPhJvvfVWfO1rX2vwa5+Xlxf/+q//Gm+99db7OvTZ44tf/GIsXrw4zj333OjQoe7f6+zbt29ce+218cILL8SoUaOafY/Ro0fHSy+9FNdcc03k5+fX2aZjx45x3nnnxeLFi2PGjBnNvgcAAC3LVm8AALR7FRUV8be//S1WrlwZ69ati23btkXHjh3jsMMOi2HDhsXxxx8feXl5zR53x44d8eyzz8abb74ZW7Zsiby8vBgwYEBMmDChWb8Vf7BobLuxnTt3xlNPPRWrVq2KDRs2RK9eveLoo4+O0047LXJycg5oralUKl599dVYunRpbNy4McrLy+OQQw6Jnj17xtFHHx2jRo3ap695c1RXV8eyZcvirbfeinfeeSe9ndWhhx4agwYNig9+8IMxePDgVq3hQNi0aVM8++yzsXbt2igtLY3q6urIzc2NAQMGxDHHHBNHH330Af36V1dXx6JFi2L58uWxYcOGiIjo06dPDB8+PCZMmHDA5+LBYv369fH888/H6tWro7y8PPr16xdHHnlknHLKKfWGQs1VWVkZzzzzTBQVFcW6desiNzc3Dj/88Dj55JMzntUEAEDbEvwAAMD7RFOfMwMAAMDBy1ZvAAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkRFYqlUq1dREAAAAAAADsPyt+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQnRo6wLer1KpVFRXV7d1Ge1eTk5ORERUVVW1cSWwf8xlksR8JinMZZLEfCYpzGWSxHwmKcxlkqS9zufs7OzIyspqsfEEP22kuro6SkpK2rqMdi07Ozv69esXEREbNmwQlHHQMpdJEvOZpDCXSRLzmaQwl0kS85mkMJdJkvY8n/v27ZsOpVqCrd4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEiIDm1dAAAAQFurqKiIVatWtXUZ+yQ7OztKS0sjImLjxo1RXV3daJ/BgwdHly5dWrs0AACgDQh+AACA971Vq1ZFQUFBW5dxwMybNy9GjBjR1mUAAACtwFZvAAAAAAAACSH4AQAAAAAASAhbvQEAAOxlakyNvMhr6zJaTFmUxZ1xZ1uXAQAAHACCHwAAgL3kRV7kR35blwEAANBstnoDAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACREh7YuAAAAaN8qKipi1apVbV1GqyoqKmrrEgAAAFqE4AcAAGjQqlWroqCgoK3LAAAAoAkOaPCzcePGmDdvXrz00kuxYcOGqKioiNzc3OjTp08ce+yxcfLJJ8cRRxxRb/+XX3455s6dG4WFhVFeXh65ubkxdOjQmDRpUowdO7ZJNVRVVcUTTzwRCxcujOLi4qioqIi8vLwYM2ZMnH322TFo0KCWersAAAAAAAAH1AELfubMmRN33HFH7Ny5M+P10tLSKC0tjWXLlsWOHTvi0ksvrdW3uro6br311pg3b17G62VlZVFWVhZLliyJgoKCuOKKKyI7u/7HFpWXl8dNN90UhYWFGa+XlJRESUlJPPnkk3HZZZfFGWecse9vFAAAAAAAoI0ckODnnnvuibvuuisiIvr37x9nnHFGDBs2LA455JDYunVrFBUVxZIlSyIrK6vO/nfeeWc69DnyyCPjvPPOi759+0ZJSUk8+OCDUVRUFPPmzYvc3Ny45JJL6hyjuro6br755nToM378+Jg0aVJ079493nrrrbj33ntjy5Ytceutt0ZeXl6TVxABAMD7zdSYGnmR19ZltKiiKIo5MaetywAAANhvrR78vP766+nQ57TTTosrr7wyOnTIvO2YMWPivPPOi8rKylr916xZEw899FBERAwdOjS+853vRKdOnSIiYtiwYTFu3Li4/vrro7CwMB566KEoKCiIfv361RpnwYIFsWzZsoiImDx5cnzuc59LXxs2bFiMHTs2rrnmmtixY0fMnj07jjvuuMjJyWmZDwEAABIkL/IiP/LbuowWVRZlbV0CAABAi6h/X7QWUF1dHb/97W8jImLw4MExY8aMWqFPTXVde/TRR6OqqioiIqZPn54Offbo3LlzTJ8+PSJ2P7/n4YcfrnPsPeFR9+7d49Of/nSt6/369YsLL7wwIiLWrVsXixcvbuztAQAAAAAAtCutGvy89tprsXbt2oiIOP/885u9giaVSsWSJUsiImLgwIExfPjwOtsNHz48BgwYEBERL7zwQqRSqYzra9asieLi4oiIOPnkk6Nz5851jjNx4sT0seAHAAAAAAA42LRq8PPcc89FRERWVlaccMIJ6de3bdsWa9eujW3btjXYf/369bFp06aIiDjmmGMabDtq1KiIiCgrK4sNGzZkXNuzxVvNdnXp0aNH9O/fPyIili9f3uD9AAAAAAAA2ptWfcbPW2+9FRERffr0ia5du8bChQvjvvvui3feeSfdpn///nHGGWfE2WefHR07dszov3r16vTxwIEDG7zXnhU/e/rl5+dnnDd1nIEDB8batWujtLQ0KioqokuXLg22BwAAAAAAaC9aLfiprq5Ob6926KGHxuzZs2POnDm12q1duzZuu+22WLJkSVx77bXRrVu39LXS0tL0ca9evRq8X+/evevsF7F7FdAeeXl5DY6z5z6pVCrKysoyAqXG7H3fuvTo0SO95V12dqsuuDro1fx8fFYczMxlksR8JinM5ebxGSVPdna2ryvtjn+bSRLzmaQwl0mS99N8brXgZ/v27eln7fzjH/+IwsLC6NmzZ3zqU5+KsWPHRqdOnWLlypVx++23x1tvvRXLly+PWbNmxdVXX50eo6KiIn3c2Mqbms/tqdkvImLHjh0tMk5jZsyY0WibWbNmRa9evSInJyf69evXrPHfz2qu4IKDmblMkpjPJIW53Lim/IITB5fevXv7/xHaNf82kyTmM0lhLpMkSZ/PrRZr7dy5M3383nvvRefOnWPmzJnx4Q9/OLp37x6dOnWKUaNGxcyZM2Pw4MEREbF48eL09nAREbt27Uofd+jQcEZVc5u4mv323L8lxgEAAAAAAGjPWm3Fz97P6ykoKKhz27ROnTrFJz/5yfj+978fERHPPvtsHH300elre1RWVjZ4v5rhTs1+e9dSWVlZ63pTx2nMrFmzGm3To0ePiIioqqqKDRs2NGv895vs7Ox08rp+/fqorq5u44pg35jLJIn5TFKYy82zcePGti6BFrZx48ZYt25dW5cBGfzbTJKYzySFuUyStOf53KdPn/QjYlpCqwU/Xbt2zTj/wAc+UG/b0aNHR05OTlRVVUVhYWH69ZrbsjW27VrNFUZ7b+dWs5aKiooGA52GxmlMY88h2lt7mljtXXV1tc+LRDCXSRLzmaQwlxvn80ke8572zhwlScxnksJcJkmSPp9bbau3jh07Rm5ubvq8oVCkU6dOceihh0ZERHl5eZ19GttXvOZvIe59r7y8vPRxWVlZg+PsuU9WVlZGPwAAAAAAgPau1YKfiIhBgwaljxtLz/Zcr7mc6fDDD08fFxcXN9h/zZo1dfZr7jh7rvfq1avZK34AAAAAAADaUqsGP8ccc0z6uKSkpN5227dvj61bt0ZE5uqc/Pz86NmzZ0REvPnmmw3ea8/1vLy86NOnT8a1kSNHpo+XLl1a7xibN2+OtWvXRkTEiBEjGrwfAAAAAABAe9Oqwc+ECRPSx4sXL6633eLFiyOVSkVEZkiTlZUVJ554YkTsXomzYsWKOvuvWLEivVJn3LhxkZWVlXF9wIABMXDgwIiIeO655zKe41PTggUL0sfjx4+vt14AAAAAAID2qFWDn8GDB8fYsWMjIuKZZ56J119/vVabzZs3x1133RURER06dIiPfOQjGdenTJkS2dm7y5w9e3bs2rUr4/quXbti9uzZEbF7m7hzzjmnzlrOPffciIjYtm1b3HbbbbWur1u3Lu67776IiOjXr5/gBwAAAAAAOOh0aO0bfPazn40VK1bEu+++G9///vfjnHPOibFjx0anTp1i5cqVcf/990dpaWlERHziE5/I2OotYvdqnfPOOy/uv//+KCwsjOuuuy7OP//86Nu3b5SUlMQDDzwQRUVFEbE73Onfv3+ddUycODHmz58fy5cvj8cffzw2b94cZ5xxRnTv3j1WrlwZ99xzT+zYsSOysrJi+vTpGc8aAgAAAAAAOBi0evAzYMCAuOaaa+LHP/5xbNmyJe6///64//77M9pkZWXFhRdeGOeff36dY0ydOjW2bNkS8+fPj6KiovjpT39aq01BQUFMnTq13jqys7Pj61//etx0001RWFgYixYtikWLFmW06dixY1x22WXpVUoAAAAAAAAHk1YPfiJ2P7fnJz/5ScyZMyeWLFkS69evj8rKyujZs2eMGjUqzj777DjyyCPr7Z+dnR0zZsyICRMmxNy5c6OwsDC2bt0ahx56aAwdOjTOPPPMJoU1ubm5ceONN8YTTzwRCxcujOLi4qioqIi8vLwYPXp0TJkyJQYNGtSSbx0AAAAAAOCAOSDBT0TEoYceGhdffHFcfPHF+zzG8ccfH8cff/x+1ZGTkxOTJ0+OyZMn79c4AAAAAAAA7U12WxcAAAAAAABAyxD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEiIDm1dAAAAAK2rMiozzouKitqokgNj8ODB0aVLl7YuAwAA2oTgBwAAIOHKozzj/PLLL2+jSg6MefPmxYgRI9q6DAAAaBO2egMAAAAAAEgIwQ8AAAAAAEBC2OoNAADgfWZqTI28yGvrMlpMWZTFnXFnW5cBAADtguAHAADgfSYv8iI/8tu6DAAAoBXY6g0AAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgITo0NYFAAAAwP6ojMqM86Kiojaq5MAZPHhwdOnSpa3LAACgHRL8AADAfqqoqIhVq1a1dRmt5v3wQ3QObuVRnnF++eWXt1ElB868efNixIgRbV0GAADtkOAHAAD206pVq6KgoKCtywAAAADP+AEAAAAAAEgKK34AAABIlKkxNfIir63LaFFlURZ3xp1tXQYAAAcBwQ8AALSwpP3QuSiKYk7MaesyoMnyIi/yI7+tywAAgDbRqsHPxRdf3KR2o0aNiuuvv77BNi+//HLMnTs3CgsLo7y8PHJzc2Po0KExadKkGDt2bJPuU1VVFU888UQsXLgwiouLo6KiIvLy8mLMmDFx9tlnx6BBg5o0DgAANCRpP3Qui7K2LgEAAIAmavcrfqqrq+PWW2+NefPmZbxeVlYWZWVlsWTJkigoKIgrrrgisrPrf2RReXl53HTTTVFYWJjxeklJSZSUlMSTTz4Zl112WZxxxhmt8j4AAAAAAABa2wEJfiZPnhyTJ0+u93qXLl3qvXbnnXemQ58jjzwyzjvvvOjbt2+UlJTEgw8+GEVFRTFv3rzIzc2NSy65pM4xqqur4+abb06HPuPHj49JkyZF9+7d46233op77703tmzZErfeemvk5eU1eQURAAAAAABAe3JAgp/c3Nw44ogjmt1vzZo18dBDD0VExNChQ+M73/lOdOrUKSIihg0bFuPGjYvrr78+CgsL46GHHoqCgoLo169frXEWLFgQy5Yti4jdIdTnPve59LVhw4bF2LFj45prrokdO3bE7Nmz47jjjoucnJx9easAAAAAAABtpv690dqBRx99NKqqqiIiYvr06enQZ4/OnTvH9OnTI2L383sefvjhOsfZEx517949Pv3pT9e63q9fv7jwwgsjImLdunWxePHiFnsPAAAAAAAAB0q7DX5SqVQsWbIkIiIGDhwYw4cPr7Pd8OHDY8CAARER8cILL0Qqlcq4vmbNmiguLo6IiJNPPjk6d+5c5zgTJ05MHwt+AAAAAACAg1G7DX7Wr18fmzZtioiIY445psG2o0aNioiIsrKy2LBhQ8a1PVu81WxXlx49ekT//v0jImL58uX7VDMAAAAAAEBbOiDP+Hn++efjueeeiw0bNkR2dnb06NEjhg8fHhMnTozRo0fX2Wf16tXp44EDBzY4/p4VP3v65efn79M4AwcOjLVr10ZpaWlUVFREly5dGmwPAAAAAADQnhyQ4Kdm+BKx+zk669ati6eeeipOPPHEuOqqq+KQQw7JaFNaWpo+7tWrV4Pj9+7du85+EbtXAe2Rl5fX4Dh77pNKpaKsrCwjUGqKve9dlx49ekROTk5ERGRnt9sFV+1Czc/HZ8XBzFwmScxnkqKl57K/D8CBlp2dnbh/e3yfQZKYzySFuUySvJ/mc6sGP507d44TTjghxowZEwMHDowuXbpEeXl5LF26NP7617/G1q1bY8mSJfHDH/4w/uM//iM6dPi/cioqKtLHja28qfncnpr9IiJ27NjRIuM0xYwZMxptM2vWrOjVq1fk5OREv379mn2P96uaq7jgYGYukyTmM0nREnO5Kb8ABNCSevfunej/p/R9BkliPpMU5jJJkvT53KrBz69//evo1q1brdePO+64OOuss+Kmm26KoqKiWLp0afzlL3+JKVOmpNvs2rXr/4rs0HCZHTt2rLNfRMR7773XIuMAAAAAAAC0d60a/NQV+uzRo0eP+NrXvhZf+cpXoqqqKh577LGM4KdTp07p48rKygbvUzPcqdkvIjPMqaysrHW9qeM0xaxZsxpt06NHj4iIqKqqig0bNjT7Hu8n2dnZ6eR1/fr1UV1d3cYVwb4xl0kS85mkaOm5vHHjxpYoC6DJNm7cGOvWrWvrMlqU7zNIEvOZpDCXSZL2PJ/79OmTfkRMSzggz/ipT9++feO4446Ll19+OdatWxdlZWXp5/DU3JatsW3Xdu7cmT7eezu3rl27ZozTUKDT0DhN0diziPbWniZWe1ddXe3zIhHMZZLEfCYpWmIu+7sAHGhJ/+9w0t8f7y/mM0lhLpMkSZ/Pbf4Eo8MPPzx9XFZWlj6uGaI0tmd6zd+w3Dt82RMk7T1+XfbcJysrK6MfAAAAAADAwaDNg5+srKw6X68ZCBUXFzc4xpo1a+rs19xx9lzv1avXPq34AQAAAAAAaEttHvysXr06fVxzlU1+fn707NkzIiLefPPNBsfYcz0vLy/69OmTcW3kyJHp46VLl9Y7xubNm2Pt2rURETFixIgmVg8AAAAAANB+tGnws379+njttdciYvfzfmoGP1lZWXHiiSdGxO6VOCtWrKhzjBUrVqRX6owbN67WCqIBAwbEwIEDIyLiueeey3iOT00LFixIH48fP37f3hAAAAAAAEAbarXg54UXXoiqqqp6r2/evDl+/OMfR2VlZURE/NM//VOtNlOmTIns7N0lzp49O3bt2pVxfdeuXTF79uyIiMjJyYlzzjmnznude+65ERGxbdu2uO2222pdX7duXdx3330REdGvXz/BDwAAAAAAcFDq0FoDz549O37zm9/EhAkTYvjw4ZGfnx+dOnWK8vLyWLp0afz1r3+NrVu3RsTu7djqCn4GDBgQ5513Xtx///1RWFgY1113XZx//vnRt2/fKCkpiQceeCCKiooiYne4079//zprmThxYsyfPz+WL18ejz/+eGzevDnOOOOM6N69e6xcuTLuueee2LFjR2RlZcX06dMjJyentT4WAAAAAACAVtNqwU9ExKZNm+Kxxx6Lxx57rN42EyZMiCuvvDI6duxY5/WpU6fGli1bYv78+VFUVBQ//elPa7UpKCiIqVOn1nuP7Ozs+PrXvx433XRTFBYWxqJFi2LRokUZbTp27BiXXXZZjB07tmlvDgAAAAAAoJ1pteDnqquuiqVLl8aKFSuipKQktm7dGjt27IguXbpEr169Yvjw4TFx4sQYPnx4g+NkZ2fHjBkzYsKECTF37twoLCyMrVu3xqGHHhpDhw6NM888s0lhTW5ubtx4443xxBNPxMKFC6O4uDgqKioiLy8vRo8eHVOmTIlBgwa11NsHAAAAAAA44Fot+Bk1alSMGjWqxcY7/vjj4/jjj9+vMXJycmLy5MkxefLkFqoKAAAAAACg/chu6wIAAAAAAABoGYIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEB3augAAAACgYZVRmXFeVFTURpW0nuzs7CgtLY2IiG7dukWnTp3auCIAgIOT4AcAAADaufIozzi//PLL26iSA2PBggVx9NFHt3UZAAAHJVu9AQAAAAAAJITgBwAAAAAAICFs9QYAAAAHmakxNfIir63LaDFlURZ3xp1tXQYAQCIIfgAAAOAgkxd5kR/5bV0GAADtkK3eAAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBAd2urGt912Wzz44IPp85kzZ8axxx7bYJ+XX3455s6dG4WFhVFeXh65ubkxdOjQmDRpUowdO7ZJ962qqoonnngiFi5cGMXFxVFRURF5eXkxZsyYOPvss2PQoEH79b4AAAAAAADaSpsEP2+//XY88sgjTW5fXV0dt956a8ybNy/j9bKysigrK4slS5ZEQUFBXHHFFZGdXf8ipvLy8rjpppuisLAw4/WSkpIoKSmJJ598Mi677LI444wzmveGAAAAAAAA2oEDHvxUV1fHf//3f0dVVVUcdthhsWXLlkb73HnnnenQ58gjj4zzzjsv+vbtGyUlJfHggw9GUVFRzJs3L3Jzc+OSSy6p974333xzOvQZP358TJo0Kbp37x5vvfVW3HvvvbFly5a49dZbIy8vr8kriAAAAAAAANqLA/6Mnzlz5kRhYWEMHDgwPvKRjzTafs2aNfHQQw9FRMTQoUPjhhtuiFNOOSWGDRsWp5xySvznf/5nDB06NCIiHnrooVi3bl2d4yxYsCCWLVsWERGTJ0+Oq6++Oj74wQ/GsGHD4uyzz44bbrghunbtGqlUKmbPnh1VVVUt9I4BAAAAAAAOjAMa/GzcuDHuuuuuiIj4/Oc/Hx06NL7g6NFHH02HMNOnT49OnTplXO/cuXNMnz49InY/v+fhhx+uc5w94VH37t3j05/+dK3r/fr1iwsvvDAiItatWxeLFy9u4rsCAAAAAABoHw5o8PPb3/42Kioq4vTTT49Ro0Y12j6VSsWSJUsiImLgwIExfPjwOtsNHz48BgwYEBERL7zwQqRSqYzra9asieLi4oiIOPnkk6Nz5851jjNx4sT0seAHAAAAAAA42Byw4OfZZ5+Nl156qd4VN3VZv359bNq0KSIijjnmmAbb7gmSysrKYsOGDRnX9mzxVrNdXXr06BH9+/ePiIjly5c3qUYAAAAAAID24oAEP++++2787ne/i4iIadOmRW5ubpP6rV69On08cODABtvuWfGzd7/mjrPnemlpaVRUVDSpTgAAAAAAgPag8YfstIDbbrstNm/eHCNGjIiCgoIm9ystLU0f9+rVq8G2vXv3rrNfxO5VQHvk5eU1OM6e+6RSqSgrK8sIlJpTb3169OgROTk5ERGRnX1Ad9o76NT8fHxWHMzMZZLEfCYpWnou+/sA0LKysrL828pBzffNJIW5TJK8n+Zzqwc/b775ZsybNy9ycnLi85//fGRlZTW5b80VN126dGmwbc3n9uy9UmfHjh0tMk5jZsyY0WibWbNmRa9evSInJyf69evXrPHfz/Lz89u6BGgR5jJJYj6TFC0xl5vyC0AANF2vXr38PzOJ4ftmksJcJkmSPp9bNdaqrKyMW2+9NVKpVJxzzjlxxBFHNKv/rl270scdOjScUXXs2LHOfhER7733XouMAwAAAAAA0J616oqfe++9N4qLi6N3795x0UUXNbt/p06d0seVlZUNtq0Z7tTsF5EZ5lRWVta63tRxGjNr1qxG2/To0SMiIqqqqmLDhg3NGv/9Jjs7O528rl+/Pqqrq9u4Itg35jJJYj6TFC09lzdu3NgSZQHw/ystLY1169a1dRmwz3zfTFKYyyRJe57Pffr0ST8ipiW0WvBTXFwc999/f0REXHbZZY1usVaXmn0a23Zt586ddfaLiOjatWvGOA0FOg2N05jGnkO0t/Y0sdq76upqnxeJYC6TJOYzSdESc9nfBYCWlUql/NtKYvi+maQwl0mSpM/nVgt+HnnkkaisrIy+ffvGzp0745lnnqnV5p133kkf/+1vf4vNmzdHRMQJJ5wQXbp0yQhSGts3veZvWe4dwOTl5aWPy8rKIjc3t95x9twnKysrox8AAAAAAEB712rBz54t00pKSuJnP/tZo+3vueee9PEvf/nL6NKlSxx++OHp14qLixvsv2bNmvRxzX57nxcXF8eQIUPqHWfPfXr16rVPq5QAAAAAAADaSnZbF9CQ/Pz86NmzZ0REvPnmmw223XM9Ly8v+vTpk3Ft5MiR6eOlS5fWO8bmzZtj7dq1ERExYsSIfaoZAAAAAACgrbTaip+rrroqrrrqqgbb/OlPf4q77747IiJmzpwZxx57bMb1rKysOPHEE+Mvf/lLFBcXx4oVK2L48OG1xlmxYkV6pc64ceMiKysr4/qAAQNi4MCBUVxcHM8991x85jOfic6dO9caZ8GCBenj8ePHN+l9AgAAAAAAtBftesVPRMSUKVMiO3t3mbNnz45du3ZlXN+1a1fMnj07IiJycnLinHPOqXOcc889NyIitm3bFrfddlut6+vWrYv77rsvIiL69esn+AEAAAAAAA46rbbip6UMGDAgzjvvvLj//vujsLAwrrvuujj//POjb9++UVJSEg888EAUFRVFxO5wp3///nWOM3HixJg/f34sX748Hn/88di8eXOcccYZ0b1791i5cmXcc889sWPHjsjKyorp06dHTk7OgXybAAAAAAAA+63dBz8REVOnTo0tW7bE/Pnzo6ioKH7605/WalNQUBBTp06td4zs7Oz4+te/HjfddFMUFhbGokWLYtGiRRltOnbsGJdddlmMHTu2pd8CAAAAAABAqzsogp/s7OyYMWNGTJgwIebOnRuFhYWxdevWOPTQQ2Po0KFx5plnNimsyc3NjRtvvDGeeOKJWLhwYRQXF0dFRUXk5eXF6NGjY8qUKTFo0KAD8I4AAAAAAABaXpsGPxdffHFcfPHFTW5//PHHx/HHH79f98zJyYnJkyfH5MmT92scAAAAAACA9ia7rQsAAAAAAACgZQh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACREh7YuAACAZKuoqIhVq1a1dRkZsrOzo7S0NCIiNm7cGNXV1fs1XlFRUUuUBQAAAPtN8AMAQKtatWpVFBQUtHUZAAAA8L5gqzcAAAAAAICEEPwAAAAAAAAkhK3eAAA4oKbG1MiLvLYuo0UVRVHMiTltXQYAAAAIfgAAOLDyIi/yI7+ty2hRZVHW1iUAAABARNjqDQAAAAAAIDEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEB1aa+Dt27fHyy+/HIWFhVFYWBhlZWVRXl4eu3btim7dusXhhx8eY8eOjYKCgjj00EMbHW/58uXx+OOPx7Jly2LLli1xyCGHxJAhQ+L000+PU089tcl1LVy4MBYsWBCrVq2K7du3x2GHHRYjR46Ms846K4YPH74/bxkAAAAAAKBNtVrws3LlyvjZz35W57Xy8vJYunRpLF26NB588MH40pe+FB/84AfrHetPf/pT3HPPPZFKpdKvbdmyJV599dV49dVXY+HChfG1r30tOnXqVO8Yu3btih//+Mfx8ssvZ7y+cePGWLhwYTzzzDNx0UUXxcc//vHmvVEAAAAAAIB2otWCn4iIXr16xbHHHhtHHXVU9O7dO3r06BGpVCpKS0vj+eefj8WLF8fWrVvjhz/8YXzve9+LIUOG1Brjr3/9a9x9990REdG3b9+48MIL44gjjohNmzbFo48+Gm+88Ua89NJLMWvWrPjyl79cby2/+tWv0qHPscceG1OmTImePXvGP/7xj7jvvvuipKQk/vznP0fPnj1j0qRJrfJ5AAAAAAAAtKZWC35Gjx4ds2bNqvf6hz70oVi8eHHcfPPNUVlZGXfffXdcffXVGW22bdsWt99+e0RE9O7dO7773e9Gbm5u+voJJ5wQP/rRj+LFF1+MZ555JiZNmhTHHntsrXv97W9/i2effTbd5+tf/3pkZ+9+vNGwYcNi3Lhxce2118bGjRvj9ttvj5NOOim6d+++358BAAAAAADAgZTdagNnNz70+PHjY8CAARER8eabb9a6/sQTT8T27dsjImLatGkZoc+ee3zuc59L3+vBBx+s8z4PPfRQRETk5ORktN8jNzc3pk2bFhER7777bsybN6/R2gEAAAAAANqbVgt+mqpr164REfHee+/VurZkyZJ0mwkTJtTZv1evXjFmzJiI2L2yZ8eOHRnXd+zYEa+//npERIwZMyZ69epV5zgTJkxI17J48eJ9eCcAAAAAAABtq02DnzVr1sTbb78dEREDBw7MuFZZWRkrV66MiIjhw4dHhw7170o3atSoiNgdHhUWFmZcKywsjMrKyox2denQoUMMHz68Vh8AAAAAAICDxQEPfnbu3Blr166Nhx9+OGbOnBlVVVURETFlypSMdmvWrInq6uqIqB0K7a3m9eLi4oxrq1evTh/v2VauPnuuV1VVxbp16xp5JwAAAAAAAO1L/ctoWtCCBQviV7/6Vb3XL7jggjj11FMzXisrK0sf5+XlNTh+ze3bSktLM67VPK9vm7e6rm/cuDEOP/zwBtvvbe9716VHjx6Rk5MTEU17DtL7Wc3Px2fFwcxcJknMZ/aFuQJAc2VlZfnvBwc13zeTFOYySfJ+ms8HJPipz5AhQ+KKK66IYcOG1bpW81k9Xbp0aXCczp07p48rKir2eZya1/cepylmzJjRaJtZs2ZFr169IicnJ/r169fse7xf5efnt3UJ0CLMZZLEfKapmvLLMQBQU69evfw/M4nh+2aSwlwmSZI+nw9I8HPiiSfGzTffHBERu3btipKSknjuuedi8eLF8bOf/SwuvfTSOOGEEzL6vPfee/9XZAPP94mI6NixY/p4165d+zxOzet7jwMAAAAAANDeHZDgp1u3btGtW7f0+bBhw+KUU06Jp556Km655Zb44Q9/GDNmzIiJEyem29QMcyorKxscv2a406lTp4xrzRmn5vW9x2mKWbNmNdqmR48eEbH7OUIbNmxo9j3eT7Kzs9PJ6/r169PPfIKDjblMkpjP7IuNGze2dQkAHGRKS0s9e5eDmu+bSQpzmSRpz/O5T58+6UfEtIQ23erttNNOixdffDGee+65+J//+Z8YN25cdO/ePSIiunbtmm7X2LZrO3fuTB/vvZ1bc8apeb2xbeHq0tgzhPbWniZWe1ddXe3zIhHMZZLEfKapzBMAmiuVSvnvB4nh+2aSwlwmSZI+n9v8CUYnnnhiROwOb1555ZX063l5eenjsrKyBseouW/83uFLzfPG9peveb13794NtgUAAAAAAGhv2nTFT0REbm5u+rjm1mcDBgyI7OzsqK6ujuLi4gbHqHl94MCBGdcOP/zw9PGaNWsaHGfP9ZycHA+RBAAAgAOkMjK3Zi8qKkr0b+EOHjx4n3YaAQBoijYPfmqu5qn5TU+HDh1i2LBhsWLFilixYkVUVlZGhw51l7t06dKI2P08n6FDh2ZcGzp0aHTo0CEqKytj6dKlccEFF9Q5RmVlZaxYsSKjDwAAAND6yqM843z69OltVMmBMW/evBgxYkRblwEAJFSbb/X23HPPpY+POOKIjGt7toHbsWNHLFq0qM7+paWl8frrr0dExOjRozOe6ROx+xk/Y8aMiYiI119/vd7t3hYtWhQ7duyIiIjx48fvwzsBAAAAAABoW60W/CxYsCB27drVYJuHH344Xn755YiIyM/Pj2OOOSbj+hlnnBGHHHJIRETccccdsXXr1ozr1dXV8dvf/ja9/Pu8886r8z7nnntuRERUVVXF//zP/9RaLl5eXh633357RER069YtCgoKmvIWAQAAAAAA2pVW28/sz3/+c/zhD3+ICRMmxMiRI6Nv377RpUuXqKioiH/84x/x9NNPx/Lly3cX0aFDXHHFFZGdnZlDde/ePaZNmxa/+c1vYsOGDfGtb30rPvrRj8YRRxwRmzZtikceeSTeeOONiIg45ZRT4thjj62zltGjR8eHPvShePbZZ+OFF16IG264Ic4555zo2bNn/OMf/4h77703Nm7cGBER06ZNi+7du7fWxwIAAAA0YmpMjbzIa+syWkxZlMWdcWdblwEAvE+06oNstm3bFk888UQ88cQT9bbp1atXzJgxI4477rg6r5955pmxadOmuOeee6KkpCRmzZpVq83YsWNjxowZDdbyL//yL7Fjx454+eWX44033kgHRntkZWXFxz72sZg0aVIT3hkAAADQWvIiL/Ijv63LAAA4KLVa8PPv//7v8dJLL8WyZcuipKQkNm/eHNu2bYtOnTpFbm5uDBkyJE444YQ4+eSTo3Pnzg2OdfHFF8cHPvCBePzxx+PNN9+MLVu2RLdu3WLw4MExceLEOPXUUxutp1OnTvHNb34zFi5cGAsWLIhVq1bFu+++G4cddlgcc8wxcdZZZ8Xw4cNb6u0DAAAAAAAccK0W/AwYMCAGDBgQ//zP/9wi440YMSJGjBix3+OceuqpTQqKAAAAAAAADjbZjTcBAAAAAADgYCD4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACSH4AQAAAAAASAjBDwAAAAAAQEIIfgAAAAAAABJC8AMAAAAAAJAQgh8AAAAAAICEEPwAAAAAAAAkhOAHAAAAAAAgIQQ/AAAAAAAACdGhrQsAAHi/q6ioiFWrVrV1Ga2mqKiorUsAAACA9w3BDwBAG1u1alUUFBS0dRkAAABAAtjqDQAAAAAAICEEPwAAAAAAAAlhqzcAgHZmakyNvMhr6zJaTFEUxZyY09ZlAAAAwPuC4AcAoJ3Ji7zIj/y2LqPFlEVZW5cAAAAA7xu2egMAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCdGjrAgAAAACSrDIqM86LioraqJIDZ/DgwdGlS5e2LgMA3pcEPwAAAACtqDzKM84vv/zyNqrkwJk3b16MGDGircsAgPclW70BAAAAAAAkhOAHAAAAAAAgIWz1BgAAAHAATY2pkRd5bV1GiyqLsrgz7mzrMgCAEPwAAAAAHFB5kRf5kd/WZQAACWWrNwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgITo0JqDFxYWxssvvxzLli2L1atXR3l5eeTk5EReXl6MGDEiCgoKYuTIkU0e7+WXX465c+dGYWFhlJeXR25ubgwdOjQmTZoUY8eObdIYVVVV8cQTT8TChQujuLg4KioqIi8vL8aMGRNnn312DBo0aF/fLgAAAAAAQJtqteBn5syZ8eabb9Z6vbKyMtauXRtr166NBQsWxGmnnRZXXnlldOhQfynV1dVx6623xrx58zJeLysri7KysliyZEkUFBTEFVdcEdnZ9S9iKi8vj5tuuikKCwszXi8pKYmSkpJ48skn47LLLoszzjijme8WAAAAAACg7bVa8FNWVhYRET179oyTTz45Ro4cGb17947q6upYsWJFPPzww1FWVhZPPfVUVFVVxZe//OV6x7rzzjvToc+RRx4Z5513XvTt2zdKSkriwQcfjKKiopg3b17k5ubGJZdcUucY1dXVcfPNN6dDn/Hjx8ekSZOie/fu8dZbb8W9994bW7ZsiVtvvTXy8vKavIIIAAAAAACgvWi14GfgwIHxyU9+Mk466aRaq3CGDx8ep512Wlx33XWxdu3aeOaZZ+LMM8+MUaNG1RpnzZo18dBDD0VExNChQ+M73/lOdOrUKSIihg0bFuPGjYvrr78+CgsL46GHHoqCgoLo169frXEWLFgQy5Yti4iIyZMnx+c+97n0tWHDhsXYsWPjmmuuiR07dsTs2bPjuOOOi5ycnBb7PAAAAAAAAFpb/fui7adrr702PvShD9W79Vpubm585jOfSZ8///zzdbZ79NFHo6qqKiIipk+fng599ujcuXNMnz49InY/v+fhhx+uc5w94VH37t3j05/+dK3r/fr1iwsvvDAiItatWxeLFy9u6O0BAAAAAAC0O60W/DTFsccemz4uKSmpdT2VSsWSJUsiYvcKouHDh9c5zvDhw2PAgAEREfHCCy9EKpXKuL5mzZooLi6OiIiTTz45OnfuXOc4EydOTB8LfgAAAAAAgINNmwY/lZWV6eO6VgatX78+Nm3aFBERxxxzTINj7dkmrqysLDZs2JBxbc8WbzXb1aVHjx7Rv3//iIhYvnx5I9UDAAAAAAC0L20a/CxdujR9PHDgwFrXV69e3eD1mvas+Nm7X3PH2XO9tLQ0KioqGmwLAAAAAADQnnRoqxtXV1fH/fffnz7/0Ic+VKtNaWlp+rhXr14Njte7d+86+0XsXgW0R15eXoPj7LlPKpWKsrKyjECpMXvfty49evSInJyciKh7lRP/p+bn47PiYGYukyTmc+vwWQIASZOdnf2+/h7H980khblMkryf5nObBT+PPPJIrFy5MiIixo8fH0cddVStNjVX3HTp0qXB8Wo+t2fvlTo7duxokXEaM2PGjEbbzJo1K3r16hU5OTnRr1+/Zo3/fpafn9/WJUCLMJdJEvO55TTll0cAAA4mvXv39nOP/5/vm0kKc5kkSfp8bpNYa+nSpXHHHXdERMRhhx0Wn//85+tst2vXrvRxhw4NZ1QdO3ass19ExHvvvdci4wAAAAAAALRnB3zFzzvvvBM/+tGPoqqqKjp27Bhf/epX47DDDquzbadOndLHlZWVDY5bM9yp2S8iM8yprKysdb2p4zRm1qxZjbbp0aNHRERUVVXFhg0bmjX++012dnY6eV2/fn1UV1e3cUWwb8xlksR8bh0bN25s6xIAAFrUxo0bY926dW1dRpvxfTNJYS6TJO15Pvfp0yf9iJiWcECDn/Xr18eNN94Y7777bmRnZ8dXvvKVGDVqVL3ta27L1ti2azt37qyzX0RE165dM8ZpKNBpaJzGNPYcor21p4nV3lVXV/u8SARzmSQxn1uOzxEASBrfK/4fnwVJYS6TJEmfzwdsq7eysrK44YYbYtOmTZGVlRUzZsyIE088scE+NYOUxva+r/mbsnsHMHl5eRl1NGTPfbKysjL6AQAAAAAAtHcHJPgpLy+PG2+8MUpKSiIiYvr06XH66ac32u/www9PHxcXFzfYds2aNXX2a+44e6736tWr2St+AAAAAAAA2lKrBz/bt2+P7373u7F69eqIiLjkkkvirLPOalLf/Pz86NmzZ0REvPnmmw223XM9Ly8v+vTpk3Ft5MiR6eOlS5fWO8bmzZtj7dq1ERExYsSIJtUIAAAAAADQXrRq8LNz58646aaboqioKCIiPvrRj8YFF1zQ5P5ZWVnp7eCKi4tjxYoVdbZbsWJFeqXOuHHjIisrK+P6gAEDYuDAgRER8dxzz2U8x6emBQsWpI/Hjx/f5DoBAAAAAADag1YLfiorK+Pmm2+O5cuXR0TElClTYurUqc0eZ8qUKZGdvbvM2bNnx65duzKu79q1K2bPnh0RETk5OXHOOefUOc65554bERHbtm2L2267rdb1devWxX333RcREf369RP8AAAAAAAAB50OrTXwT3/603j11VcjImL06NFRUFAQ//jHP+ovpEOHGDBgQK3XBwwYEOedd17cf//9UVhYGNddd12cf/750bdv3ygpKYkHHnggvaLo3HPPjf79+9c5/sSJE2P+/PmxfPnyePzxx2Pz5s1xxhlnRPfu3WPlypVxzz33xI4dOyIrKyumT58eOTk5LfApAAAAAAAAHDitFvwsXrw4ffy3v/0trr766gbb9+nTJ2655ZY6r02dOjW2bNkS8+fPj6KiovjpT39aq01BQUGDK4qys7Pj61//etx0001RWFgYixYtikWLFmW06dixY1x22WUxduzYBmsFAAAAAABoj1ot+GlJ2dnZMWPGjJgwYULMnTs3CgsLY+vWrXHooYfG0KFD48wzz2xSWJObmxs33nhjPPHEE7Fw4cIoLi6OioqKyMvLi9GjR8eUKVNi0KBBB+AdAQAAAAAAtLxWC37+9Kc/tfiYxx9/fBx//PH7NUZOTk5Mnjw5Jk+e3EJVAQAAAAAAtA/ZbV0AAAAAAAAALUPwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQgh+AAAAAAAAEkLwAwAAAAAAkBCCHwAAAAAAgIQQ/AAAAAAAACSE4AcAAAAAACAhBD8AAAAAAAAJIfgBAAAAAABICMEPAAAAAABAQnRo6wIAABpTUVERq1atausyWk1RUVFblwAAAAAkhOAHAGj3Vq1aFQUFBW1dBgAAAEC7Z6s3AAAAAACAhBD8AAAAAAAAJISt3gCAg87UmBp5kdfWZbSYoiiKOTGnrcsAAAAAEkDwAwAcdPIiL/Ijv63LaDFlUdbWJQAAAAAJYas3AAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH4AAAAAAAASQvADAAAAAACQEIIfAAAAAACAhBD8AAAAAAAAJITgBwAAAAAAICEEPwAAAAAAAAkh+AEAAAAAAEgIwQ8AAAAAAEBCCH7+v/buPcjq+r4f/5NdrsrNRXEBhUQQ4j0KkpikUcHaYBJzacaatGlibNoktpnenMammZrEGWLjdGzT1MRkom0ZS5w2xppKLgJiNCoaWhOvyLpF5Q4rLOjuwrL8/uC357vLXoEDZ/ns4zHjzOfs5/15n/fB1772c87rvN9vAAAAAACAglD4AQAAAAAAKAiFHwAAAAAAgIJQ+AEAAAAAACgIhR8AAAAAAICCUPgBAAAAAAAoCIUfAAAAAACAglD4AQAAAAAAKAiFHwAAAAAAgIJQ+AEAAAAAACgIhR8AAAAAAICCUPgBAAAAAAAoCIUfAAAAAACAglD4AQAAAAAAKAiFHwAAAAAAgIJQ+AEAAAAAACgIhR8AAAAAAICCUPgBAAAAAAAoCIUfAAAAAACAglD4AQAAAAAAKAiFHwAAAAAAgIJQ+AEAAAAAACgIhR8AAAAAAICCUPgBAAAAAAAoCIUfAAAAAACAglD4AQAAAAAAKAiFHwAAAAAAgIJQ+AEAAAAAACgIhR8AAAAAAICCUPgBAAAAAAAoCIUfAAAAAACAglD4AQAAAAAAKAiFHwAAAAAAgIIYWukBAAAAAHBsa01rp8f19fUVGsnRMW3atIwcObLSwwCAbin8AAAAAHBYGtPY6fG1115boZEcHcuWLcusWbMqPQwA6Jal3gAAAAAAAApC4QcAAAAAAKAgLPUGAAAAQFldnatTk5pKD6NsGtKQxVlc6WEAQL8o/AAAAABQVjWpycRMrPQwAGBQstQbAAAAAABAQSj8AAAAAAAAFITCDwAAAAAAQEEo/AAAAAAAABSEwg8AAAAAAEBBKPwAAAAAAAAUxNAj2fmOHTuyZs2arFmzJnV1damrq8vOnTuTJBdffHGuu+66g+rvf/7nf/LAAw+krq4ujY2NGTt2bKZPn57LLrss559/fr/62Lt3b5YuXZqHH34469atS3Nzc2pqanLOOedkwYIFOfXUUw/6dQIAAAAAAAwER7Tw8+lPf7os/bS1teX222/PsmXLOv28oaEhDQ0NeeKJJzJv3rz84R/+Yaqqep7E1NjYmIULF6aurq7Tzzdt2pRNmzZlxYoV+dSnPpX58+eXZdwAAAAAAABH0xEt/HR04oknZsqUKXnqqacO+trFixeXij5vfvObc+WVV+bkk0/Opk2b8l//9V+pr6/PsmXLMnbs2HzsYx/rto+2trbccsstpaLP3Llzc9lll2X06NF58cUX84Mf/CA7duzI7bffnpqamn7PIAIAAAAAABgojmjh5yMf+UimT5+e6dOnZ/z48dm8eXP++I//+KD6WL9+fe67774kyfTp0/PlL385w4cPT5LMmDEjc+bMyY033pi6urrcd999mTdvXmpra7v08+CDD+b5559Pklx++eX5gz/4g9K5GTNm5Pzzz89f/dVfpampKXfccUfOPffcVFdXH+pLBwAAAAAAOOp6XhetDK666qrMnj0748ePP+Q+7r///uzduzdJcs0115SKPu1GjBiRa665Jsn+/Xt+9KMfddtPe/Fo9OjR+fjHP97lfG1tbT70oQ8lSTZu3JiVK1ce8pgBAAAAAAAq4YgWfg7Xvn378sQTTyRJpkyZkpkzZ3bbbubMmZk8eXKS5Mknn8y+ffs6nV+/fn3WrVuXJLnooosyYsSIbvu55JJLSscKPwAAAAAAwLFmQBd+Nm/enNdeey1JcsYZZ/Ta9swzz0ySNDQ0ZMuWLZ3OtS/x1rFdd8aPH59JkyYlSV544YVDGjMAAAAAAEClDOjCz6uvvlo6njJlSq9t22f8HHjdwfbTfn7btm1pbm7u91gBAAAAAAAqbWilB9Cbbdu2lY4nTJjQa9sTTzyx2+uS/bOA2tXU1PTaT/vz7Nu3Lw0NDZ0KSgcz3p6MHz8+1dXVSZKqqgFdd6u4jv8+/q04lolliqRS8ex3BwCAgaSqqqrXe1TvAykKsUyRDKZ4HtCFn44zbkaOHNlr24779hw4U6epqaks/fTls5/9bJ9tbrvttkyYMCHV1dWpra09qP4Hs4kTJ1Z6CFAWYpkiOZrx3J8vVwAAwNFy4okn9vtzHe8DKQqxTJEUPZ4HdFlr9+7dpeOhQ3uvUQ0bNqzb65Jkz549ZekHAAAAAABgIBvQM36GDx9eOm5tbe21bcfiTsfrks7FnNbW1i7n+9tPX2677bY+24wfPz5Jsnfv3mzZsuWg+h9sqqqqSpXXzZs3p62trcIjgkMjlimSSsXz1q1bj8rzAABAf2zdujUbN27s8bz3gRSFWKZIBnI8n3TSSaUtYsphQBd+Oi7L1teyay0tLd1elySjRo3q1E9vBZ3e+ulLX/sQHWggBdZA19bW5t+LQhDLFMnRjGe/NwAADCQHcy/sfSBFIZYpkqLH84Be6q1jIaWvtf07fhP4wAJMTU1N6bihoaHXftqfZ8iQIZ2uAwAAAAAAGOgGdOHnlFNOKR2vW7eu17br16/v9rqD7af9/IQJEw56xg8AAAAAAEAlDejCz8SJE3PCCSckSZ577rle27afr6mpyUknndTp3Fve8pbS8bPPPttjH9u3b8+GDRuSJLNmzTqkMQMAAAAAAFTKgC78DBkyJBdeeGGS/TNxVq9e3W271atXl2bqzJkzJ0OGDOl0fvLkyZkyZUqS5NFHH+20j09HDz74YOl47ty5hzt8AAAAAACAo2pAF36S5IorrkhV1f5h3nHHHdm9e3en87t3784dd9yRJKmurs573/vebvt5//vfnyTZtWtXFi1a1OX8xo0bc8899yRJamtrFX4AAAAAAIBjztAj2fnzzz+fjRs3lh43NjaWjjdu3Nhphk2SXHLJJV36mDx5cq688sr88Ic/TF1dXb70pS/lAx/4QE4++eRs2rQp9957b+rr65PsL+5MmjSp27FccsklWb58eV544YX85Cc/yfbt2zN//vyMHj06a9asyX/+53+mqakpQ4YMyTXXXJPq6urD/wcAAAAAAAA4io5o4Wfp0qVZsWJFt+deeOGFvPDCC51+1l3hJ0muvvrq7NixI8uXL099fX1uvfXWLm3mzZuXq6++usexVFVV5frrr8/ChQtTV1eXxx9/PI8//ninNsOGDcunPvWpnH/++b2/MAAAAAAAgAHoiBZ+yqWqqiqf/exn87a3vS0PPPBA6urqsnPnzowZMybTp0/Pb/7mb/arWDN27NjcdNNNWbp0aR5++OGsW7cuzc3Nqampydlnn50rrrgip5566lF4RQAAAAAAAOV3RAs/1113Xa677rqy9XfBBRfkggsuOKw+qqurc/nll+fyyy8v06gAAAAAAAAGhqpKDwAAAAAAAIDyUPgBAAAAAAAoCIUfAAAAAACAglD4AQAAAAAAKAiFHwAAAAAAgIJQ+AEAAAAAACgIhR8AAAAAAICCUPgBAAAAAAAoiKGVHgAAAAAADGStae30uL6+vtf2VVVV2bZtW5Jk69ataWtrO2JjOxKmTZuWkSNHVnoYABwihR8AAAAA6EVjGjs9vvbaays0kqNj2bJlmTVrVqWHAcAhstQbAAAAAABAQZjxAwDHuObm5qxdu/aoPFellqzoaykNAAAAAPZT+AGAY9zatWszb968Sg8DAAAGjatzdWpSU+lhlE1DGrI4iys9DADKROEHAAAAAA5CTWoyMRMrPQwA6JY9fgAAAAAAAArCjB8AKJiiLTuRJPWpz5IsqfQwAAAAAAY8hR8AKJgiLjvRkIZKDwEAAADgmGCpNwAAAAAAgIJQ+AEAAAAAACgIhR8AAAAAAICCUPgBAAAAAAAoCIUfAAAAAACAglD4AQAAAAAAKAiFHwAAAAAAgIJQ+AEAAAAAACgIhR8AAAAAAICCUPgBAAAAAAAoCIUfAAAAAACAglD4AQAAAAAAKAiFHwAAAAAAgIJQ+AEAAAAAACgIhR8AAAAAAICCUPgBAAAAAAAoCIUfAAAAAACAglD4AQAAAAAAKAiFHwAAAAAAgIJQ+AEAAAAAACgIhR8AAAAAAICCUPgBAAAAAAAoCIUfAAAAAACAglD4AQAAAAAAKAiFHwAAAAAAgIJQ+AEAAAAAACgIhR8AAAAAAICCUPgBAAAAAAAoCIUfAAAAAACAglD4AQAAAAAAKAiFHwAAAAAAgIJQ+AEAAAAAACgIhR8AAAAAAICCUPgBAAAAAAAoiKGVHgAAAAAAUDmtae30uL6+vkIjOXqmTZuWkSNHVnoYAEeEwg8AAAAADGKNaez0+Nprr63QSI6eZcuWZdasWZUeBsARYak3AAAAAACAglD4AQAAAAAAKAhLvQEAAAAAJVfn6tSkptLDKKuGNGRxFld6GABHhcIPAIXX3NyctWvXVnoYR8xg2HgVAAA4empSk4mZWOlhAHCIFH4AKLy1a9dm3rx5lR4GAAAAABxx9vgBAAAAAAAoCIUfAAAAAACAgrDUGwCDTtE2Kq1PfZZkSaWHAQAAAMAAoPADwKBTtI1KG9JQ6SEAAAAAMEBY6g0AAAAAAKAgFH4AAAAAAAAKQuEHAAAAAACgIBR+AAAAAAAACkLhBwAAAAAAoCAUfgAAAAAAAApC4QcAAAAAAKAgFH4AAAAAAAAKQuEHAAAAAACgIBR+AAAAAAAACkLhBwAAAAAAoCAUfgAAAAAAAApC4QcAAAAAAKAgFH4AAAAAAAAKQuEHAAAAAACgIBR+AAAAAAAACkLhBwAAAAAAoCAUfgAAAAAAAApiaKUHAEDlNTc3Z+3atZUexhFTX19f6SEAAAAAwFGh8ANA1q5dm3nz5lV6GAAAAADAYbLUGwAAAAAAQEGY8QMAAAAAFFprWjs9LvqS4NOmTcvIkSMrPQygQhR+AOji6lydmtRUehhlU5/6LMmSSg8DAACACmlMY6fH1157bYVGcnQsW7Yss2bNqvQwgApR+AGgi5rUZGImVnoYZdOQhkoPAQAAAACOCnv8AAAAAAAAFIQZPwAAAADAoFK0Jc4b0pDFWVzpYQADhMIPAAAAADCoFG2Jc4COLPUGAAAAAABQEAo/AAAAAAAABaHwAwAAAAAAUBD2+AEAAAAAOIa1prXT4/r6+rL0W1VVlW3btiVJtm7dmra2trL0Ww7Tpk3LyJEjKz0MGJAUfgAAAAAAjmGNaez0+Nprr63QSI6eZcuWZdasWZUeBgxIlnoDAAAAAAAoCIUfAAAAAACAgrDUGwAAAABAgVydq1OTmkoPo6wa0pDFWVzpYcAxYVAWfrZs2ZIlS5Zk1apV2bZtW4YOHZra2tpcdNFF+a3f+q2MGDGi0kMEBpDm5uasXbv2kK8fyBshtivXpo8AAABA5dWkJhMzsdLDACpk0BV+nnzyyXzjG99IU1NT6WctLS2pq6tLXV1dli5dmhtuuCG1tbUVHCUwkKxduzbz5s2r9DAAAAAAAPo0qAo/9fX1ufXWW7N79+6MHDkyH/zgB3P22Wdn9+7deeSRR7J06dJs2LAhCxcuzNe+9rWMGjWq0kMGAAAAABj0WtPa6XHRVy+ZNm1aRo4cWelhcIwaVIWfO++8M7t37051dXX+5m/+JjNnziydO/vsszNp0qQsWrQoGzZsyH333ZerrrqqgqMFAAAAACBJGtPY6fG1115boZEcHcuWLcusWbMqPQyOUYOm8LNmzZo899xzSZJLL720U9Gn3fve974sX74869aty5IlS/LhD384Q4cOmn8ioJ+KuEFifeqzJEsqPQwAAAAA4DANmqrGypUrS8eXXnppt22qqqpy8cUX56677srrr7+eZ555Juedd97RGiJwjCjiBokNaaj0EAAAAAD4/1nKjsMxaAo/L7zwQpJkxIgROe2003psd+aZZ3a6RuHnyGtubs7atWu7/Lyqqirbtm1LkmzdujVtbW1He2hHTNESW0//D4ui6H9oAQAAAI41RVuR5cDVWCxlx+EYNIWfV199NUlSW1ub6urqHttNnjy5yzUcWWvXrs28efMqPYyjqmiJbTD+PwQAAACgcoq2IovVWCinQVH42b17d3bu3JkkmTBhQq9tR48enREjRqSlpaU026S/+tN+/PjxpcJTVVXVQfVfVIPx32Ht2rWFet1Fnu3TnSL+Id6RHZ0eF+01en3HvqK/Rq/v2Ff011j015cU/zV6fce+or9Gr+/YV/TX6PUd+4r+Gov++pLiv8YDX1/RVVVVHfXPRzs+X5E+m+3OoCj8NDc3l477s7zWyJEj09LS0um6/vjsZz/bZ5u77rorSVJdXZ3a2tqD6r+oJkyYkFdeeaXSw+AwTJ8+3f9DAAAAAKBfTj755AwbNqxizz9xYnFmi3VnUBR+du/eXToeOrTvl9zepuN15TJkyJCy93msGzZsWE455ZRKDwMAAAAAAI55g6LwM3z48NJxa2trn+3b23S8rj9uu+22PtsUfQpZOe3duzfbt29P0nmJPDjWiGWKRDxTFGKZIhHPFIVYpkjEM0UhlimSwRTPg6Lw03F5t/4s39bepj/LwnXU1/5BHJzt27eXls+77bbb/PtyzBLLFIl4pijEMkUinikKsUyRiGeKQixTJIMpngfF9JPhw4dnzJgxSZJt27b12nbXrl1paWlJopADAAAAAAAcWwZF4SdJaQ+ZjRs3Zu/evT22W79+fZdrAAAAAAAAjgWDpvAza9asJElLS0teeumlHts9++yzXa4BAAAAAAA4Fgyaws/cuXNLx8uXL++2TVtbW1asWJEkOf7443PWWWcdlbEBAAAAAACUw6Ap/MyYMSNnnHFGkv2Fn9WrV3dp86Mf/Sjr1q1LkixYsCBDhw49qmMEAAAAAAA4HIOm8JMkn/zkJzN8+PDs3bs3N910U+65556sXr06Tz/9dG6//fYsWrQoSTJp0qS8//3vr/BoAQAAAAAADs6gmtLy5je/OX/6p3+ab3zjG2lqasq///u/d2kzadKk3HDDDRk1alQFRggAAAAAAHDohuzbt29fpQdxtG3ZsiX3339/Vq1alYaGhgwdOjS1tbV5+9vfnve85z0ZMWJEpYcIAAAAAABw0AZl4QcAAAAAAKCIBtUePwAAAAAAAEWm8AMAAAAAAFAQCj8AAAAAAAAFofADAAAAAABQEAo/AAAAAAAABaHwAwAAAAAAUBAKPwAAAAAAAAWh8AMAAAAAAFAQQys9AAa2HTt2ZM2aNVmzZk3q6upSV1eXnTt3JkkuvvjiXHfddX328eqrr+bpp5/OmjVr8sorr2THjh3ZuXNnqqqqMm7cuEyfPj3vete7MmfOnAwZMqTP/vbu3ZulS5fm4Ycfzrp169Lc3Jyampqcc845WbBgQU499dR+vbbGxsYsWbIkTzzxRLZs2ZIkOemkk3LhhRfmiiuuyJgxY/rVD8eOgRTP3/zmN7NixYp+jfuf/umfMnHixF7bbNmyJUuWLMmqVauybdu2DB06NLW1tbnooovyW7/1WxkxYkS/notjQzliuSctLS35i7/4i2zevDnJ/rz4zW9+s1/X/fjHP85jjz2WjRs3prW1NRMmTMgFF1yQBQsW5KSTTurX84vlwWcgxfONN96YZ599tl9933333X22efnll/PjH/84v/71r9PQ0JCRI0dmypQpede73pX58+enurq6fy+EY0Y54vnBBx/MP//zP/fr+T73uc/lkksu6bWN/MyhGEixLDdzuI7EvcavfvWr/PznP8/zzz+f7du3p6qqKuPHj8/UqVNzzjnn5N3vfndGjhzZ4/VyM4diIMWy3MzhOtx43rx5c/74j//4oJ6zr/eDRcvNCj/06tOf/vRh9/GDH/wgDz/8cLfnNm/enM2bN+fRRx/NmWeemb/4i7/oteDS2NiYhQsXpq6urtPPN23alE2bNmXFihX51Kc+lfnz5/c6phdffDFf//rXs3379k4/f/nll/Pyyy9n2bJluf766zNjxoz+vUiOCQMtnsvlySefzDe+8Y00NTWVftbS0lL6w7l06dLccMMNqa2tPeJj4egoRyz35Pvf/37pQ/L+2rhxYxYuXJgNGzZ0+vn69euzfv36LF26NJ///Ocze/bsXvsRy4PTQIvncnnggQfyve99L62traWf7dmzJ88//3yef/75PPjgg/nCF76QsWPHVmR8HBlHMp4PhfzMoRposVwucvPgVM543rVrV/75n/85Tz75ZJdzTU1N2bBhQx5//PHMnDkzb3rTm7rtQ27mUA20WC4XuXlwqsS9xuTJk3s8V8TcrPBDv5144omZMmVKnnrqqYO6rrq6OqeffnpmzZqVqVOnZvz48Rk7dmx27dqV9evX52c/+1leeeWVPPvss7n55pvzla98JVVVXVchbGtryy233FIq+sydOzeXXXZZRo8enRdffDE/+MEPsmPHjtx+++2pqanJ+eef3+14tm7dmptvvjmNjY2prq7Oe9/73tIv7S9/+cv893//d1577bXcfPPN+drXvpYJEyYc5L8Ux4JKx3O7E044IV/84hd7fc6ampoez9XX1+fWW2/N7t27M3LkyHzwgx/M2Wefnd27d+eRRx7J0qVLs2HDhixcuDBf+9rXMmrUqIN6vQx8hxrL3amvr8/999+fYcOGZejQoZ1uVHrS1NTU6eZo/vz5eec735nhw4fn6aefzg9/+MM0NTXl1ltvzVe/+tUe3zSIZZLKx3O76dOn57Of/ewhP/eqVavyne98J/v27cu4cePy4Q9/OKeffnp27dqVBx54ICtXrsyaNWtyyy235MYbb+z17wTHrnLE8xe/+MWccMIJPZ7v7T5VfqZcKh3L7eRmyuFw4vmNN97ITTfdlJdeeinJ/s8k3v72t+fkk09OVVVVtm3blmeffTaPP/54j33IzZRLpWO5ndxMORxKPNfU1OSWW27ps90Pf/jD0he4L7744m7bFDU3K/zQq4985COZPn16pk+fnvHjxx/SNLrPfOYzPU7JPPfcc3P55Zfn7//+77Ny5cqsXr06q1atypw5c7q0ffDBB/P8888nSS6//PL8wR/8QencjBkzcv755+ev/uqv0tTUlDvuuCPnnntut8+7ePHiNDY2Jkk+//nP56KLLiqdO+OMM3Laaafl1ltvzY4dO7J48eLDWmKGgWUgxXO7oUOHZurUqQc1ho7uvPPO7N69O9XV1fmbv/mbzJw5s3Tu7LPPzqRJk7Jo0aJs2LAh9913X6666qpDfi4GjnLE8oHa2try7W9/O21tbfnIRz6S5cuX9+uD8v/6r/8q3Rz93u/9Xq688srSuZkzZ+ass87KjTfemJaWltx555258cYbu+1HLA9eAyme240YMeKQc3Nra2vuuOOO7Nu3L6NGjcpXv/rVTt/meutb35rvfve7+elPf5rnn38+Dz30UJ9LdXHsKHc8T5o0qc/lXnsiP3M4BlIst5ObOVTliufvfe97eemllzJs2LD82Z/9WZf3edOnT8/cuXPziU98Im1tbd32ITdzOAZSLLeTmzlUhxvP/fk8ra2tLc8880ySZNSoUZk7d2637Yqam5VJ6dVVV12V2bNnZ/z48YfcR1/rcFZVVXX6hXruuee6bXffffclSUaPHp2Pf/zjXc7X1tbmQx/6UJL90/NWrlzZpc327dvz85//PEly3nnndSr6tHvHO96R8847L0ny0EMPdVkOjmPXQIrnclizZk2p/0svvbTTH5R273vf+zJlypQkyZIlSzpNnebYVY5YPtD999+fl156KZMnT84HP/jBfl3T2tqaJUuWJEmmTJmS973vfV3azJo1K5deemmS5Nlnn82aNWu6tBHLg9tAiedyWblyZTZt2pQk+dCHPtTtFP6Pf/zjOf7445Psf5NBcRyJeD4U8jOHa6DEcrnIzYNbOeK5/UPnJPmd3/mdXr/cN2TIkG7fN8rNHK6BEsvlIjcPbkfjXuNXv/pVXnvttSTJ2972tgwfPrxLmyLnZoUfBoSOU9v27NnT5fz69euzbt26JMlFF13U4yZYHSv/3RV+nnzyyezbty9JSr+wvfWzb9++btc7hd70Fc/l0jHGe4rnqqqq0lTW119/vfRNB+hoy5Yt+f73v59k/zq7Q4f2b0LwM888kzfeeCPJ/inTPU277ys3i2XK6VDjuVyeeOKJ0nFP30gcMWJE6csnr776atavX380hsYgIj9DZ3Izh+vHP/5xkuS4447Le97znkPqQ25mIChHLJeL3MyR1l7kTHqOsSLnZoUfBoRHHnmkdNzdRlvtS7wlyZlnntljP+PHj8+kSZOSJC+88MIh99PxXMdroD/6iudyaY/xESNG5LTTTuuxXcd47u73Ar773e+mpaUl7373u3PWWWf1+7r+5tTp06eXCvbdxaBYppwONZ7Lpf33YvLkyb1+e008cyTJz9CZ3MzhaG1tLX1Afe6555a+Md7W1patW7dm8+bN2b17d5/9yM1UWrliuVzkZo6kpqamUryfdNJJOeOMM7ptV+TcbI8fKqaxsTEbN27M0qVL8+CDDyZJxowZk9/4jd/o0vbVV18tHbdPievJlClTsmHDhmzbti3Nzc0ZOXJkl36OO+64Xv+onHDCCRk1alSamppKM42gNwcTzx3t3Lkzf/u3f5tXXnklzc3NGT16dKZNm5bZs2fn0ksv7XF2W/L/4rm2trbX6dcdi08df5cg2V+o/J//+Z8cf/zx+f3f//2Dura/ubm6ujq1tbVZu3ZttzlVLFMuhxPPHa1bty5//dd/nfXr12fPnj0ZM2ZMTjvttLztbW/LO9/5zh5nETU3N2fbtm1J+i78d/ydca9BT2677basX78+jY2NOe6441JbW5tzzjknl19+eWpqanq8Tn5moDnUWO5IbqZS/u///q+0ksPUqVPzxhtv5O67786KFSvy+uuvJ9m/18QZZ5yRD3/4wz1+8URuptLKFcsdyc0MVI899lhaWlqSJO9+97szZMiQbtsVOTcr/HBU3XjjjXn22We7PTdmzJhcf/31pbU7O2poaCgd9/XGYMKECUn2L9PW0NDQ6Req/Y9Ke5venHjiiXnllVdK18CBDjWeO2pubu60D9D27duzffv2PPXUU/nhD3+YP/uzP8usWbO6XLd79+7s3LkzSd/xPHr06IwYMSItLS3imU527dqVO++8M0nyu7/7uxk7duxBXd+em0eMGNFnrE+YMCFr165NY2Nj9uzZk2HDhiURy5TP4cZzRzt27MiOHTtKjxsaGtLQ0JAnn3wy9957b/78z/88p5xySpfrOsZlX/Hc8fzWrVsPeawUW8flH3bu3JmdO3fmxRdfzH333ZdPfvKT+c3f/M1ur5OfGWgONZY7kpuplI4fzLW1teWGG24obQLerrW1Nb/+9a/z9NNP56Mf/Wi3ewzKzVRauWK5I7mZgarjMm/ty6t1p8i5WeGHAWHBggX57d/+7R4/pGlqaiodd5zB052OMySam5s7nWt/3FcfHfs5sA/oS1/xnOzfJPH000/P7Nmzc9ppp2XcuHHZs2dPXn755Sxbtixr1qxJQ0NDbrrppnzlK1/Jm9/85k7Xd4zL/sTzyJEj09LSIp7pZNGiRdmxY0dmzpyZ+fPnH/T17bn5YHJqsj9+22+QxDLlcrjxnOzPzeecc07OP//8TJs2LWPGjElTU1Pq6+vzs5/9LOvWrcurr76aL3/5y1m4cGFOPPHETtcfzP1Kx/PimQOdfPLJmTt3bmbOnFl687h58+Y89thjefzxx7Nnz5585zvfyZAhQ3LZZZd1uV5+ZqA43FhO5GYqb9euXaXje++9N3v27Mlb3/rWXHXVVZk2bVqampry2GOP5a677sobb7yRu+66K1OmTMmFF17YqR+5mUorVywncjMD29atW0tf1J41a1Zqa2t7bFvk3Kzww1H1uc99rhTUr7/+eurq6vKzn/0sP/7xj7Np06Z85jOf6XYJtvapqEn63KS5/ZcuSZe1Sdsf92ej545VW+jOocZzknziE5/o9psE7R9YLl68OPfcc09aWlryrW99K1/72tc6TUvtGJf9ief2NuKZds8++2yWL1+e6urqfPrTn+5x2nNv2nPzweTUpHMcimXKoRzxnCR/+Zd/2W1uPuOMM3L55Zfn29/+dlasWJEdO3bkzjvvzF/+5V92ancw9ysdz3e8DubOnZuLL764SxzPmDEj73jHO/LLX/4yt9xyS/bu3Zt/+Zd/yZw5c7rcb8jPDATliOVEbqby2pcKSvbHxbnnnpsvfOELpQ3Ahw0blssvvzxTp07N3/7t32bfvn256667MmfOnE7xLzdTaeWK5URuZmB76KGHsm/fviT7l3nrTZFzc9UR7R0OMHHixEydOjVTp07NGWeckfe97335+te/nvPPPz+rVq3KDTfc0O00t46/WK2trb0+R8c/Au0b1R34uK8+OvZzYB/Q7lDjOUmv00eHDBmSj370oznnnHOSJPX19V02fOsYl/2J5/Y24plkf367/fbbs2/fvixYsCDTpk07pH7ac/PB5NSkcxyKZQ5XueI56T03Dx06NJ/5zGdKS8iuXLmy01K0ycHdr3Q83/E6OO6443otXs6ePTsf+chHkuz/AGfZsmVd2sjPDATliOVEbqbyDoyF3/3d3y19UN7RW97ylrztbW9Lsn8fkpdffrnbfuRmKqVcsZzIzQxsP//5z5Psj5d3vOMdvbYtcm5W+KHihg8fns997nMZMWJEtm3blkWLFnVpM2rUqNJxX9PgOn6D4cDpde2P+zOVrr2f/kzRg3b9ief+6rjcxYF7CR3sVOeDWeaQ4vvBD36Q9evXZ8KECbnqqqsOuZ/23HwwOTXpHIdimcNVrnjuj+rq6sybN6/0+MDcfDD3Kwe7HAB0dNlll5U+UO9uv0H5mWNFX7HcH3IzR1rHGBo7dmyXZbg7Ou+880rHdXV13fYjN1Mp5Yrl/pCbqZQ1a9Zk3bp1SfZ/yaSvfXuKnJst9caAMHbs2MyaNSu/+tWv8uSTT6a1tbXT1LiamprScUNDQ697p7TPsBgyZEin65L9G2zt2LGjX5tntW8Y19emXHCgvuK5vzpugHjgt2OGDx+eMWPGZOfOnX3G865du0p/nMQzyf71nJPknHPOyS9/+ctu27TfiDQ3N+eRRx5JkowbNy5nn312qU17jm1pacnrr7/e6w1Ve5yOHTu207e0xDKHq1zx3F+95eaO9x19xXPH8weueQ59GTduXEaPHp2dO3d2icNEfubY0Vcs95fczJHUMa8dzCb0jY2Nnc7JzVRauWK5v+RmKmHFihWl44svvrjP9kXOzQo/DBjtxZyWlpbs3LkzJ5xwQulcxz8W69aty5ve9KYe+2mv6k6YMKFL5fSUU07JSy+9lDfeeCPbt2/vcf+V1157rbS515QpUw7l5TDI9RbP/dXXHhWnnHJKnnvuuWzcuDF79+5NdXV1t+3Wr1/f6Rpon1b84IMP5sEHH+y17c6dO/MP//APSZIzzzyz0wflp5xySh5//PEk+3PvzJkzu+1j79692bhxY5Luc6pY5nCUK57LYdSoUZkwYUK2bdvWKV67036/krjX4ND0dp8gP3MsOdR92fpLbuZwnXrqqaXjtra2Xtt2PH/gElpyM5VWrlguB7mZI6G1tTW/+MUvkuz/cslb3/rWPq8pcm621BsDRsfq/4EFm7e85S2l496WANi+fXs2bNiQJJk1a1aX8/3tp+O5jtdAf/UWz/316quvlo4PnL2W/L8Yb2lpyUsvvdRjPx3jubvfCzhU/c2pdXV1pW+0dBeDYpljScfc3F1Rv/33Yv369dm+fXuP/YhnDkdjY2N27tyZpPc4TORnBra+Yrm/5GaOpJNOOqk0y2Dz5s2lDcO7s2nTptLxge/h5GYqrVyx3F9yM0fbqlWrSvcV73znO3ssvnRU5Nys8MOAsG3btqxevTrJ/j9EHdf6TJLJkyeXqqmPPvpopzUVO+r4Td+5c+d2OT9nzpzSN8qWL1/e43ja+xkyZEjmzJnT79cBSd/x3F8/+9nPSsdnnnlml/MdY7yneG5raytNcz3++ONz1llnHdJYKJa77767z/9OOumkJPtjuP1nN954Y6d+zjrrrBx33HFJ9k+n7umNQ1+5WSxzOMoVz/2xd+/eTjF6xhlndGlz4YUXlo57moHU0tKSRx99NMn+b3m1b3wL/fXAAw+Ucm539wjyM8eKvmK5P+Rmjob2je6bmpry61//usd2K1euLB0f+CVSuZmBoByx3B9yM5Xw0EMPlY4vueSSfl1T5Nys8MMRtX79+jz99NO9tnnjjTfyj//4j6WlWt797nd32+79739/kv1rIS5atKjL+Y0bN+aee+5JktTW1nb7Szh+/Pj8xm/8RpLkqaeeymOPPdalzaOPPpqnnnqqNJaeloNj8ClXPK9evTqvvfZaj33s27cvixcvLt2ETZs2rdtvAcyYMaN087R8+fJSsamjH/3oR6Vp0QsWLDikvYagJ0OHDs2CBQuS7J8Sfd9993Vps3r16tJNz5lnnpkZM2Z0aSOWGQiefvrpvP766z2eb21tzbe+9a1OG4V2t8b43Llzc/LJJydJ7rnnntJyAB3927/9W+m5rrzyynIMn4LYvHlz6uvre23zy1/+Mv/xH/+RZP964pdeemmXNvIzlVauWJabGSje+973lvZz+Nd//de88cYbXdo89NBDeeaZZ5IkF1xwQZdYlJsZCMoRy3IzA9GuXbuyatWqJMnUqVN73SakoyLnZpmfXj3//POdEm/HDd02btzYpSJ/YDX1tddey1e+8pVMmzYtF154YU477bSMHz8+1dXV2b59e1544YUsW7asNKXz1FNPzQc/+MFux3LJJZdk+fLleeGFF/KTn/wk27dvz/z58zN69OisWbMm//mf/5mmpqYMGTIk11xzTY/T+a6++ur87//+bxobG/MP//APqaury+zZs5Psf/Pxox/9KMn+PVquvvrqg/jXYqAbKPH8v//7v7n33ntz3nnn5dxzz80pp5yS448/Pnv27MnLL7+c5cuX58UXX0ySjBgxIn/0R3/U49rnn/zkJ/OlL30pu3fvzk033ZQPfehDOeuss7J79+784he/yAMPPJAkmTRpUql4yrHvcGO5nK688sr84he/yIYNG7Jo0aJs3Lgx73jHOzJ8+PA888wzueeee7J3794MHz48n/zkJ3vsRywPXgMlnlesWJG/+7u/y5w5c3LmmWdm8uTJOe6449Lc3JyXXnopDzzwQGm5inHjxuWaa67ptp+hQ4fmmmuuyc0335ympqZ86Utfym//9m9nxowZ2bVrV5YuXVpaQ/otb3lLj1944dh0uPG8ZcuWfPnLX87MmTMze/bsTJs2LePGjUuyf8mVxx57LI8//njpm4gf//jHe1x+RX7mcAyUWJabKYdy3GuceOKJ+Z3f+Z0sWrQoL7/8cv76r/86H/jABzJt2rS88cYbWblyZX76058m2b93ySc+8YluxyI3czgGSizLzZRDud8HPvLII6UvYV988cUHNZai5uYh+3pb0JFB75vf/GZpClp/3H333Z0eP/PMM/nyl7/cr2svuOCCfO5zn8vYsWN7bNPY2JiFCxemrq6u2/PDhg3Lpz71qcyfP7/X53rxxRfz9a9/vcc1RMePH5/rr78+p59+er/GzrFhoMTz3XffXfp2Y29OPPHEfP7zn+9zWvWTTz6Zb3zjG2lqaur2/KRJk3LDDTektra2X2Nn4DvcWO6P6667Llu2bMlJJ52Ub37zm7223bhxYxYuXFjaY+1Ao0aNyuc///lSkb0nYnlwGijx3N9xTJ06NX/6p3/a50acDzzwQL73ve+V3nwcaMaMGfnCF77Q630Px56jda8xYsSIfOITn8hll13Wazv5mUM1UGJZbqYcynmvcdddd+Xee+/tcSmgcePG5frrr+9xc/BEbubQDZRYlpsph3K/D/ziF7+YF198MVVVVfnWt7510Cs4FTE3m/HDETVr1qx88YtfzK9//evU1dWloaEh27dvz+7duzNq1KhMnDgxp59+et75znf2a83QsWPH5qabbsrSpUvz8MMPZ926dWlubk5NTU3OPvvsXHHFFTn11FP77Of000/PLbfckvvvvz9PPPFEtmzZkiSZOHFi5syZk/e+970ZM2bMYb9+iqVc8XzppZdm/PjxWb16ddauXVva1La6ujpjxozJm9/85syePTvvete7Mnz48D7HNWfOnFI8r1q1Kg0NDRk6dGhqa2vz9re/Pe95z3syYsSIcv5TQCe1tbW5+eab85Of/CSPPfZYNm7cmNbW1kyYMCHnn39+rrjiitIeK70Ry1TSBz7wgbzpTW/K6tWr8+qrr6axsTG7du3KsGHDMm7cuEyfPj1vf/vbM3fu3FRV9b1a8mWXXZaZM2dmyZIlefrpp9PQ0JCRI0dmypQpede73pX58+f3a7NRBpfTTjstf/Inf5LVq1fnpZdeymuvvZadO3dm7969Of7443Pqqafm7LPPzvz580uzJ3ojP1Mp5YpluZmB5mMf+1jmzJmTn/70p3nuueeyffv2DBs2LJMmTcqcOXOyYMGC0l4RPZGbGQgOJ5blZgaaDRs2lFbOOffccw9p244i5mYzfgAAAAAAAAqi77IrAAAAAAAAxwSFHwAAAAAAgIJQ+AEAAAAAACgIhR8AAAAAAICCUPgBAAAAAAAoCIUfAAAAAACAglD4AQAAAAAAKAiFHwAAAAAAgIJQ+AEAAAAAACgIhR8AAAAAAICCUPgBAAAAAAAoCIUfAAAAAACAglD4AQAAAAAAKAiFHwAAAAAAgIJQ+AEAAAAAACgIhR8AAAAAAICCUPgBAAAAAAAoCIUfAAAAAACAglD4AQAAAAAAKAiFHwAAAAAAgIJQ+AEAAAAAACgIhR8AAAAAAICCUPgBAAAAAAAoCIUfAAAAAACAglD4AQAAAAAAKIj/D3aPaZDEnXYsAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 452, "width": 831 } }, "output_type": "display_data" } ], "source": [ "plt.rcParams['figure.figsize'] = (10,5)\n", "plt.hist(sample_means10, edgecolor = 'black', linewidth = 1.2, bins = 25, color = 'blue')\n", "plt.title(\"sample size of 10\")\n", "plt.show();\n", "plt.hist(sample_means50, edgecolor = 'black', linewidth = 1.2, bins = 25)\n", "plt.title(\"sample size of 50\")\n", "plt.show();\n", "plt.hist(sample_means100, edgecolor = 'black', linewidth = 1.2, bins = 25, color = 'purple')\n", "plt.title(\"sample size of 100\")\n", "plt.show();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "

Exercise 6

\n", "When the sample size is larger, what happens to the center? What about the spread?\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "## On Your Own\n", "\n", "
    \n", "

    So far, we have only focused on estimating the mean living area in homes in Ames. Now you’ll try to estimate the mean home price.


    \n", "
  1. Take a random sample of size 50 from price. Using this sample, what is your best point estimate of the population mean?

  2. \n", "
  3. Since you have access to the population, simulate the sampling distribution for the average home price in Ames by taking 5000 samples from the population of size 50 and computing 5000 sample means. Store these means in a vector called sample_means50. Plot the data, then describe the shape of this sampling distribution. Based on this sampling distribution, what would you guess the mean home price of the population to be? Finally, calculate and report the population mean.

  4. \n", "
  5. Change your sample size from 50 to 150, then compute the sampling distribution using the same method as above, and store these means in a new vector called sample_means150. Describe the shape of this sampling distribution, and compare it to the sampling distribution for a sample size of 50. Based on this sampling distribution, what would you guess to be the mean sale price of homes in Ames?

  6. \n", "
  7. Of the sampling distributions from 2 and 3, which has a smaller spread? If we’re concerned with making estimates that are more often close to the true value, would we prefer a distribution with a large or small spread?
  8. \n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "This lab was adapted by David Akman and Imran Ture from OpenIntro by Andrew Bray and Mine Çetinkaya-Rundel.\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "***" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 4 }