{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction to data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Some define **Statistics** as the field that focuses on turning information into knowledge. The first step in that process is to summarize and describe the raw information - the data. In this lab, you will gain insight into public health by generating simple graphical and numerical summaries of a data set collected by the Centers for Disease Control and Prevention (CDC)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Getting started" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Behavioral Risk Factor Surveillance System (BRFSS) is an annual telephone survey of 350,000 people in the United States. As its name implies, the BRFSS is designed to identify risk factors in the adult population and report emerging health trends. For example, respondents are asked about their diet and weekly physical activity, their HIV/AIDS status, possible tobacco use, and even their level of healthcare coverage. The BRFSS's [website](http://www.cdc.gov/brfss) contains a complete description of the survey, including the research questions that motivate the study and many interesting results derived from the data.\n", "\n", "We will focus on a random sample of 20,000 people from the BRFSS survey conducted in 2000. While there are over 200 variables in this data set, we will work with a small subset.\n", "\n", "We begin by importing the dataset of 20,000 observations from the Cloud." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(20000, 9)" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import warnings\n", "warnings.filterwarnings(\"ignore\")\n", "\n", "import numpy as np\n", "import pandas as pd\n", "import io\n", "import requests\n", "\n", "df_url = 'https://raw.githubusercontent.com/akmand/datasets/master/openintro/brfss_2000.csv'\n", "url_content = requests.get(df_url, verify=False).content\n", "cdc = pd.read_csv(io.StringIO(url_content.decode('utf-8')))\n", "cdc.shape" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
exeranyhlthplansmoke100heightweightwtdesireagegendergenhlth
67431107117017023mvery good
193601016412011745fvery good
81041117019217064mgood
85351116416514067fexcellent
82751106913014069mvery good
35110106312812837fvery good
15211106817613537fgood
9760116415012543ffair
144841116818518578mgood
35911107116517534mfair
\n", "
" ], "text/plain": [ " exerany hlthplan smoke100 height weight wtdesire age gender \\\n", "6743 1 1 0 71 170 170 23 m \n", "19360 1 0 1 64 120 117 45 f \n", "8104 1 1 1 70 192 170 64 m \n", "8535 1 1 1 64 165 140 67 f \n", "8275 1 1 0 69 130 140 69 m \n", "3511 0 1 0 63 128 128 37 f \n", "1521 1 1 0 68 176 135 37 f \n", "976 0 1 1 64 150 125 43 f \n", "14484 1 1 1 68 185 185 78 m \n", "3591 1 1 0 71 165 175 34 m \n", "\n", " genhlth \n", "6743 very good \n", "19360 very good \n", "8104 good \n", "8535 excellent \n", "8275 very good \n", "3511 very good \n", "1521 good \n", "976 fair \n", "14484 good \n", "3591 fair " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc.sample(10, random_state=999)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data set `cdc` that shows up is a data matrix, with each row representing a case and each column representing a variable. These kind of data format are called data frame, which is a term that will be used throughout the labs.\n", "\n", "To view the names of the variables, use `columns.values`" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['exerany', 'hlthplan', 'smoke100', 'height', 'weight', 'wtdesire',\n", " 'age', 'gender', 'genhlth'], dtype=object)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc.columns.values" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This returns the names `genhlth`, `exerany`, `hlthplan`, `smoke100`, `height`, `weight`, `wtdesire`, `age`, and `gender`. Each one of these variables corresponds to a question that was asked in the survey. For example, for `genhlth`, respondents were asked to evaluate their general health, responding either excellent, very good, good, fair or poor. The `exerany` variable indicates whether the respondent exercised in the past month (1) or did not (0). Likewise, `hlthplan` indicates whether the respondent had some form of health coverage (1) or did not (0). The `smoke100` variable indicates whether the respondent had smoked at least 100 cigarettes in their lifetime. The other variables record the respondent's `height` in inches, `weight` in pounds as well as their desired weight, `wtdesire`, `age` in years, and `gender`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "

Exercise 1

\n", "How many cases are there in this data set? How many variables? For each variable, identify its data type (e.g. categorical, discrete).\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can have a look at the first few entries (rows) of our data with the command" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
exeranyhlthplansmoke100heightweightwtdesireagegendergenhlth
00107017517577mgood
10116412511533fgood
21116010510549fgood
31106613212442fgood
40106115013055fvery good
\n", "
" ], "text/plain": [ " exerany hlthplan smoke100 height weight wtdesire age gender \\\n", "0 0 1 0 70 175 175 77 m \n", "1 0 1 1 64 125 115 33 f \n", "2 1 1 1 60 105 105 49 f \n", "3 1 1 0 66 132 124 42 f \n", "4 0 1 0 61 150 130 55 f \n", "\n", " genhlth \n", "0 good \n", "1 good \n", "2 good \n", "3 good \n", "4 very good " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and similarly we can look at the last few by typing." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
exeranyhlthplansmoke100heightweightwtdesireagegendergenhlth
199951106621514023fgood
199960107320018535mexcellent
199970106521615057fpoor
199981106716516581fgood
199991116917016583mgood
\n", "
" ], "text/plain": [ " exerany hlthplan smoke100 height weight wtdesire age gender \\\n", "19995 1 1 0 66 215 140 23 f \n", "19996 0 1 0 73 200 185 35 m \n", "19997 0 1 0 65 216 150 57 f \n", "19998 1 1 0 67 165 165 81 f \n", "19999 1 1 1 69 170 165 83 m \n", "\n", " genhlth \n", "19995 good \n", "19996 excellent \n", "19997 poor \n", "19998 good \n", "19999 good " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc.tail()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You could also look at all of the data frame at once by typing its name into the console, but that might be unwise here. We know `cdc` has 20,000 rows, so viewing the entire data set would mean flooding your screen. It's better to take small peeks at the data with `head`, `tail` or the subsetting techniques that you'll learn in a moment." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Summaries and tables" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The BRFSS questionnaire is a massive trove of information. A good first step in any analysis is to distill all of that information into a few summary statistics and graphics. As a simple example, the function `describe` returns a numerical summary: count, mean, standard deviation, minimum, first quartile, median, third quartile, and maximum. For `weight` this is" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 20000.00000\n", "mean 169.68295\n", "std 40.08097\n", "min 68.00000\n", "25% 140.00000\n", "50% 165.00000\n", "75% 190.00000\n", "max 500.00000\n", "Name: weight, dtype: float64" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc['weight'].describe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you wanted to compute the interquartile range for the respondents’ weight, you would look at the output from the summary command above and then enter" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "50" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "190 - 140" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Python also has built-in functions to compute summary statistics one by one." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "count: 20000\n", "mean: 169.68295\n", "std: 40.08096996712\n", "var: 1606.4841535051753\n", "min: 68\n", "25%: 140.0\n", "50%: 165.0\n", "75%: 190.0\n", "max: 500\n" ] } ], "source": [ "print('count:', cdc['weight'].count())\n", "print('mean: ', cdc['weight'].mean())\n", "print('std: ', cdc['weight'].std())\n", "print('var: ', cdc['weight'].var())\n", "print('min: ', cdc['weight'].min())\n", "print('25%: ', cdc['weight'].quantile(0.25))\n", "print('50%: ', cdc['weight'].median()) # Remember that the median is also the second quartile \n", "print('75%: ', cdc['weight'].quantile(0.75))\n", "print('max: ', cdc['weight'].max())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "While it makes sense to describe a quantitative variable like `weight` in terms of these statistics, what about categorical data? We would instead consider the sample frequency or relative frequency distribution. The function `value_counts` does this for you by counting the number of times each kind of response was given. For example, to see the number of people who have smoked 100 cigarettes in their lifetime, type" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "smoke100\n", "0 10559\n", "1 9441\n", "Name: count, dtype: int64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc['smoke100'].value_counts()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "or instead look at the relative frequency distribution by typing" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "smoke100\n", "0 0.52795\n", "1 0.47205\n", "Name: proportion, dtype: float64" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc['smoke100'].value_counts(normalize = True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice how Python automatically shows the relative frequency distributions by setting the parameter `normalize` as `True`.\n", "\n", "Now let's import `matplotlib` library to create plots. When running Python using the command line, the graphs are typically shown in a separate window. In a Jupyter Notebook, you can simply output the graphs within the notebook itself by running the `%matplotlib` inline magic command." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can change the format to svg for better quality figures. You can also try the retina format and see which one looks better on your computer's screen." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "%config InlineBackend.figure_format = 'retina'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can also change the default style of plots. Let's go for our favourite style, `ggplot` from R." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "plt.style.use('ggplot')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's also make the size of plots and font sizes bigger." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "plt.rcParams['figure.figsize'] = (10,5)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "plt.rcParams['font.size'] = 12" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can make a bar plot of the entries in the table by putting the table inside the barplot command." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABrMAAAO7CAYAAAD3Gn9AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AACpm0lEQVR4nOzdd5RW1b0//s8wQ4ehd2mKqNQo2EClxBKNscSWRLxqirkab/wmJpobo1ETY0yI0RuVRHPFxN4TrxpLVEDAiGBEEBRQkF5mKENnyvP7w8Xzm2f6DIOc0ddrLdY6Zz97f/Y+0+CZN/ucrFQqlQoAAAAAAABIoEb7egEAAAAAAABQGWEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAMBecd9990VWVlbGHxqGV155JS699NI49NBDo3PnztG4ceOMz+MXvvCFfb1E9iLfuwAAJE3Ovl4AAAAAybB8+fI477zzYvr06ft6KfC5s3z58pg5c2YsWbIktmzZEs2aNYvu3bvH0KFDY+DAgXtt3pKSknjnnXdizpw5sXbt2ti1a1fk5ubG/vvvH0cccUR06tRpr80NAFBTwiwAAPaaSZMmxZgxY2o1pnnz5pGbmxsdO3aMwYMHx7Bhw+Kss86Kvn377qVVAhER+fn5MWLEiFi2bNm+Xgp8qoqLi2P+/Pkxc+bMmDlzZsyaNSveeeed2LFjR0a/iRMnxkUXXVSvc6dSqXjwwQfj9ttvj5kzZ1bar1evXnHJJZfEFVdcEa1ataqXufPy8uK3v/1tTJw4MdatW1dhn0aNGsVxxx0XV155ZZx66qn1Mi8AQF0IswAASJTt27fH9u3bY82aNfHee+/FI488EldddVWMHj06fve738Whhx66r5fIZ1CfPn3i448/Tp///Oc/j+uvv37fLWgfuPLKK8sFWU2aNIlDDz00unbtGjk5///bR+EyDd0zzzwTr776asycOTPeeeed2Lp166e+htrshFy6dGn87Gc/iwkTJsRDDz0Uxx133B7N/eSTT8Z3vvOd2LBhQ5X9SkpKYtKkSTFp0qQ47bTT4i9/+Uu0bdt2j+YGAKgLYRYAAImXSqXitddei8MPPzxuvvnm+PGPf7yvlwSfKevWrYuHH344o+3444+PBx98MDp37ryPVgV7z3XXXRezZ8/eZ/MvWrQoRo0aFStXrqzVuBUrVsTxxx8fjz/+eJx++ul1mvvOO++Myy+/vNbjnnnmmRg5cmRMmjTJrQcBgE+dMAsAgE/VIYccEgMGDKjwtVQqFZs3b47Vq1fH+++/H4WFhRmvFxcXx1VXXRWNGjWKK6+88tNYLnwuvPTSS7Fr1670eXZ2dtx///2CLNgLCgoK4uSTTy4XZLVs2TIuvvjiGDNmTPTs2TPWrVsXb7/9dvzxj3+MFStWpPsVFhbGeeedF2+88Uatdys/99xz8V//9V/l2g866KD47ne/G4MGDYo2bdrEkiVL4v/+7//i0Ucfzfi7eN68eXHmmWfGpEmTMnZrAgDsbf7lAQDAp+rcc8+t0e3btm3bFk8//XRcd9118dFHH2W8ds0118RXvvKV6N+//15aJXy+zJo1K+P8sMMOi65du+6j1cC+0bRp0xgyZEgMHz48Nm/eHA888MBemecHP/hBLFq0KKPt0EMPjeeeey66deuW0X7KKafEVVddFd/61rcy1rNz5874xje+Ee+++240bty4RvOuX78+LrrookilUhntP/nJT+JXv/pVZGVlpduOOOKIOPfcc+OnP/1pnHzyyRm3YZ02bVr8+te/jp/97Gc1vmYAgD3VaF8vAAAAKtKiRYs4//zz45133onDDz8847WdO3fGH/7wh320MvjsWb58ecZ5nz599s1C4FPStGnTGDZsWFxyySVx9913x9tvvx2bN2+OGTNmxF133RVf/OIX98q8//73v2PixIkZbX369IlJkyaVC7J2a9KkSfz1r3+NM888M6P9/fffjwkTJtR47l/84heRl5eX0faDH/wgbr755owgq7RDDjkkpkyZEm3atMlo/9WvfhWrV6+u8dwAAHtKmAUAQKK1bt067rvvvnLtf//73z/9xcBnVEFBQcZ5ixYt9tFK4NPxxhtvxMyZM+NPf/pTfOc734lDDz20xjuc9sQtt9xSbmfUPffcE7m5uVWOy8rKij/+8Y/Rrl27jPbx48dHUVFRtfPm5+fH3XffndHWr1+/uOmmm6od26tXrxg/fnxG2/bt2+P222+vdiwAQH0RZgEAkHgDBgyIoUOHZrQtW7Ys4xk/QN3t2LFjXy8BPlWNGn36vw5Zv359PP300xlthx9+eBx//PE1Gt+5c+f45je/mdG2bNmyeOmll6od+/DDD8e2bdsy2n7wgx9E8+bNazT3RRddVO7Wo3/5y1+iuLi4RuMBAPaUZ2YBANAgHHjggTF79uyMtry8vOjevXuta23dujXef//9+OCDDyIvLy82b94czZo1i/bt20fXrl3jyCOPjPbt29fX0iu1ZcuWmDFjRixYsCA2bNgQqVQqOnbsGF/96lejY8eOe33+0goKCuKNN96IhQsXxqZNm6JNmzbRo0ePOPzww2O//fb7VNdSmR07dsS//vWvWLFiRaxduzZ27doVnTp1ii5dusQRRxwRnTp12tdL3GtSqVT8+9//jkWLFsXatWujoKAg2rdvH507d47BgwfHgQceuK+XWG+Ki4tj4cKFMWfOnPS1plKpaNmyZbRt2zb69OkT/fr1ix49etT73B988EG8/fbbsWLFiti5c2e0b98+hg4dGkcccUTk5NTs7fOiRYti5syZsWLFiti1a1d07tw5Dj744DjqqKMiOzu7Xtf70Ucfxbvvvhtr166N/Pz8aNWqVXTu3Dn233//GDZs2D4JbOrTihUr4t///nesW7cu1q1bFzk5OdGpU6fo2bNnHH300dG0adN9vcRaeeaZZ8r9J4zvfOc7tapxySWXxO9+97uMtieeeCJOOeWUKsc98cQTGefNmzePcePG1XjenJycuPjii+Pmm29Ot61atSqmTZsWxx13XI3rAADUWQoAAPaS1157LRURGX9+/vOf16nW2WefXa7Whg0bajS2pKQkNXXq1NSPfvSj1LBhw1KNGjUqV6v0n6ysrNSgQYNSd9xxR2rbtm21XuvixYvL1XzttdfSr8+YMSN15plnpho3blzh/KX71oey9SdOnJh+be7cuamzzz670rVkZWWlRo4cmXrmmWdqPe/EiRPL1auLf/7zn6lTTjkl1bx58yo/Z4cffnjqzjvvTBUWFtaoblVfAzX5U/rjuLcsWLAgddFFF6U6depU5VoOOOCA1NVXX53Kz8+vUd3evXvX+bpHjRq1V671gw8+SF166aWpDh061Ggd3bt3T5177rmphx9+OLVly5Yqa//85z/PGNu7d+/0ayUlJal77703dcghh1Q6V7du3VK33XZbqqioqML6JSUlqQceeCA1ZMiQSmt07Ngx9Zvf/KbGX5+V2bBhQ+qaa65JHXjggVV+fDp06JC64IILUvPmzav1HHv6vbt9+/bUOeecU67G2LFjUxs3bqz2+q677rrUoEGDqry+5s2bp0499dTU1KlTa319NVHRx2BPv+e/8Y1vlKu5dOnSWtfp27dvRo0ePXpU2X/Lli3lfsaPHTu21vNOnjy53PqvueaaWtcBAKiLhv3ftAAA+NxYtGhRxnm7du3KPZC+IkuXLo0+ffrEMcccE+PHj49Zs2ZFSUlJlWNSqVTMnTs3Lr/88jjggANi6tSpe7T23UpKSuKnP/1pHHXUUfH0009HYWFhvdStqzvvvDMOO+yweOKJJypdSyqVimnTpsVpp50W5557bmzZsuVTW9+qVaviS1/6Uhx//PHx/PPPx/bt2yvtm0ql4q233orvfe97MWDAgJg8efKnts69obCwMK644ooYMGBA3HfffbFu3boq+3/44Ydxyy23xAEHHBATJkz4lFZZf375y1/G4MGDY8KECZGfn1+jMStXrozHHnssvv71r5e7dVtNrV+/Po4//vj45je/GfPnz6+036pVq+L//b//FyeffHK574H8/Pw46aSTYty4cfHuu+9WWiMvLy+uuuqqGDNmTJ2/j/785z/HAQccEDfddFMsXLiwyr75+flx//33x+DBg+N73/te7Ny5s05z1lZ+fn588YtfjMcffzyj/YILLogXXnih0p/bqVQqbr311ujbt2/ceOONMXfu3Crn2b59ezz77LNxzDHHxFlnnVXuuW9J9MYbb2Sc9+rVK3r27FnrOsccc0zG+YoVK2L58uWV9p81a1a5n/Fla9TEEUccEU2aNMlo+9e//lXrOgAAdSHMAgAg8d5///1ytxg89thjIysrq9qxBQUFsXTp0jrPvWrVqhg7dmy5WzTVxaWXXho333xztWHap+F//ud/4vLLL6/Vc8cef/zx+PKXvxxbt27diyv7xPz58+Ooo46KF198sdZjFy5cGCeeeGI8+uije2Fle19BQUGcfPLJ8T//8z9RVFRUq7EbN26Myy67LH7wgx9EKpXaSyusXz/+8Y/j2muv/dSfgbdp06YYM2ZMvPrqqzUe8/LLL8fXv/719Md2/fr1MXbs2Hj55ZdrXGPq1Klx1lln1WqtqVQqrr766vjOd74T69evr9XY4uLiuOuuu+Kkk06KjRs31mpsbS1atCiOPvromD59ekb7z372s/jrX/8ajRs3rnDczp074/zzz48rr7yyTmt86qmnYuTIkVUGOvtaQUFBLF68OKNt2LBhdao1fPjwcm3vvPNOpf0req0uczdr1iwGDhxY43kBAOqTZ2YBAJBoW7ZsiYsvvrjcL+a/+93v1rpWdnZ2HHHEEXHkkUfGwIEDo3fv3tG6deto1qxZbNmyJZYsWRJvvfVWPPHEE7Fy5cr0uMLCwrj44otj8ODBcdBBB9XpOv73f/83HnjggfT54MGD4+yzz47DDz88OnfuHJs3b46PP/44nnzyyRo/m6eu3nzzzbjnnnvS5/vtt1+cf/75cdxxx0WXLl1i06ZNMW/evHjooYfK7SSYMmVKnH/++fG3v/1tr61v3bp1MXbs2Fi9enVGe3Z2dpx22mlxxhlnRN++faNp06axYsWKePnll+ORRx6JDRs2pPvu2rUrvv71r0f79u3jhBNOqHCe0oHCP/7xj9i2bVv6/JBDDokBAwZUuc4+ffrU4eqqlkql4uyzz45XXnml3GtHHXVUfO1rX4uBAwdG+/btY82aNfHmm2/Ggw8+WG7n4m233RYtW7aMX/7ylxXOc8opp8TatWvT55MnT468vLz0ee/evSv8hXlElPtl9p6YPHlyuef/RESMHj06TjnllBgwYEB06tQpmjZtGlu2bImNGzfG+++/H++++268/PLLsWrVqjrPfdFFF6V3UrVs2TK+/vWvxwknnBA9e/aM7Ozs+Oijj+Lxxx+Pp556KmPcs88+Gw888ECcf/758fWvf73CGvvtt180btw4XePJJ5/MqPHSSy/FX//61/iP//iPGq31pptuit/85jfl2vv27Rvnn39+jBgxIjp37hwbN26M+fPnxyOPPBLTpk3L6Dt58uQ4/fTT47XXXtsrz9J644034rTTTsv4OsrJyYk//vGP8a1vfavScalUKs4888z4xz/+kdGenZ0dJ598cowdOzYGDx4c7dq1i8LCwli5cmVMmTIlHnjggYxdfHPnzo0zzzwzpk2bVm73UBKU/R6NqPvPkF69epVr+/DDDz+1uf/973+nz/Pz89PPWQQA2Kv21f0NAQD47NuTZ2Zt27Yt9fDDD1f4XJjzzjuvxmuYO3du6vDDD0/de++9qfXr19doTGFhYerWW28t94yRk046qUbjK3pm1u4/TZs2Td1zzz2pkpKSGl/Dniq7hqysrPTxJZdcUuXzhu6///4Kn1X18MMPVztvXZ+785WvfKXcuP79+6dmzpxZ6Zg1a9akTjvttAqfdbRu3bpq5yz7DKm6PtttT40fP77cNbRq1Sr10EMPVTpm165dqWuvvbbcuOzs7NSUKVNqNO+oUaMyxl544YX1dEVVO+OMM8o952nSpEk1GltSUpJ68803UxdddFHqiSeeqLJv2Wdmlf4eOP7441MrVqyodOwTTzyRysnJKff1eOedd6bPTzjhhCprPPbYY6ns7OyMGgcffHCNrvNf//pXufkjIvWTn/wktWPHjkrHPfroo6nc3Nxy42666aZq56zt9+4TTzyRatasWUb/1q1bp1544YVq57rxxhvLzfWlL30ptXjx4irHbd68OXXJJZeUG/uDH/yg2jlror6fmfX000+Xq/f73/++TrVmzZpVq+s+/fTTy/Wv6TMny/qv//qvcrVmz55dp1oAALUhzAIAYK+pKMw65JBDUmeddVaFf7761a+mTjrppNSQIUNSTZo0qTAMuvDCC1M7d+6s8Rr2JDR66qmnyv0CfN68edWOqyzMatSoUer555+v83rqqrJg7bvf/W6Nxj/77LPlfhHftWvX1K5du6ocV5cw64UXXig3pk+fPlUGBbsVFhZW+EvbK664otqxSQiz1q9fn2rRokXGOpo0aZJ69dVXazT+t7/9bblrHzp0aI3G7qswq+z1PvDAA3tlnrJh1u4/Y8eOrdHPkx//+Mflxu4Ou0844YRqvxdSqVTqyiuvLFfjzTffrHbcUUcdVadAKpVKpaZMmVIuZGrSpElq9erVVY6rzffurbfemmrUqFFG3+7du6feeeedatc3d+7ccj9bLrnkklr93P7Rj36UMb5p06aplStX1nh8Zeo7zLrnnnvK1asqpK7K8uXLy9W64IILKu0/cuTIcl8DdfXLX/6y3NyvvPJKnesBANSUZ2YBAPCpmj9/fjz55JMV/nnqqafixRdfjHfffTfj+Tn77bdfXHTRRTFt2rS47777anULqZo8V6syZ555ZnzlK19Jn6dSqXjkkUfqXO/yyy+Pk08+uc7j69P+++8ft99+e436fvnLXy53W8fVq1fH008/Xe/rqmhN9957b3Tv3r3asTk5OTFx4sTo1KlTufEFBQX1tsa95Z577sm41WFExE9+8pMYM2ZMjcb/6Ec/iuOPPz6jbfbs2TFp0qT6WmK9ys/PL3e9pb/f9rbWrVvH/fffX6OfJz/4wQ/K3ZqvsLAwWrduHX/5y18qfRZUaVdeeWW5GpMnT65yzIwZM+Jf//pXRtuoUaPipz/9abXzRXzybMFrrrkmo23Xrl0xYcKEGo2vSklJSXz/+9+PH/7whxnPARw0aFD861//iqFDh1Zb4ze/+U0UFxenz4cPHx533XVXrX5u//rXv46DDz44fb5z5874wx/+UOPxn5ZNmzaVa2vevHmdalU0rqpnjZWdu67z1mVuAID6IswCACDxNmzYEOvXr894JtKn5Ywzzsg4L/sMqZrKzs6Oq6++uh5WVD+uu+66aNq0aY3733DDDeV+6X/vvffW65pWrFgRL7zwQkbbKaecUuMwJyKiXbt25X55v3nz5njsscfqZY170//+7/9mnLdv3z7++7//u1Y1xo8fX67tz3/+8x6ta28pHWLslirzbLy96eKLL65RSBoR0a1bt/jCF75Qrv2b3/xmdOvWrc41Sj97qCJlvyYiIn7729/WaL7drrrqqujSpUtG255+TWzbti3OPPPMcqHRF7/4xZg6dWr07Nmz2hqrV6+Ohx9+OKPtV7/6VWRnZ9dqLdnZ2XHFFVdktD3//PO1qvFp2LFjR7m2Zs2a1alWRYHSzp07azx3Xeety9wAAPVFmAUAQOJt3bo1nnnmmTj11FPjmGOOicWLF39qc5f9peysWbPqVGfs2LE1/sX53taiRYs466yzajWmY8eOccopp2S0TZs2LWNHxp6aOnVquTDj4osvrnWdcePGlQveXn/99T1a2962Zs2aWLBgQUbb17/+9Vr/0nno0KExbNiwjLakXnuHDh3KXd9f/vKXT23+2n4PDBw4sN5rLF26tMr+U6ZMKTf+8MMPr9WcTZo0iXHjxmW0rVixos4/R9esWROjR4+OZ555JqP9P/7jP+If//hHtGnTpkZ1XnnllSgsLEyfd+nSJb74xS/WaU1jx47NOJ8zZ07idgsVFRWVa6vNLuPSKvqPCKU/ltXNXdd56zI3AEB9EWYBAPCp+vnPfx6pT57dWuGfXbt2xbp162L69Okxfvz4GDRoUMb4adOmxRFHHBHvvfdenebPy8uLe+65J7773e/GiBEjolevXtGuXbvIycmJrKyscn9OPPHEjPEbNmyocEdJdY488sg6rXdvOPLII6NVq1a1Hlf2F81btmyp8+ehIhXteit727ya6NChQwwfPrza2klS0fpOOOGEOtU66aSTMs6XLl0aK1eurFOtvSk7OztGjRqV0XbllVfGDTfcsNeDiEaNGtU6FCp7+8pGjRqV+zqrbY2qbn+5YcOG+OCDDzLa6utrIqJu3xPvv/9+HH300fHWW29ltF977bU1vt3ibmVvsXjooYeWuw1jTe23334Z5yUlJeU+dvtaTk5OubbSt9OtjYp2QlX1sS87d13nrcvcAAD1RZgFAECiNG7cODp27BhHH310XHnllfHuu+/G7373u4xnqOTl5cXJJ59cq+cgLVq0KL761a9Gt27d4pJLLom777473njjjVi2bFls3LixxgFVKpWq0y/aSz/TZV+r6HZpdR33/vvv79liSlm4cGHG+f777x9t27atU63DDjss43zRokX1uousvpW99ojy11BTFY0ru+srKa666qqM86Kiorj++uujW7ducfrpp8ddd90Vc+fOrffPXZs2bWr93KCyAXB91NiyZUulfRctWlRup+K+/JqYMmVKjBgxImNHV05OTvzv//5v3HjjjbVe09tvv51x/sILL1T4Hwpq8qdly5bl6ufn59d6TXtTRTuaKrr1YE1s3769RvUre62u89ZlbgCA+iLMAgAg0bKysuKHP/xh3HDDDRnty5Yti5///Oc1qjFx4sQYNGhQPP300xXe6qm2qvoFdGXqGsrsDTV9xk9ZFd0msT6fY1a2VtndFrVRdmwqlYpNmzbVud7eVvbas7KyokePHnWqVdHHbV88b64mxo4dG9dff3259h07dsQzzzwT3/ve92Lw4MHRvn37+NKXvhQ333xzuV1BddG6detajykdqNdXjapCuoo+Z3X9nqjolo61/Zo44YQTMsa0bt06nnvuufjmN79ZpzXl5eXVaVxNJe1rvqK/AyoKhmqionFV/R1T9rW6zluXuQEA6oswCwCABuHHP/5xdOnSJaPtz3/+c2zevLnKcQ888EB861vfqvQB9R07doyhQ4fG8ccfH1/+8pfjrLPOyvhz3HHHlRtTdrdETVS0c2Bfyc3NrdO4ip6FszfDrLquM6Lita5fv77O9fa2stfesmXLOt9yraFd+89//vN45JFHqgxqNm3aFC+++GL89Kc/jSOOOCL233//+NWvflWr3ZmllQ2V9lWNqlT0vVWf3xO1/Zooe2u6gQMHxogRI+q8nr29cyppz3Hq2LFjubY1a9bUqVZF4zp06FDjuXft2lXnW3nWdm4AgPpS/qbNAACQQM2aNYsTTzwx7r///nTbli1bYvLkyXHqqadWOGbdunXx/e9/v1z4dMwxx8Rll10Wo0ePrnaX0muvvRZjx47d8wsAKnXeeefFGWecEY8//ng89NBDMXny5Ni2bVul/RcvXhzXXHNN/P73v4977703vvKVr3yKq/18Gjt2bLz66qvp83/9619xwgknxD/+8Y867cwpG4716tWr1s8xq0qfPn3qrVZ96NWrV7m2jz/+uE61li5dWq6td+/etZ67Lp+32s4NAFBfhFkAADQYgwYNKtc2a9asSsOsu+66q9zuhuuvv77GtyeMiETfmq6u6rqbpaKPRbt27fZ0OZXWqus6Iypea/v27etcb28re+1bt26NkpKSOu3OamjXvlvTpk1j3LhxMW7cuCgsLIyZM2fG66+/HlOnTo3p06dXuJMnLy8vzjjjjHj00Ufj7LPP3ger3nsq+t6qz++J2n5NPPfcc3H22WfHc889l27717/+FWPGjImXXnopOnXqVKt67du3j9WrV6fPhw0bFk888UStajQkBxxwQLm2+gyz+vXrV+u5hw4dusdzd+jQwW0GAYBPhdsMAgDQYFT0y91169ZV2v+ZZ57JOB8xYkStgqyIvf9cl31h1apVdRq3cuXKcm17M8xasWJFnWuVHZuVlVXh7feSouy1p1KpCj/eNVHRx60+P0+fhsaNG8fRRx8dV111VTzzzDOxbt26mDlzZlxzzTXldlOWlJTEd7/73c9c8FzR56yu3xP5+fmxY8eOautXpVmzZvH000+XCw3feeedGDVqVK2/Xsve+u6z+LO2tDZt2kTfvn0z2mbNmlWnWhU9N66qYOrQQw8t11aXubdv3x7vvfdejecFAKhPwiwAABqMrVu3lmur7PlVqVQqZs+endH2jW98o9Zz1vWXjUn2zjvv1Nu4gw8+eM8WU8qBBx6Ycf7RRx/VOaAo+3nr169fnZ9B9Wkoe+0REW+//XadalX0Ndu/f/861UqKrKysGDZsWPzyl7+MRYsWxbhx4zJeX79+fTz66KP7aHV7R79+/co9l6uuXxMVjavL10Tjxo3jkUceiQsvvDCjff78+XHsscfGkiVLalzroIMOyjh/9913o7i4uNZrakiOOuqojPOlS5fG8uXLa11n6tSpGefdu3ePnj17Vtp/2LBh0bhx4ypr1MSMGTPK3R6y7DUBAOwtyX03BwAAZVT0i9IuXbpU2Dc/P7/cL0b333//Ws9Z+hkxnxUzZsyoMBisTtmPRatWrWLgwIH1tawYMWJExnkqlYpXXnml1nU2bNhQLtApW7usskFXZSHp3lLR+v75z3/WqdbLL7+ccd67d+/o3r17nWolUYsWLeLPf/5zuR1adfnlfJK1a9euXFhcX18TEdV/T1QmOzs7Jk6cGJdddllG+0cffRTHHntsfPDBBzWqc/zxx2ecb9q0qcIdR58lJ5xwQrm2f/zjH7WqsWDBgnJ/F5544olVjmnZsmUcffTRGW1vvPFGrW9b+eKLL5Zrq25uAID6IswCAKDBqOgXuRU9CyQiKvwf/kVFRbWa7+WXX44FCxbUakxDsHXr1njqqadqNSY/Pz/jWTkRESNHjqzX3U7HHHNMuZ0oEydOrHWdBx54IHbu3JnRdtxxx1U5pkWLFhnn27dvr/W8e6Jz587ldqo8/PDD5a6jOnPmzCkXCFR37Q1R06ZNY+TIkRlta9eu3Uer2XvKfu7mzJlT692ihYWFcf/992e09ezZM/r06VPndWVlZcWdd94ZV111VUb78uXL47jjjot333232hoVhSC33XZbndfUEJx22mnldkjdc889tapx9913l2uryfPiyvbZvn17PPDAAzWet6ioqNzP465du8YxxxxT4xoAAHtCmAUAQIPw3HPPlXtWR3Z2dpx00kkV9u/YseMe3aJr165d8aMf/aj2C20gbrzxxnK3i6rK9ddfX67/N7/5zXpdU/fu3eOUU07JaHv22WdjypQpNa6xcePGuOmmmzLacnNz45xzzqlyXNnnadX1eVV74tvf/nbGeV5eXtxyyy21qvHjH/+42rqfFWWDvlatWu2jlew9FX3uygZI1Rk/fnysXr262rp1ccstt8SNN96Y0bZ27doYPXp0zJgxo8qx+++/f5xxxhkZbY8//vhncjfsbh06dCh3zW+99VaNd9ytXbs27r333oy2Hj16VPr3YGnf+MY3onnz5hltv//978s9S60y9913X7mvowsvvDCys7NrNB4AYE8JswAASLx58+bFRRddVK79y1/+cnTs2LHCMdnZ2TFkyJCMtrvvvjs2b95c7XwlJSVx6aWX1mh3QUO1aNGi+OEPf1ijvi+88EJMmDAho61r165x5pln1vu6rrjiinJtF198cblfolakuLg4vvnNb8aaNWsy2r/1rW9F69atqxxb9vlB06ZN+9RvNfjtb387WrZsmdF28803x+uvv16j8b///e/L3Qbs0EMPTezOrPfffz/efPPNOo1dt25dvPbaaxltFT13rKEbPnx4udsBvvrqq/Hb3/62RuOnTZsWv/jFLzLamjZtGv/5n/9Zb2u89tpr4/e//31G24YNG+L444+vNoi+/vrrM/7TQUlJSZx77rl1fjZYRMT06dPj3//+d53H721XX311uf9occkll9Toln+XXnppbNiwIaPtRz/6UeTk5FQ7tkOHDuVCzEWLFsU111xT7dhly5aV+88dzZs3r/DnNQDA3iLMAgAgsT7++OO47rrrYvjw4ZGXl5fxWpMmTeJ3v/tdleNPO+20jPOVK1fGGWecEevXr690zOrVq+Pss89O/+/3mvySsKHZ/YvUO++8My677LLYtm1bpX0ffvjhOOuss8rdtvHWW28td7us+nDCCSeU27nw0UcfxdixY+Odd96pdFxeXl6cc8458fTTT2e0d+/ePX72s59VO++RRx6Zcb5kyZK47rrrarV7bU+1bds2fvnLX2a07dixI0499dR4/PHHKx1XWFgYN9xwQ1x55ZUZ7dnZ2fGHP/xhr6y1Prz//vtx1FFHxYgRI+Lee++N/Pz8Go1bunRpnHrqqbFly5aM9up23zVUt912W7nvtauuuqrar88nn3wyvvzlL5e7Zeb1118fnTt3rtc1/r//9//i7rvvzrjt6ObNm+NLX/pShc9Z2m3o0KHlvj/z8/NjxIgRMX78+Bo/22/9+vUxceLEGDFiRIwcObLcLt4kGTZsWFx44YUZbYsXL47Ro0fHqlWrKhyza9euuOCCC8rdHvaggw4q9+yyqvz85z+PDh06ZLTdeuut8dOf/rTS8H7+/Plx7LHHxqZNmzLaf/KTn5R7bh0AwN6Ulfq0/7shAACfG5MmTYoxY8ZktB1yyCExYMCASscUFhZGQUFBLFy4MFasWFFhn+zs7HjwwQfjvPPOq3L+vLy82H///cvtxurYsWNcfPHFMWrUqOjWrVvs2LEjli1bFi+++GI88cQT6f5ZWVlx7bXXlruN1uLFi6t83sySJUuib9++GW2vvfZajB49usr17i1ldwH853/+Z9x9991RUlISERH77bdfXHDBBXHsscdG586do6CgIObNmxcPP/xwTJs2rVy9008/Pf72t79VO+99990XF198cUZbTd5+5Ofnx5AhQ8rd6i8nJydOP/30OP3006Nv377RtGnTWLlyZbz88svx8MMPlwspGzVqFC+99FJ88YtfrNGcPXr0KHfrutzc3BgyZEh06NChXLB5+eWX1/vnNJVKxcknn1xhADBixIj42te+FgMHDoy2bdvG2rVrY8aMGfHAAw/EwoULy/W/7rrr4oYbbqjRvKNHj47Jkyenzy+88MK477776nwdNfG3v/0tY3dfdnZ2jBgxIoYPHx5f+MIXolu3btGuXbvIycmJTZs2xYIFC+LVV1+Np556qlyIc84558Rjjz1W6VzXX399xseid+/esWTJklqtd1/WuPnmm+OnP/1pufYDDjggzj///DjqqKOiS5cusWnTppg3b148+uijFe7oGz16dLzyyivVPuuurt+7Dz30UFx44YUZzyds0qRJPPLII5Xu5EylUnHOOefEk08+We619u3bx2mnnRbHHnts9O7dO9q3bx+FhYWxcePGWL16dbzzzjsxa9asmD59esac999/f4wbN67Kta5bty4uvfTSSl//+OOPY+bMmRltw4cPj969e1c65oknnqhyzt02btwYw4YNi48++iijvVWrVvHNb34zxowZE/vtt1/k5eXFrFmzYsKECeX+PmzSpElMmzYthg8fXqM5d3vmmWfijDPOKPf5PPjgg+M///M/Y9CgQdG6dev4+OOP49lnn42HH344CgsLM/oeddRRMWXKlL3yHxoAACqVAgCAveS1115LRUS9/unQoUPqySefrPEaHn744TrPdfvtt1d4DYsXL65yzsWLF5cb89prr+3ZB3MPlF3LxIkTU7feemudPibHHntsasuWLTWad+LEieXG19T777+f6t27d50/d02bNk099thjtfo43XDDDbWaY+LEibWqX1MFBQWpE044YY++T374wx+mSkpKajznqFGjMsZfeOGFe+XaSnv66afr5WfCsGHDUvn5+VXO9fOf/zxjTO/evWu93n1d4yc/+ckefZxGjx6d2rhxY43m2pPv3b/97W+ppk2bZozNyclJPfDAA5WO2bVrV+ryyy+vl6+HiEjdf//91a6zop/Te/qnNj744INU165d6zRPTk5Orf4eLOv222+v8zUefPDBqTVr1tR5bgCAunKbQQAAGoRWrVrFd7/73Zg/f3589atfrfG4r33ta/HnP/85mjZtWuMxLVq0iHvvvTe+//3v12WpDcIPfvCDuO2222p1G8Wzzz47nn/++XLPddobDjrooHjjjTfiS1/6Uq3H9u/fP1566aVa33buZz/7WfzsZz+L7OzsWs9Zn1q3bh3PPfdcXHHFFbW+zWXbtm3jrrvuit/97nflduQlTYsWLardIVSVrKysuPDCC2PSpEnRvn37elxZMt18883x5z//udbXmp2dHZdddlm88MIL0aZNm720uv/f6aefHs8880y0aNEi3VZUVBT/8R//EXfffXeFYxo3bhx/+MMf4tFHHy23q7W2jjjiiBg4cOAe1fg09O/fP95888046qijajWue/fu8fLLL9fq78Gyvv/978ejjz4abdu2rdW4L3/5yzFt2rR6v00lAEBNCLMAAEiURo0aRdu2baN3795xzDHHxPe///146KGHYvXq1fHHP/4xOnXqVOua3/rWt2LmzJlxzjnnVBlUtG7dOr7zne/Ee++9V+4WW59FV1xxRcyaNSvOPPPMSkOTrKysGDFiRDzzzDPx+OOPR6tWrT619XXr1i3+8Y9/xD//+c845ZRTonnz5pX2zcrKiuHDh8edd94Z7733Xhx33HG1nq9Ro0bxi1/8IpYsWRK33HJLnH766dGvX79o167dp347rcaNG8dtt90W8+bNi4svvrjar/v9998/rr766vjwww+rvHVakpx44omxevXquO++++L888+v8tadpbVr1y6+/e1vx1tvvRX33Xffp/o1ua9961vfig8//DCuueaaOPDAA6vs26FDh7jgggti7ty5ceedd9Yq0N9TJ554YrzwwguRm5ubbispKYnvfve7ceutt1Y67txzz40FCxbEX/7ylzj++OMzArHKNG3aNMaMGRM33XRTzJ8/P95888049NBD6+U69rZevXrFtGnT4q9//WscdthhVfbdb7/94sYbb4z333+/Xm5vuvtj/aMf/Sg6duxYab+srKw47rjj4u9//3s8++yzn4vgGABIJs/MAgDgc6WgoCCmTp0aS5YsiQ0bNkROTk507tw5Dj744Bg+fPhn8hkgZXfoTJw4MS666KKMto0bN8Ybb7wRCxcujM2bN0dubm507949jjjiiOjZs+enuNrK7dixI954441Yvnx5rFu3Lnbt2hWdOnWKLl26xBFHHPGZ3i1QUlISb7/9dnz44Yexdu3a2Lx5c7Rr1y46d+4cgwcPjv79++/rJdaLdevWxYIFC2Lx4sWRl5cXW7dujezs7MjNzU1f64EHHrhHO7o+Sz788MOYPXt2rFu3LvLz86NVq1bRqVOnOOCAA2L48OEN/uO0a9eumDlzZixbtizy8/Njw4YN0aRJk2jdunV07do1Dj744OjXr1+tdzAm1bJly+Ktt96Kjz/+OLZs2RLNmjWLbt26xdChQ2Pw4MF7bd7dP1/mzp0ba9asicLCwsjNzY2+ffvGkUce+Zn+2QoANBzCLAAA+IyrSZgFAAAASdWw/5sWAAAAAAAAn2nCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEytnXCwAAAPauVCq1r5cAAAAAdWZnFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABIrZ18vgM+OVCoVJSUl+3oZAOwD2dnZERFRXFy8j1cCAADsS94bABAR0ahRo8jKyqq3esIs6k1JSUmsWbNmXy8DgE9Zo0aNomvXrhERsW7dOv+xAQAAPqe8NwBgty5duqT/g0N9cJtBAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYuXs6wUAfBacX7huXy8B9q2P1+zrFUAiPNi4075eAgAAAHzm2JkFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASKycT2OSkpKSWLZsWXz44YfpPx9//HEUFxdHRMSAAQPi+uuvr1PtOXPmxOTJk2PhwoWxfv36yMnJiQ4dOsTQoUNj7Nix0aNHj1rXXL58ebz22msxe/bsyM/Pj6Kiomjfvn0ceOCBMWrUqBg8eHCtaxYUFMSkSZNixowZsXbt2ti6dWu0adMmevbsGSNHjowRI0ZETk7tPh1FRUUxffr0mDZtWixbtiw2bdoULVu2jM6dO8cRRxwRo0ePjtzc3FqvFQAAAAAAICmyUqlUam9OMGPGjPjDH/4QO3furLRPXcKsbdu2xd133x3Tp0+vtE92dnace+65ceaZZ9a47lNPPRWPP/54OmiryMiRI+OSSy6J5s2b16jmrFmzYsKECVFQUFBpn759+8YVV1wR3bt3r1HNFStWxO233x5LliyptE+bNm3i0ksvjcMOO6xGNfdUcXFxrFmz5lOZC5Lm/MJ1+3oJACTAg4077eslAADsM40aNYquXbtGRMTq1aujpKRkH68IgH2lS5cukZ2dXW/19vptBrdt21ZlkFUXRUVFMX78+Iwgq2fPnnHcccfF0UcfHe3atYuIT8KVhx9+OJ544oka1X300UfjkUceSQdZ7dq1i6OPPjqOO+646NmzZ7rftGnT4tZbb60y8Npt9uzZMX78+HSQ1bRp0xg2bFiMGTMmBgwYEFlZWRERsXjx4vjFL34R69evr7Zmfn5+3HjjjekgKysrKwYMGBBjxoyJYcOGRZMmTSIiYtOmTfHb3/425s6dW6PrBwAAAAAASJpP5TaDEZ/sEjrggAOiX79+ccABB8Ts2bPj+eefr1OtJ598Mh3QNG7cOC677LIYOXJk+vWioqJ45JFH4plnnomIiMcffzwGDBgQAwYMqLTmnDlz4sknn0yfn3baafG1r30t49Z/U6dOjQkTJkRhYWHMnj07nn766Tj77LMrrbl58+a47bbb0qHX4MGD44orrsi49d+SJUviN7/5TeTl5UV+fn7ccccdcd1111V5/f/zP/8TGzZsiIiITp06xY9//OPo06dP+vWCgoK4/fbbY86cOVFcXBy33npr/OEPf4iWLVtWWRcAAAAAACBp9vrOrC984Qtx1113xT333BM/+clP4uyzz45DDz00WrRoUad6mzZtimeffTZ9ftFFF2UEWREROTk5MW7cuBgxYkRERKRSqXjooYeqrFv69REjRsS4cePKPcPqmGOOiQsvvDB9/n//939V3jrw73//e2zdujUiPtlSd9VVV5V7hlWfPn3i6quvTm+3mzt3bsyePbvSmm+//XbMnz8/fZ1XX311RpAVEZGbmxs//vGPo0uXLhERsWXLlvj73/9eaU0AAAAAAICk2uthVtu2baNjx471Vm/y5Mnp2xZ269Ytjj/++Er7jhs3Ln0bvwULFsTixYsr7Ldo0aL48MMPI+KTW/aNGzeu0ponnHBCdOvWLSIitm/fHlOmTKmwX1FRUbzyyivp8/POOy+aNm1aYd/evXvHqFGj0ucvvvhipfOXfm3UqFHRq1evCvs1a9Yszj333PT5P//5zxrdFhEAAAAAACBJ9nqYVd/eeuut9PHo0aPTYVVFOnbsGIMGDUqfz5gxo9qaQ4YMqTJ8y8rKygieSo8tbd68eeldWc2bN48jjzyy0poRn1zLbrNnz44dO3aU67Njx46M51+NGTOmyppHHnlkNGvWLCI+2Z21e0cXAAAAAABAQ9Ggwqxdu3bFggUL0ucDBw6sdkzpPqWDoNLee++99HFVz9WqqOYHH3wQhYWF5fqUnqt///7RuHHjKmv269cvvXOrsLAw4zormqtp06ZxwAEHVFmzSZMm0b9//wrXBAAAAAAA0BA0qDBr5cqVkUqlIuKTHVJlnxVVkf333z99vGLFigr7lG7v27dvtTVL9ykpKYlVq1btcc2cnJyMWwZWtNbSbb169Uo/Z6uma12+fHm1/QEAAAAAAJKkwYVZu+Xm5kaTJk2qHVP6loFbtmyJgoKCjNc3bdqUvh1gRESnTp2qrdmkSZPIzc1Nn1cUPJVea02fGdahQ4ca16zJOsvOXXo8AAAAAABAQ5CzrxdQG1u2bEkft23btkZjyvbbsmVLRhC1efPmjNfbtGlT47q7g7HS66qvtVZUs/Raa7POqmpWJz8/v0Zz7N4l1qhRg8pHAQDqlX8LAQCfZ6X/LeTfRQDUpwYVZu3YsSN9XJNdWRX1K12jovO61C1bo2xbkmtW59JLL622z4QJE6JDhw6RnZ0dXbt2rfUc8Jnw8Zp9vQIAEsC/hQAAPtG5c+d9vQQAPkMa1H+R2LVrV/o4J6dmOVzZfqVrREQUFhZW2b8yjRs3rrRm2ba61Cy7rrJt9bVOAAAAAACAJGtQO7NK7zIqKiqq0Ziy/cruaCod9uzuX5NdT6WDpYr6N2nSJHbu3FmrtZauWXZdZdvqUrOmu7lKmzBhQrV9dt/KsLi4ONatW1frOQAAPitWr169r5cAALDPNGrUKL0ja+3atVFSUrKPVwTAvtKpU6f044nqQ4MKs5o1a5Y+rukuo7L9Steo6HzXrl01Cn1K1y1bY3fb7jCrLmutrGZFffekZnU6dOhQq/7+kQIAfJ75txAAwCdKSkr82wiAetOgbjPYqlWr9PHGjRtrNKZsv9I1IiJat26dcb5p06Za1y1bs2xbXdZaUc3Sa62vdQIAAAAAACRZgwqzunfvnj4uKCio0e6kvLy89HGrVq0iNzc34/U2bdpEy5Yt0+c1uU3erl27oqCgIH3eo0ePKtdaeg1Vyc/Pr3HNmt7Or/TcpccDAAAAAAA0BA0uzMrKyoqIiFQqFUuWLKl2zEcffZQ+riggKttek5qLFy9OHzdq1Ci6detWZc3S/StTXFwcS5curXKtpduWLl0axcXFtVrrfvvtV21/AAAAAACAJGlQYVaTJk2if//+6fN58+ZVO2b+/Pnp40GDBlXYZ+DAgenj9957r9qapec96KCDonHjxuX6lJ5rwYIFUVRUVGXNDz/8MP2MrcaNG2dcZ0Vz7dy5Mz788MMqaxYWFsbChQsrXBMAAAAAAEBD0KDCrIiIww8/PH08adKkKvvm5eXFnDlzKhxbWc05c+Zk3O6vIqXnrazmgAEDokWLFhERsX379njzzTdrXHPIkCHRrFmzcn2aNWuWEUhVd/1vvvlmbN++PSI+ucXiIYccUmV/AAAAAACApGlwYdaoUaOiadOmERGxcuXKeOWVVyrt++CDD0ZJSUlERPTv3z/233//Cvv169cvDjjggIiIKCkpiQcffLDSmv/85z9j1apVERHRvHnzOO644yrsl5OTE1/84hfT54899lilz/haunRpRjB10kknVTp/6dcmT54cy5Ytq7Dfzp0747HHHkufH3/88ZGdnV1pXQAAAAAAgCRqcGFWmzZt4tRTT02fT5w4MaZPn57Rp6ioKB588MGYNm1auu0b3/hGlXVLvz516tR48MEHy90acPr06XHfffelz7/yla9Ebm5upTXPOOOMaNmyZURErFq1Kn7zm9/E5s2bM/p8/PHHccstt6TnGjhwYHzhC1+otOZhhx2W3mFVWFgYv/71r+Pjjz/O6LN58+b47W9/G6tXr46IT3ZlnX766ZXWBAAAAAAASKqsVCqV2tuT3HzzzbF+/fqMto0bN8amTZsiIqJp06bRtWvXcuP++7//O9q3b1+uvaioKH71q1/F3Llz0229evWKvn37RmFhYcyfPz82bNiQfu3cc8+Ns88+u9p1PvLII/HUU0+lz9u1axeHHHJING7cOD766KOMXVBDhgyJ//7v/652t9M777wTt9xySxQXF6evdfDgwZGbmxtr1qyJefPmxe5PQfv27eNXv/pVhddcWn5+fvz0pz9NX2NWVlYMGDAgunTpEgUFBTFnzpz087eys7Pjpz/9aQwePLja699TxcXFsWbNmr0+DyTR+YXr9vUSAEiABxt32tdLAADYZxo1apT+Hd/q1avTd0wC4POnS5cu9Xq3uE8lzPre974X69bV/he9d9xxR3Tu3LnC17Zt2xZ/+tOf4o033qh0fHZ2dpxzzjnx1a9+tUbzpVKpeOqpp+KJJ55Ih08VGTFiRFxyySXpZ2JVZ+bMmTFhwoRyu7JK69u3b1xxxRXRvXv3GtVcsWJF3H777bFkyZJK++Tm5sZll10Whx12WI1q7ilhFp9nwiwAIoRZAMDnmzALgN2EWWW8++67MXny5FiwYEFs3LgxsrOzo0OHDjF06NAYO3Zs7LfffrWed/ny5fHqq6/G7NmzIz8/P4qLi6Nt27bRv3//GDVqVAwZMqTWNQsKCuK1116LGTNmxNq1a2Pr1q3Rpk2b6NmzZ4wcOTJGjhwZOTk5tapZVFQU06ZNi2nTpsWyZcti06ZN0bJly+jcuXMceeSRMXr06Cpvg1jfhFl8ngmzAIgQZgEAn2/CLAB2a5BhFp8Pwiw+z4RZAEQIswCAzzdhFgC71XeY1ajeKgEAAAAAAEA9E2YBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEytnXCwAAAAD4rDi/cN2+XgLsWx+v2dcrgER4sHGnfb0E+EyxMwsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxcvb1AvbUggULYsqUKbFw4cJYu3Zt7NixI5o0aRJt2rSJPn36xBFHHBFHHnlkNG7cuEb1UqlUvPXWW/H666/HkiVLYv369dGsWbPo1KlTDBs2LMaMGRMdO3as9ToXLVoUkyZNivfeey/Wr18fERHt27ePgQMHxujRo6Nfv361rpmXlxevvvpqzJo1K/Ly8mLHjh3Rvn376NOnTxx77LFx+OGHR1ZWVq3rAgAAAAAAJEVWKpVK7etF1MXmzZtjwoQJMXPmzGr7dunSJb73ve/FwQcfXGW/9evXxx133BFz586ttE+zZs3im9/8ZowePbpG6ywqKor7778/XnjhhajsQ52VlRUnn3xyjBs3LnJyapYvvvrqqzFx4sTYuXNnpX0GDx4c//Vf/xVt27atUc09VVxcHGvWrPlU5oKkOb9w3b5eAgAJ8GDjTvt6CQDsY94bABDhvQF06dIlsrOz661egwyzdu3aFT/72c9iyZIl6bbc3Nzo27dvtG/fPgoKCmL58uUZwUrTpk3juuuuiwMPPLDCmtu2bYtrr702li1blm7r169f7LfffrFt27Z47733YuvWrenXvve978WoUaOqXesdd9wRU6ZMSZ936dIlvYaFCxdmrHHMmDFx6aWXVlvz1VdfjT/+8Y/p85YtW8bAgQOjRYsWsWzZsvjwww/Tr/Xu3Tt+8YtfRLNmzaqtu6eEWXyeecMKQIQ3rAB4bwDAJ7w34POuvsOsBnmbwb/97W/pICsrKyvOO++8OPXUU6NJkybpPqlUKqZPnx733HNPbNu2LXbu3Bl/+tOfYvz48RXWvPfee9NBVqtWreKHP/xhDBo0KP36jh074u67746pU6dGRMSf/vSnOOigg6Jr166VrvPVV19NB1lZWVnxH//xH3HyySdHo0afPKqspKQk/vGPf8Rf//rXSKVS8dprr8WAAQOqDMlWrlwZ99xzT/r8mGOOiUsuuSQjrJo7d2787ne/i61bt8bHH38c9957b1x22WWV1gQAAAAAAEiqRvt6AXUxefLk9PHJJ58cX/3qVzOCrIhPwqORI0fGf/7nf6bbli5dGkuXLi1Xb+nSpfH666+nz7///e9nBFkRn9xe8PLLL4+DDjooIj65feCjjz5a6RoLCwvj8ccfT5+ffvrp8eUvfzkdZEVENGrUKL785S/Haaedlm577LHHoqioqNK6jzzySBQXF0dExEEHHRSXX355uV1XgwYNiu9///vp8ylTpsTy5csrrQkAAAAAAJBUDS7M2rZtW6xb9/9v2R85cmSV/Q8//PBo2rRp+nzlypXl+rz00kvp51kNGTIkvvCFL1RYq1GjRnH++eenz994440oKCiosO/MmTMjPz8/IiJatGgRZ511VqVrPPvss6N58+YREbFu3bp4++23K+y3cePGePPNN9Pn48aNywjHSjv00ENj8ODBEfHJDrCXX3650vkBAAAAAACSqsGFWTt27Mg4b9myZZX9s7Oz00FRRETZR4SlUqmYNWtW+nz06NFV1jv44IPTtxYsKSmJmTNnVtjvrbfeSh+PGDEiI1Arq2nTpnH00Uenz2fMmFFhv5kzZ6bX361bt/QuscqUvpbS6wEAAAAAAGgoGlyYlZubG40bN06fV3f7vIKCgti0aVP6vHfv3hmvr1q1Kr2DKiJi4MCB1a6hdJ+5c+dW2Oe9995LHw8YMKDamqVva1iTmrVdZ15eXqxevbraMQAAAAAAAEnS4MKsnJycOPTQQ9PnTz75ZOzcubPS/g888EB6N9PgwYOje/fuGa+vWLEifdy2bdto165dtWvo27dvheN327ZtW2zYsCF9vv/++9eq5vr162Pbtm3l+pSeq3T/yrRv3z7atGmTPvfcLAAAAAAAoKFpcGFWRMTXv/71aNasWURELF68OH70ox/FpEmTYvXq1bFr167Iy8uLt99+O6677rqYNGlSRETst99+cemll5arVfoZWp06darR/B07dqxwfGVtpfvXpGZN6tbXWgEAAAAAAJIsZ18voC569OgRv/jFL+KWW26JvLy8WLNmTdx1110V9m3ZsmUce+yx8fWvfz3j2Vm7bd68OX1cehdTVdq2bZs+3rlzZxQWFmbc+rB0zebNm0eTJk2qrdm0adNo3rx5bN++PSIitmzZkvH6rl27YteuXXu01rI1a6L0LRirmiM7OzsiIho1apD5KABAvfBvIQAAIMJ7A6hvDTLMivjk2Ve33357vPLKK/Hggw9WeqvBoUOHxjHHHFNhkBURsWPHjvRxTUKnivrt2LEjI8yqS83dfXeHWaVrVHRel7WWrVETFe1mK2vChAnRoUOHyM7Ojq5du9Z6DvhM+HjNvl4BAAng30IAeG8AQIT3BlDfGmyYVVBQEA888EC8/vrrUVxcHG3bto3+/ftHbm5ubN26NRYtWhTr1q2L6dOnx/Tp0+P444+Pb3/72+US8cLCwvRxTk7NPhylg6uIyNgxVdeaZfuWrVn2vC5rLVsDAAAAAAAg6RpkmLVq1aq48cYbIz8/Pxo3bhwXXnhhnHDCCelb3UVEpFKpmDZtWtxzzz2xffv2+Oc//xmNGjWKb3/72xm1Soc9RUVFNZq/dFgVUX6XVF1qlu1btmbZ87qstTa7xHabMGFCtX1238qwuLg41q1bV+s5AAA+K1avXr2vlwAAACSA9wZ83nXq1Ckjs9lTDS7MKi4ujvHjx6ef5fSd73wnRo8eXa5fVlZWHHPMMZGbmxu//OUvIyLipZdeitGjR0e/fv3S/Zo1a5Y+runOpbL9Steoa82yfauqWZu6VdWsiQ4dOtSqf0lJSa3nAAD4rPBvIQAAIMJ7A6hvDe4pdG+++WYsW7YsIiK6d+8eo0aNqrL/kCFDYvDgwenz1157LeP11q1bp483bdpUozVs3Lgxfdy0adNytx0sXXP79u01Cp527tyZfl5WRESrVq0yXm/SpEnGzqq6rLVsTQAAAAAAgKRrcGHWO++8kz4eOHBgZGVlVTtm0KBB6eOPPvoo47Xu3bunj2t6i7y8vLwKx1fWVrp/TWrWpG59rRUAAAAAACDJGlyYtX79+vRx6R1QVSndb9u2bRmv9ejRI328cePGjJ1MlVm8eHGF43dr0aJFtGvXrsL+NanZvn37aNGiRbk+peeqSc3169dn7ODab7/9qh0DAAAAAACQJA0uzCp9q70tW7bUaEzpfmVDom7dumU8F+q9996rtt68efPSx6V3fZU2cODAvVqzdP+a1OzYsWN07dq12jEAAAAAAABJ0uDCrI4dO6aPaxISRUTMnTs3fVw20MnKyophw4alzydNmlRlrQULFsSqVasiIqJRo0YxfPjwCvsdfvjh6eM33nijyudm7dq1K954440Kx5Y2fPjw9G0VV65cGQsWLKhyrZMnT84YCwAAAAAA0NA0uDBr8ODB6eMVK1bElClTquw/d+7cePfdd9PnQ4cOLdfnxBNPTIdEs2fPzuhfWklJSTzwwAPp86OOOipyc3Mr7Dt8+PD0jq+tW7fGU089Vekan3jiidi6dWtERHTq1CkjXCutbdu2ceSRR6bPH3zwwUilUhX2nT17dsyePTsiPgndTjzxxErnBwAAAAAASKoGF2Yddthh0a1bt/T5n/70p3jppZeipKQko18qlYrp06fH+PHj020dOnSIkSNHlqvZq1evOPbYY9Pnt99+e7ldXzt27Ii77ror3n///YiIyMnJia997WuVrrNx48ZxzjnnpM+ffvrpeP755zPWWVJSEs8//3z8/e9/T7ede+65kZOTU2nd8847L7KzsyMiYv78+XHnnXfGjh07MvrMnTs3/ud//id9ftxxx3leFgAAAAAA0CBlpSrb2pNgCxcujBtvvDF27tyZbmvXrl30798/WrduHdu2bYuFCxfGunXr0q83btw4rr322jj44IMrrLlt27a49tprY9myZem2Aw88MHr06BHbt2+PuXPnpndPRURcdtllMXr06GrXescdd2TsHuvSpUsceOCB6etYs2ZN+rXRo0fHZZddVm3NV199Nf74xz+mz1u2bBmDBg2K5s2bx4oVK2LhwoXp13r37h033nhjNG/evNq6e6q4uDjjeuDz5PzCddV3AuAz78HGnfb1EgDYx7w3ACDCewPo0qVLemNOfWiQYVZExKJFi+IPf/hD+vlVVencuXNcfvnllQZZu61fvz7uuOOOjGdsldWsWbO4+OKLY8yYMTVaZ1FRUfz1r3+NF198sdJbAmZlZcWXvvSluOCCC6rclVXaK6+8Evfdd19GoFfW4MGD4/LLL4927drVqOaeEmbxeeYNKwAR3rAC4L0BAJ/w3oDPO2FWKcXFxTFz5sx466234sMPP4wNGzbEjh07omnTptG2bdvo27dvDB8+PI466qgah0SpVCpmzJgRr7/+eixevDg2btwYzZo1i44dO8awYcNi7Nix0bFjx1qvddGiRfHqq6/GvHnzYv369RER0b59+xgwYECMHTs2+vXrV+uaeXl58eqrr8asWbMiLy8vduzYkb7u4447Lg4//PD0s8A+DcIsPs+8YQUgwhtWALw3AOAT3hvweSfMIrGEWXyeecMKQIQ3rAB4bwDAJ7w34POuvsOsRvVWCQAAAAAAAOqZMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkVs6+XkB9+eijj+KNN96IOXPmxPr162PLli3RunXraNu2bfTu3TsGDRoUQ4YMibZt21Zba86cOTF58uRYuHBhrF+/PnJycqJDhw4xdOjQGDt2bPTo0aPW61u+fHm89tprMXv27MjPz4+ioqJo3759HHjggTFq1KgYPHhwrWsWFBTEpEmTYsaMGbF27drYunVrtGnTJnr27BkjR46MESNGRE7OZ+ZTDAAAAAAAfA5lpVKp1L5exJ7YtGlT/OUvf4mpU6dW2/ekk06Kb33rW5W+vm3btrj77rtj+vTplfbJzs6Oc889N84888war/Gpp56Kxx9/PIqLiyvtM3LkyLjkkkuiefPmNao5a9asmDBhQhQUFFTap2/fvnHFFVdE9+7da7zWPVFcXBxr1qz5VOaCpDm/cN2+XgIACfBg4077egkA7GPeGwAQ4b0BdOnSJbKzs+utXoPetpOXlxfXX399rF27Nt3WvXv36NWrV7Rq1Sp27doVa9asiSVLlsTOnTurrFVUVBTjx4+PuXPnptt69uwZffv2jcLCwnj//fdjw4YNUVxcHA8//HAUFxfH2WefXe0aH3300XjyySfT5+3atYuDDz44GjduHIsXL45ly5ZFRMS0adNiy5Yt8ZOf/KTaT/Ds2bNj/Pjx6XCsadOmMWjQoMjNzY01a9bE/PnzI5VKxeLFi+MXv/hF3HTTTdG+fftq1woAAAAAAJA0DTbM2rZtW9xwww3pIGvgwIFx0UUXRe/evcv1LSoqirlz58b27dsrrffkk0+mg6zGjRvHZZddFiNHjsyo8cgjj8QzzzwTERGPP/54DBgwIAYMGFBpzTlz5mQEWaeddlp87Wtfy7j139SpU2PChAlRWFgYs2fPjqeffrrKkGzz5s1x2223pYOswYMHxxVXXBG5ubnpPkuWLInf/OY3kZeXF/n5+XHHHXfEddddV2lNAAAAAACApGq0rxdQV3/961/Tt7QbMWJEXHvttRUGWREROTk58YUvfCGOPvroCl/ftGlTPPvss+nziy66KCPI2l1j3LhxMWLEiIiISKVS8dBDD1W5xtKvjxgxIsaNG1fuGVbHHHNMXHjhhenz//u//6vy1oF///vfY+vWrRHxyTa9q666KiPIiojo06dPXH311ekdXnPnzo3Zs2dXuVYAAAAAAIAkapBh1pIlS+LVV1+NiIgOHTrEd7/73WjUqO6XMnny5PRtCLt16xbHH398pX3HjRsXWVlZERGxYMGCWLx4cYX9Fi1aFB9++GFERGRlZcW4ceMqrXnCCSdEt27dIiJi+/btMWXKlAr7FRUVxSuvvJI+P++886Jp06YV9u3du3eMGjUqff7iiy9WOj8AAAAAAEBSNcgw66WXXkofn3TSSdG8efM9qvfWW2+lj0ePHp0OqyrSsWPHGDRoUPp8xowZ1dYcMmRIdOzYsdKaWVlZGcFT6bGlzZs3L70rq3nz5nHkkUdWWjPik2vZbfbs2bFjx44q+wMAAAAAACRNgwuzSkpKYtq0aenzo446ao/q7dq1KxYsWJA+HzhwYLVjSvfZ/Zytst577730cVXP1aqo5gcffBCFhYXl+pSeq3///tG4ceMqa/br1y+9c6uwsDDjOgEAAAAAABqCnOq7JMvSpUtj+/btERHRokWL6NKlSxQXF8eUKVPi9ddfj2XLlsXWrVujdevW0bt37xg+fHiMGTOm0uBn5cqVkUqlIuKTHVJ9+vSpdg37779/+njFihUV9ind3rdv32prlu5TUlISq1atil69eu1RzZycnOjVq1csXLgwPX7IkCHVjgMAAAAAAEiKBhdm7X4OVcQnz8vKz8+PW2+9NRYtWpTRb8OGDbFhw4Z455134m9/+1v88Ic/jH79+pWrt3LlyvRxbm5uNGnSpNo1lL5l4JYtW6KgoCByc3PTbZs2bUrfDjAiolOnTtXWbNKkSeTm5kZBQUFEfBI8lQ2zSq+1qtsWltahQ4eMMKu28vPzq+3Ttm3byM7OjojYo2eXAQA0dP4tBAAARHhvAPWtwYVZZcOVm2++OZYtWxYRET169IgDDjggGjVqFB9//HEsXrw4IiLy8vLihhtuiBtuuCFjV1XEJ2HUbm3btq3RGsr227JlS0aYtXnz5ozX27RpU+O6u8Os0uuqr7VWVLM6l156abV9JkyYEB06dIjs7Ozo2rVrreeAz4SP1+zrFQCQAP4tBID3BgBEeG8A9a3BhVmldzztDrGaNm0al112WRx99NEZfefOnRu///3vY/PmzbFz5874/e9/H7///e8jJ+f/v+wdO3akj2uyK6uifqVrVHRel7pla5Rtq6+aAAAAAAAASdbgwqydO3eWa/uv//qvOOKII8q1Dxo0KK6++uq49tprI5VKxZo1a+L111+PMWPGpPvs2rUrfVw65KpK2X6la0REFBYWVtm/MqWf61W2Ztm2utQsu66amDBhQrV9du/+Ki4ujnXr1tV6DgCAz4rVq1fv6yUAAAAJ4L0Bn3edOnVKP56oPjS4MKt0OBMR0b9//wqDrNKvH3nkkfGvf/0rIiKmT5+eEWaV3rlUVFRUozWU7Vd2l1TZNRYVFdVoJ1XpsKmi/k2aNEmHeTVda+maZddVEx06dKhV/5KSklrPAQDwWeHfQgAAQIT3BlDfGtxT6Jo1a5ZxXlWQVVGfBQsWVFqvot1QFSnbr+yayp7XpW7ZGmXb6qsmAAAAAABAkjW4MKt169YZ5/vtt1+1Y3r06JE+3r59e2zfvj193qpVq/Txxo0ba7SGsv1K16hojZs2bap13bI1y7bVZa0V1QQAAAAAAEiyBhdmde/ePeO8JruNmjdvnnFeOswqXa+goKBGO57y8vLSx61atYrc3NyM19u0aRMtW7ZMn9fkOVK7du2KgoKC9HnpAK6itZZeQ1Xy8/OrrAkAAAAAAJBkDS7M6tWrV8b5jh07qh1TOryKiGjRokX6uHv37pGVlRUREalUKpYsWVJtvY8++ih9XFlAVLq9JjUXL16cPm7UqFF069atypql+1emuLg4li5dWu1aAQAAAAAAkqrBhVmdO3eOzp07p8+XL19e7ZgVK1akj1u1apWxm6tJkybRv3//9Pm8efOqrTd//vz08aBBgyrsM3DgwPTxe++9V23N0vMedNBB0bhx43J9Ss+1YMGCKCoqqrLmhx9+GDt37oyIiMaNG2dcJwAAAAAAQEPQ4MKsiIgjjjgiffzWW29V23/GjBnp40MOOaTc64cffnj6eNKkSVXWysvLizlz5lQ4trKac+bMybjdX0VKz1tZzQEDBqR3lW3fvj3efPPNGtccMmRIjW7JCAAAAAAAkCQNMsw68cQTIzs7OyIiPvjgg5g5c2alfRctWpQRZo0ePbpcn1GjRkXTpk0jImLlypXxyiuvVFrvwQcfjJKSkoiI6N+/f+y///4V9uvXr18ccMABERFRUlISDz74YKU1//nPf8aqVasi4pPnex133HEV9svJyYkvfvGL6fPHHnus0md8LV26NCPMOumkkyqdHwAAAAAAIKkaZJjVtWvXjHDm9ttvr3CX0rx58+LXv/51Onw68MADY/jw4eX6tWnTJk499dT0+cSJE2P69OkZfYqKiuLBBx+MadOmpdu+8Y1vVLnO0q9PnTo1HnzwwXK3Bpw+fXrcd9996fOvfOUrkZubW2nNM844I1q2bBkREatWrYrf/OY3sXnz5ow+H3/8cdxyyy3puQYOHBhf+MIXqlwrAAAAAABAEmWlUqnUvl5EXRQWFsYvf/nLjOdX9ejRIw444IBo1KhRLF26ND766KP0a+3atYubbropOnbsWGG9oqKi+NWvfhVz585Nt/Xq1Sv69u0bhYWFMX/+/NiwYUP6tXPPPTfOPvvsatf5yCOPxFNPPZWxjkMOOSQaN24cH330USxbtiz92pAhQ+K///u/07vOKvPOO+/ELbfcEsXFxRER0bRp0xg8eHDk5ubGmjVrYt68ebH709q+ffv41a9+Fe3bt692rXuquLg41qxZs9fngSQ6v3Ddvl4CAAnwYONO+3oJAOxj3hsAEOG9AXTp0qXarKM2GmyYFRGxbdu2uOeeezJ2S1XkwAMPjB/84AeVBlml6/3pT3+KN954o9I+2dnZcc4558RXv/rVGq0xlUrFU089FU888UQ6fKrIiBEj4pJLLkk/E6s6M2fOjAkTJpTblVVa375944orroju3bvXqOaeEmbxeeYNKwAR3rAC4L0BAJ/w3oDPO2FWBebNmxdTpkyJ999/P9avXx8lJSXRpk2bOPDAA2PEiBFx+OGHR1ZWVo3rvfvuuzF58uRYsGBBbNy4MbKzs6NDhw4xdOjQGDt2bOy33361XuPy5cvj1VdfjdmzZ0d+fn4UFxdH27Zto3///jFq1KgYMmRIrWsWFBTEa6+9FjNmzIi1a9fG1q1bo02bNtGzZ88YOXJkjBw5MnJycmpdt66EWXyeecMKQIQ3rAB4bwDAJ7w34PNOmEViCbP4PPOGFYAIb1gB8N4AgE94b8DnXX2HWY3qrRIAAAAAAADUM2EWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASKycfb2AveEvf/lLPPfcc+nzTp06xZ133lnj8XPmzInJkyfHwoULY/369ZGTkxMdOnSIoUOHxtixY6NHjx61XtPy5cvjtddei9mzZ0d+fn4UFRVF+/bt48ADD4xRo0bF4MGDa12zoKAgJk2aFDNmzIi1a9fG1q1bo02bNtGzZ88YOXJkjBgxInJyPpOfYgAAAAAA4HPiM5d0LFq0KJ5//vk6jd22bVvcfffdMX369Iz2nTt3xtatW2Pp0qXx/PPPx7nnnhtnnnlmjes+9dRT8fjjj0dxcXFG+6pVq2LVqlUxZcqUGDlyZFxyySXRvHnzGtWcNWtWTJgwIQoKCjLa8/LyIi8vL/7973/Hc889F1dccUV07969xmsFAAAAAABIks9UmFVUVBR//OMfI5VK1Wns+PHjY+7cuem2nj17Rt++faOwsDDef//92LBhQxQXF8fDDz8cxcXFcfbZZ1db99FHH40nn3wyfd6uXbs4+OCDo3HjxrF48eJYtmxZRERMmzYttmzZEj/5yU8iOzu7ypqzZ8+O8ePHp8Oxpk2bxqBBgyI3NzfWrFkT8+fPj1QqFYsXL45f/OIXcdNNN0X79u1r/TEBAAAAAADY1z5TYdbf//73WLp0aUREHHPMMTF16tQaj33yySfTQVbjxo3jsssui5EjR6ZfLyoqikceeSSeeeaZiIh4/PHHY8CAATFgwIBKa86ZMycjyDrttNPia1/7Wsat/6ZOnRoTJkyIwsLCmD17djz99NNVhmSbN2+O2267LR1kDR48OK644orIzc1N91myZEn85je/iby8vMjPz4877rgjrrvuuhp/LAAAAAAAAJKi0b5eQH1ZsWJFPPXUUxHxSZA1ZMiQGo/dtGlTPPvss+nziy66KCPIiojIycmJcePGxYgRIyIiIpVKxUMPPVRl3dKvjxgxIsaNG1fuGVbHHHNMXHjhhenz//u//yt368DS/v73v8fWrVsjIqJLly5x1VVXZQRZERF9+vSJq6++Or3Da+7cuTF79uwq1woAAAAAAJBEn4kwK5VKxR//+McoLCyMli1bZoRDNTF58uTYuXNnRER069Ytjj/++Er7jhs3LrKysiIiYsGCBbF48eIK+y1atCg+/PDDiIjIysqKcePGVVrzhBNOiG7dukVExPbt22PKlCkV9isqKopXXnklfX7eeedF06ZNK+zbu3fvGDVqVPr8xRdfrHR+AAAAAACApPpMhFkvvfRSfPDBBxERccEFF0SbNm1qNf6tt95KH48ePTodVlWkY8eOMWjQoPT5jBkzqq05ZMiQ6NixY6U1s7KyMoKn0mNLmzdvXnpXVvPmzePII4+stGbEJ9ey2+zZs2PHjh1V9gcAAAAAAEiaBh9m5eXlpW/nd8ghh8SYMWNqNX7Xrl2xYMGC9PnAgQOrHVO6z+7nbJX13nvvpY+req5WRTU/+OCDKCwsLNen9Fz9+/ePxo0bV1mzX79+6Z1bhYWFGdcJAAAAAADQEDT4MOvPf/5zbN++PXJycuI73/lOlbuqKrJy5cpIpVIR8ckOqT59+lQ7Zv/9908fr1ixosI+pdv79u1bbc3SfUpKSmLVqlV7XDMnJyd69epV7VoBAAAAAACSKmdfL2BPTJs2Ld5+++2IiDj99NNjv/32q3WNlStXpo9zc3OjSZMm1Y4pfcvALVu2REFBQeTm5qbbNm3alL4dYEREp06dqq3ZpEmTyM3NjYKCgoj4JHgqHUSVXWtVty0srUOHDrFw4cJ0zdrKz8+vtk/btm0jOzs7IiIaNWrw+SgAQJ35txAAABDhvQHUtwYbZm3evDkmTpwYERHdunWLr371q3Wqs2XLlvRx27ZtazSmbL8tW7ZkhFmbN2/OeL2mz/Bq27ZtOswqva76WmtFNatz6aWXVttnwoQJ0aFDh8jOzo6uXbvWeg74TPh4zb5eAQAJ4N9CAHhvAECE9wZQ3xpsPPyXv/wlHfx85zvfqfb5UZXZsWNH+rgmu7Iq6le6RkXndalbtkbZtvqqCQAAAAAAkGQNcmfW7NmzY8qUKRERMWrUqBg0aFCda+3atSt9nJNTsw9H2X6la0REFBYWVtm/MqUDubI1y7bVpWbZddXEhAkTqu2ze/dXcXFxrFu3rtZzAAB8VqxevXpfLwEAAEgA7w34vOvUqVP68UT1ocGFWTt27Ii77747IiJat24dF1xwwR7VK71zqaioqEZjyvYru0uq7C6xoqKiGu2kKh02VdS/SZMmsXPnzlqttXTNuuxe69ChQ636l5SU1HoOAIDPCv8WAgAAIrw3gPrW4G4z+Mgjj6R3/1xwwQUZz6qqi2bNmqWPK9oNVZGy/UrXqOi8LnXL1ijbVl81AQAAAAAAkqxBhVkfffRR/OMf/4iIiIEDB8bo0aP3uGarVq3Sxxs3bqzRmLL9SteI+GTHWGmbNm2qdd2yNcu21WWtFdUEAAAAAABIsgZ1m8GlS5dGKpWKiIi8vLy45pprKu1bUFCQPt6wYUNG37POOisOO+ywiIjo3r17xphdu3ZVe0vAvLy89HGrVq3K7Q5r06ZNtGzZMrZu3RoREevWrYsePXpUWXPXrl0Za66of/fu3WPFihXl1lCV/Pz8KmsCAADw/7V35+Fdlne++D9fEkIgEGJYwiayqyziUkCBKsVW22NXpTrtdOZc50zbaa3W2hmtY+1YtI7HulWs1V62nU5POW3RwfF4autSBOqGqFTZZN9kC1tYAiFk+f3hj++VL9m+wdA8wdfrunpdz/3kvj/PJwlXy7dv7vsBAACSrF2FWXVt3749tm/fntXcqqqqWLVqVXpcNzTq169fpFKpqK2tjdra2li/fn2MGDGiyXpr165NXzcWEPXv3z9WrlwZERHr16+Ps88+u8ma69atS1936NAh+vbt22DNhQsX1pvfmOrq6ti4cWOzvQIAAAAAACRVuzpm8ETIy8vLCK+WLVvW7Jrly5enr0ePHt3gnFGjRqWvly5d2mzNus89/fTTo2PHjvXm1H3WypUro6qqqsmaa9asicOHD0dERMeOHZsN6QAAAAAAAJKmXe3MmjJlStbvyZo7d2785Cc/iYiIXr16xUMPPdTo3HHjxsWKFSvS6z772c82Onfnzp2xePHijLWN1XziiSciImLx4sWxa9eu6NGjR5P9Nldz5MiR0aVLlzh48GAcOnQoFixYEJMmTcqq5llnnRX5+fmNzgUAAAAAAEiiD/zOrIiIiy66KDp16hQREVu2bIk//elPjc6dOXNm1NTURETEiBEjYsiQIQ3OGzZsWAwdOjQiImpqamLmzJmN1nz++edj69atERHRuXPnuPDCCxucl5ubGxdffHF6PGvWrKisrGxw7saNGzPCrEsvvbTR5wMAAAAAACSVMCsiunfvHp/85CfT43//93+Pl19+OWNOVVVVzJw5M1566aX0vS9+8YtN1q379RdffDFmzpxZ72jAl19+OX75y1+mx5/61KeisLCw0Zqf/exno6CgICIitm7dGj/84Q9j//79GXM2bNgQd911V/pZo0aNavadXQAAAAAAAEnUro4ZPJGuuOKKWLFiRSxZsiQqKyvjRz/6UcyePTsGDx4cR44cieXLl8eePXvS86+88soYOXJkkzXHjBkTl19+ecyePTsiIp588smYP39+nHnmmdGxY8dYu3ZtbNq0KT3/rLPOis997nNN1uzWrVtcd911cdddd0V1dXW8/fbbcfXVV8eYMWOisLAwtm/fHsuWLYva2tqIiCguLo5rr732eH8sAAAAAAAAbUqY9f/Lzc2Nf/7nf46f/vSn8corr0TEe0f1bdy4MWNeTk5OfP7zn4/LL788q7pXXXVVdOzYMR5//PGorq6OPXv21Nv1FRExceLE+OpXvxo5OTnN1jz77LPjn/7pn+Lhhx+O/fv3x+HDh+P111+vN2/w4MFx3XXXRXFxcVa9AgAAAAAAJI0wq44uXbrE9ddfHxdffHHMmzcvVq5cGWVlZZGTkxM9evSIsWPHxtSpU2PAgAFZ10ylUnHFFVfEhAkTYs6cOfHWW2/Frl27orq6OoqKimLEiBFx0UUXxVlnndWiXj/0oQ/F/fffHy+88EK89tprUVpaGuXl5dG9e/c49dRTY9KkSTFp0qTIzfUrBgAAAAAA2q9U7dHz6OB9qq6uju3bt7d1G9Am/vbIjrZuAYAEmNmxV1u3AEAb89kAgAifDaCkpCSrk+iy1aHVKgEAAAAAAEArE2YBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxMpt6waOV2lpabz99tuxbNmy2LRpU+zcuTMqKioiPz8/evToESNGjIjJkyfHyJEjW1x79erVMXfu3Fi6dGns3r07IiKKi4tj1KhRMWXKlBg2bFiLa+7cuTPmzJkTb7zxRrrX4uLiGDRoUHz4wx+OcePGRSqValHNioqKmD9/frzyyiuxdevW2LdvXxQWFkbfvn3jggsuiAsvvDDy8/Nb3CsAAAAAAEBSpGpra2vbuomWWLduXTz66KOxevXqrOaPGjUqvvGNb0TPnj2bnVtVVRX/+3//7/jjH/8Yjf1YUqlUfOITn4gvfelLkZubXRY4Z86c+Pd///c4fPhwo3PGjBkT1157bRQVFWVVc+XKlTFjxowoLS1tdE5JSUl885vfjOHDh2dV8/2qrq6O7du3/1WeBUnzt0d2tHULACTAzI692roFANqYzwYARPhsACUlJZGTk9Nq9drdMYNbtmypF2T17ds3xo8fHx/96EfjggsuiB49eqS/tnTp0vjud7+bVcjyyCOPxB/+8Id0kFVSUhKTJ0+OyZMnR0lJSURE1NbWxtNPPx2PPvpoVv3OmTMnHnnkkXSQVVBQEOPHj48pU6bE0KFD0/MWL14cd9xxR1RUVDRbc/369fGDH/wgHWTl5OTE2LFjY+rUqTF27Nj0H5Dt27fHD37wg9i4cWNWvQIAAAAAACRNuz1msE+fPjF16tS48MILo7i4OONrNTU1MXfu3PRuqD179sSMGTPiBz/4QaNH+c2ZMyfmz58fEe/tvvr7v//7+MQnPhEdOnRI1/zDH/4Qv/rVr6K2tjZeeOGFGDlyZFx00UWN9rhly5aM0Gvy5Mnx1a9+NePovyVLlsS9994b5eXlsWHDhvjFL34RV199daM1q6qq4t57702HXqeddlrccMMN0bt37/Sc0tLSuPvuu2PDhg1x6NChuPfee+O+++5r1RQUAAAAAADgr6Hd7cw65ZRT4uqrr44f/ehH8dnPfrZekBUR0aFDh5g6dWpce+216XurVq2Kt956q8GaR44cicceeyw9/sxnPhOXXXZZOsg6WvOyyy6LT3/60+l7s2bNiqqqqkZ7/e1vfxvV1dUREXH66afHNddcU+8dVqNHj45vfvOb6fH8+fPj3XffbbTmn/70p/Qus4KCgvjud7+bEWRFRPTu3TtuvvnmKCgoiIiIrVu3xgsvvNBoTQAAAAAAgKRqd2HWyJEjY8qUKRlBU2PGjx8fw4YNS4/ffPPNBue9/vrrsWvXroiI6NKlS1xxxRWN1pw2bVp07tw5IiJ27NjRaM2ysrJYsGBBevylL32p0Z7POeecGDNmTES8twPsueeea/T5zzzzTPr6U5/6VKPv2DrllFPiU5/6VIPrAAAAAAAA2ot2F2a11Omnn56+3rGj4ZewLly4MH09ceLE6NSpU6P1OnXqFBdccEF6/NprrzU47/XXX0+/e6tv374ZfTRkypQpDfZT17Zt2zJ2bdVd01zNDRs2ZPXeMAAAAAAAgCQ56cOsuu/IqqmpaXDO0qVL09cjR45stubo0aPT10uWLGm25qhRo5qtWXfOzp07Y9u2bfXm1H1W3759Gzxisa7i4uLo27dvs70CAAAAAAAk1UkfZm3cuDF93aNHj3pfP3jwYOzZsyc9HjJkSLM1Bw8enL7evXt3HDx4sN6czZs3Nzi/McXFxdG9e/f0uKH3ZtW9l03NY+fV7QkAAAAAAKA9yG3rBk6knTt3ZuxGOuuss+rN2bJlS8a4Z8+ezdY9ds6WLVsy3s11bN1evXpl1W/Pnj1j7969DfYVEbF169bjqnnU8YRZR98l1pSioqLIycmJiMjqXWYAACcrfxcCAAAifDaA1nZSh1n/8R//kT5asGfPnnHeeefVm7N///70defOnSMvL6/Zup06dYrOnTvHoUOHIiLiwIEDGV+vrKyMysrK9LjujqumFBUVpa+PrXlsr61Vszlf//rXm53z8MMPR48ePSInJyf69OnT4mfASWGDd9IBEP4uBIDPBgBEhM8G0NpO2nh47ty5sWDBgvT4i1/8YnTs2LHevIqKivR1NkFWQ3Pr1mhonG3dpmoee6+1agIAAAAAACTZSbkza82aNfHoo4+mx5MmTYrJkyc3OPfIkSPp69zc7H8cdefW3YXV0DjbunXDtmNrRBxfr031mY2HH3642TlHd39VV1fHjh07WvwMAICTxbZt29q6BQAAIAF8NuCDrlevXunXE7WGky7MKi0tjbvuuisd/Jx22mnxla98pdH5dQOkqqqqrJ9Td+6xu6SOHWdbt25Y1dDOq+Pptak+s9GjR48WzT96rCMAwAeRvwsBAAARPhtAazupjhncs2dP3H777VFWVhYRESUlJXHzzTdHly5dGl2Tn5+fvm7JzqW6c+vWaGicbd2mah57r7VqAgAAAAAAJNlJE2bt378/fvCDH8T27e+9aPWUU06J733ve3HKKac0ua5bt27p60OHDmUVEh0+fDgOHTqUHnft2jXj63l5eRm7oPbu3ZvV93A0hGuo5rG9tlZNAAAAAACAJDspwqyDBw/GHXfcEZs2bYqI90Kf733ve9G7d+9m1/br1y9jvHPnzmbXHDvn2BrH3sv2PVJ16zZUs2/fvu+rZv/+/bNaAwAAAAAAkBTtPsyqqKiIO++8M9auXRsREV26dInvfve7MWDAgKzWd+nSJWP31rp165pdU3dOcXFxg8cY1g2Osqm5e/fujN1WDfVf99769eubrXnss4VZAAAAAABAe9Ouw6zKysr44Q9/GCtWrIiIiE6dOsVNN90UQ4YMaVGdUaNGpa+XLl3a7Pxly5alr0ePHt1szbrzs6nZs2fP6NOnT5M1t2zZEnv27Gmy5u7du2Pr1q3N9goAAAAAAJBU7TbMqqqqinvvvTeWLFkSEREdO3aMG264Ic4444wW1xo3blz6+pVXXmnyvVmVlZXxyiuvNLi2rg996EORSqUi4r3gaeXKlU32MG/evIy1Denbt2/G7qy6a5qrOXDgwCgpKWlyPgAAAAAAQNK0yzCrpqYmZsyYEYsWLYqIiJycnLj++uvjrLPOOq56H/rQh6JHjx4REVFeXh6zZ89udO7jjz8e5eXlERHRq1evOO+88xqcV1RUFBMmTEiPZ86cGbW1tQ3Ofeutt+Ktt96KiIgOHTrEJZdc0ujz637tqaeeirKysgbnlZWVxVNPPZUeX3rppY3WBAAAAAAASKp2F2bV1tbGww8/HK+++mpERKRSqbjmmmsa3c2UjY4dO8bnP//59PiJJ56Ip59+OmpqatL3ampq4umnn44nn3wyfe/KK6+M3NzcRuteddVVkZOTExERy5cvj4ceeigqKioy5ixZsiRmzJiRHl944YVNvu/rox/9aHqH1f79++POO++MHTt2ZMzZsWNH3HnnnXHgwIGIeG9H19SpUxutCQAAAAAAkFSp2sa2CyXUM888Ez//+c/T4759+7ZoR9Y//MM/NPq1H//4xzF//vz0uKSkJIYPHx4REatWrYrt27envzZlypS4+uqrm33enDlz4pFHHkmPCwoKYvTo0dG5c+fYvHlzrFq1Kv210047LW677bbo3LlzkzXXr18f//qv/5oOxnJycmLMmDFRXFwcu3btiiVLlkR1dXVERHTu3Dluv/32GDhwYLO9vl/V1dUZPyP4IPnbIzuanwTASW9mx15t3QIAbcxnAwAifDaAkpKS9Gaf1tD4tqKE2rt3b8Z469atsXXr1qzXNxVmfe1rX4suXbrEM888E7W1tbF9+/Z64UwqlYqPf/zj8Xd/93dZPW/q1KlRW1sbv/zlL+Pw4cNRXl4eCxYsqDdvzJgxcc011zQbZEVEDBo0KG655ZaYMWNGlJaWRnV1dfzlL3+pN6+kpCSuvfbav0qQBQAAAAAAcCK0uzDrRMrNzY3/+T//Z1x44YUxZ86cWLZsWezevTsiIoqLi2PkyJExderUGDZsWIvqXnzxxTF27NiYM2dOvPHGG7Fz586oqKiIoqKiGDx4cFx44YUxbty4SKVSWdccMWJE3HPPPTFv3rx45ZVXYuvWrbF///7o1q1b9O3bNy644IK46KKLIj8/v0W9AgAAAAAAJEm7O2aQ5HLMIB9kjhIBIMJRIgD4bADAe3w24IOutY8Z7NBqlQAAAAAAAKCVCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYuW2dQMcv6qqqnj55ZfjpZdeik2bNsXevXujoKAgevfuHePHj48pU6ZEYWFhW7cJAAAAAABw3IRZ7dTmzZvjgQceiPXr12fcLysri7Kysli5cmU89dRT8fWvfz3OPffctmkSAAAAAADgfXLMYDu0a9euuO2229JBViqVipEjR8ZHPvKROO+88yIvLy8iIvbu3Rt33313LFmypA27BQAAAAAAOH52ZrVDM2bMiD179kRERK9eveKGG26IQYMGpb++b9++eOCBB2Lx4sVRXV0d9913Xzz44INRUFDQRh0DAAAAAAAcHzuz2pk333wzli9fHhERubm58Z3vfCcjyIqIKCwsjBtuuCFKSkoiIuLAgQPx5JNP/rVbBQAAAAAAeN+EWe3MM888k76+6KKLYuDAgQ3Oy8/PjyuvvDI9fv7556O6uvqE9wcAAAAAANCahFntSEVFRcb7rz7ykY80OX/ChAmRn58fEe/tzjq6owsAAAAAAKC9EGa1IytWrIgjR45ERESnTp1i6NChTc7Py8uLESNGpMd1gzAAAAAAAID2QJjVjmzevDl9PXDgwMjJyWl2zeDBg9PX77777gnpCwAAAAAA4ETJbesGyN6WLVvS17169cpqTc+ePRtcn61du3Y1O6eoqCgdrHXoIB8FAD64/F0IAACI8NkAWpswqx3Zv39/+rp79+5ZrSkqKkpfHzhwoMXP/PrXv97snP/zf/5PRETk5OREnz59WvwMOBnMqipu6xYASIBeuXlt3QIAbcxnAwAifDaA1ibMakcqKirS13l52f2XYd15dde3plQqdULqQnviLygAAECEzwYAACeCMKsdOXLkSPo6Nze7X13Hjh3T15WVlS1+5sMPP9zsHFtmAT7Yqquro6ysLCIyj54FAAA+WHw2AOBEEWa1I3WDqaqqqqzW1A3Ast3NVVePHj1avAaAD5aysrL0sbQPP/yw/+0AAIAPKJ8NADhRbKlpR/Lz89PX2e6yqjuv7noAAAAAAID2QJjVjnTr1i19vXfv3qzWHN3aHRHRtWvX1m4JAAAAAADghBJmtSP9+vVLX+/YsSOrNTt37mxwPQAAAAAAQHsgzGpH+vfvn77euHFjVFdXN7tm3bp16esBAwackL4AAAAAAABOFGFWO3L66adHx44dIyLi8OHDsWbNmibnHzlyJFatWpUejx49+oT2BwAAAAAA0NqEWe1Ifn5+RiA1d+7cJucvWLAgDh06FBHvvS/rzDPPPJHtAQAAAAAAtDphVjtz6aWXpq/nzZsXmzZtanDe4cOHY9asWenxRz/60cjJyTnh/QEAAAAAALSmVG1tbW1bN0HL3HrrrbF8+fKIiOjVq1fceOONcdppp6W/vn///njggQfi7bffjoj3dmU9+OCDUVBQ0Cb9AgAAAAAAHC9hVju0a9euuPnmm2PPnj0REZFKpWLkyJFRUlIS+/bti8WLF8fhw4cjIiInJyduvvnmGDNmTFu2DAAAAAAAcFyEWe3U5s2b44EHHoj169c3OqewsDCuvvrqOPfcc/96jQEAAAAAALQiYVY7VlVVFS+99FK89NJLsWnTpti7d28UFBRE7969Y8KECTFlypQoLCxs6zYBAAAAAACOmzALAAAAAACAxOrQ1g0AAAAAAABAY4RZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkVm5bNwAAJF9NTU0sX748lixZEps3b47NmzfHgQMHoqKiIiorKyMvLy/y8/Oja9eu0b9//+jfv3+MHj06zjzzzOjQwb+dAQAAAOD4pWpra2vbugkAIJkOHjwY//f//t947rnn4sCBAy1e37Vr1/jYxz4Wn/70p6NLly4noEMAAKA9Kisri6qqqoiI6NmzZxt3A0DSCbMAgAYtXbo07rvvvuMKsY7VrVu3uP7662PUqFGt0BkAANDe3XjjjbFhw4ZIpVLx29/+tq3bASDhHDMIANSzaNGiuOeee9L/UjIiIj8/P0aMGBGDBw+Onj17RlFRUeTl5UVubm5UVVVFZWVllJWVxc6dO2PdunWxcuXKqKioiIiI/fv3xx133BE33nhjnH322W30XQEAAEnj39kDkA1hFgCQYf/+/fGTn/wkHWT17t07rrrqqpgwYUJ07Ngx6zpVVVXx6quvxmOPPRbbtm2L6urqeOihh+L++++Prl27nqj2AQAAADjJeCM7AJBh7ty5sW/fvoiIGDNmTNxzzz0xefLkFgVZERG5ubkxefLkuPvuu2PMmDEREbFv376YO3dua7cMAAAAwElMmAUAZHjttdciIiIvLy++9a1vRadOnd5Xvby8vLjuuusiLy8vIiIWLFjwvnsEAAAA4IPDMYMAQIbS0tKIeG9XVmsdB9itW7cYM2ZMvPHGG7F9+/ZWqQkAAJx406dPPyF1t23bdkLqAnByEmYBABkOHDgQERGFhYWtWvdovfLy8latCwAAnDjLli1r6xYAwDGDAECmoqKiiIhW30F1tN7R+gAAAACQDTuzAIAMAwYMiJ07d8by5ctj48aNMXDgwPddc+PGjel/0TlgwID3XQ8AAPjryMnJierq6oiI+MQnPhEFBQWtUve5556LvXv3tkotAE5+wiwAIMOkSZPiL3/5S9TW1sYPf/jDuOmmm95XAPXuu+/G3XffnVEfAABoH0477bRYu3ZtREScffbZcfbZZ7dK3YULFwqzAMiaYwYBgAwTJ06M0047LSIiduzYEd/5znfi0UcfjVWrVkVNTU1WNWpqamL16tXxs5/9LG666aYoLS2NiIhBgwYJswAAoB0ZOnRo+nrNmjVt2AkAH2R2ZgEAGXJzc+O6666L2267LcrKyqKqqiqef/75eP755yM/Pz8GDhwYPXv2jO7du0deXl7k5uZGVVVVVFZWxt69e2Pnzp2xcePGqKioyKhbVFQU1113XeTk5LTRdwYAALTUkCFD0tfCLADaijALAKinf//+ceedd8YDDzwQ77zzTvp+RUVFrFy5MlauXNmiemeccUZcd911UVxc3NqtAgAAJ9CwYcPS18IsANqKMAsAaFBxcXFMnz493nzzzXj22Wdj8eLFUVVVlfX63NzcGDNmTFxyySVx7rnnnsBOAQCAE2XAgAGRl5cXlZWVUVZWFrt27YoePXq877qnnHJKlJeXt0KHAHwQpGpra2vbugkAIPmO7sp69913Y8uWLXHgwIGoqKiII0eORMeOHSM/Pz+6du0a/fr1iwEDBsSIESMiPz+/rdsGAADep4ULF6aDp3POOSe6d+/exh0B8EEjzAIAAAAAACCxOrR1AwAAAAAAANAYYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAImV29YNAAAA0PZKS0vjmmuuSY+nTZsWV155ZRt21D7U1tbG6tWrY9u2bbF79+7o1KlTFBcXx5AhQ6Jnz56t9pydO3fG2rVrY/fu3XH48OEoLi6Ovn37xtChQyOVSrXacwAAIImEWQAAAJw0KioqYu3atbF69epYvXp1rFmzJnbs2JExZ9asWe/7OdXV1fHUU0/Fc889V69+REQqlYrRo0fHFVdcESNHjjzu5yxbtiwef/zxWLp0adTW1tb7eu/eveNjH/tYfOpTn4oOHRy+AgDAyUmYBQAAQLv3s5/9LJYvXx7vvvtug6FPa9q1a1fcd999sWrVqkbn1NbWxuLFi2PJkiVx+eWXx1VXXdWiZ9TW1sbvfve7eOKJJ5r8fkpLS2PmzJnx+uuvx/XXXx/FxcUteg4AALQH/tkWAAAA7d6LL74YmzZtOuFBVkVFRdx55531gqxTTz01JkyYEGPHjo1u3bql79fW1sZ//ud/xuzZs1v0nMcffzxmz56d8f1069Ytxo4dG+PHj48BAwZkzF+xYkX8r//1v+Lw4cPH8V0BAECy2ZkFAADASaukpCR2794dR44caZV6jzzySGzcuDE97tGjR3zzm9+MM888M32vsrIynnrqqZg1a1Y6jPrd734Xw4YNi7POOqvZZ/zlL3+Jxx9/PD1OpVJx1VVXxSc/+cnIy8tL31+2bFnMmDEjdu/eHRER69evj0cffTTj3WcAAHAysDMLAACAk0JRUVGcd955ceWVV8bNN98cP//5z+PBBx+MoqKiVqm/Zs2aePnll9PjgoKCmD59ekaQFRGRl5cXV1xxRfzd3/1d+l5tbW3MnDmz2WccnVd3R9Z//+//PS6//PKMICsiYuTIkXHbbbdFly5d0vf+/Oc/x/r161v6rQEAQKLZmQUAAEC7d//998cpp5xyQp/x2GOPZYy/8IUvRO/evRudf9lll8Urr7ySPpJw3bp1sXDhwhg3blyjaxYsWBAbNmxIj4cPHx6f+MQnGp3fu3fv+MIXvhA///nPI+K9MOyxxx6LG264IavvCQAA2gM7swAAAGj3TnSQdeDAgXjrrbfS44KCgpgyZUqTa1KpVPy3//bfMu79+c9/bnLNiy++mDG+7LLLIpVKNbnmIx/5SBQUFKTHb775Zhw8eLDJNQAA0J7YmQUAAJw0tmzZEuvXr4+ysrKoqKiIDh06RH5+fvTs2TP69OkT/fv3bzYYaMqePXti1apVsWvXrjh8+HAUFxfHyJEjo2fPnk2u27dvXyxfvjxKS0ujuro6unfvHmeccUb07dv3uHuJiKipqYk1a9bEli1bYu/evRERUVhYGP369Ythw4ZFhw7J/feLVVVVsXLlyigtLY19+/ZFKpWK7t27x8CBA2PQoEFt3V49f/nLX6K6ujo9njBhQr1j/xoybty46NSpUxw+fDgiIt56662oqqqK3Nz6H8ePHDkSb7/9dnrcqVOnJndxHZWXlxfjx4+PF154ISIiqqurY9GiRTFp0qRm1wIAQHsgzAIAANq1qqqq+MMf/hDPPvtsbN++vcm5Xbp0idGjR8cll1wSZ511Vr2vz5o1Kx5//PH0+Mc//nH07t07NmzYEL/97W9j0aJFUVNTk7EmlUrFBRdcEP/jf/yP6N69e8bXdu7cGTNnzoxXX301Iwg5atSoUfHlL385+vfv35JvOcrLy2P27Nkxd+7c2L9/f4NzunXrFh/+8Idj2rRp0bVr1xbVb4l58+bFI488kv7+OnXqFNdff32ce+65Dc7fsmVLPPbYY/HGG29ERUVFg3OKi4vjk5/8ZHz84x9vMPRpC3VDpoio956sxuTl5cXQoUNj2bJlERFx6NChWLVqVYPrV61alfEzGTZsWHTs2DGr55x55pnpMOtov8IsAABOFsn4VAAAAHAc9u3bF3fccUesW7cuq/kHDx6M1157LWpqahoMsxry6quvxoMPPhhHjhxp8Ou1tbXx8ssvx+rVq+O2226L4uLiiIh455134oc//GEcOHCg0dpLly6NW265JW699dasdyMtW7Ys7r333kZDrKP2798fTz/9dMybNy++/e1vx5gxY7Kq3xKzZ8+O3/72t+lx9+7d4zvf+U4MGzas3tza2tqYNWtW/Nd//VeDwV5du3fvjl/96lfxwgsvxL/8y780u/Ptr2HTpk0Z44a+x8YMHz48HWYdrdVQmPV+n1HXu+++m/VaAABIuuSeOQEAANCE2trauOeee+oFWd27d48xY8bExIkTY/LkyXHuuedG//79Iycnp8XPWLFiRcyYMSMdZPXv3z/Gjx8f559/fpx66qkZc0tLS+PBBx+MiPeChDvvvDMdZPXq1SvOO++8mDhxYgwdOjTjqMPy8vK4//77o6qqqtl+3n777bjjjjvqBVlH+xo/fny9vsrLy+POO++MN998s8Xff2Nqamri0UcfzQiy+vTpE7fffnujQdZDDz0U//mf/5kRZOXl5cXpp58e559/fpx//vkxePDgjJ/Npk2b4nvf+16UlZW1Wu/Ha8uWLenrVCoVvXv3znrtsXPr1mrqfklJSdbP6NWrV1bPAACA9sjOLAAAoF1atGhRvPPOO+lxnz594itf+UqMHj26wfdiVVRUxOLFi+Oll16qd1RgY37xi19EVVVVDB8+PL7yla/U2z21dOnSuO+++9Lh0tKlS+P111+P3/3ud3Ho0KHo379/fPnLX45Ro0ZlrFu/fn3cc889UVpaGhERW7dujT/96U9x6aWXNtrL3r176+0QGzJkSHz1q1+NIUOG1Kv/05/+NNasWRMR7x3F+OMf/zjuueee9M6x43X48OH40Y9+FG+88Ub63rBhw+Kmm26KwsLCBtc8+eSTMX/+/PS4oKAgvvCFL8SUKVPqvXeqtLQ0fvnLX8brr78eERG7du2Khx56KG6++eb39b6z92Pfvn1x6NCh9LiwsDDr4/8iInr06JEx3rZtW4Pzjj0m89h1TcnLy4tu3bql/yyWl5fH/v37o1u3blnXAACApLIzCwAAaJfqhik5OTlxyy23xJgxYxoNPPLz82PcuHHxrW99K6655pqsnlFeXh6jRo1q9BjAUaNG1av10EMPxYYNG+LUU0+N22+/vV6QFRExaNCg+Od//ueMXufNm9dkL7/5zW9i79696fGIESNi+vTp9YKso/WnT58eZ5xxRvregQMH4te//nWTz2jOvn37Yvr06Rk/+3PPPTduvfXWRoOsTZs2xe9+97v0uEePHnHXXXfFJZdcUi/IinhvF9MNN9wQU6ZMSd976623YtGiRe+r9/fj4MGDGePGvtfGHDu/bjB2Ip9zbD0AAGivhFkAAEC7tHPnzvT1oEGDWnTsW0MhSmPzrr322ibnn3POOdG/f//0uLy8PFKpVFx77bXRtWvXRtcNGjQo471da9asiYqKigbn7t+/P/785z9n9PXNb34zOnXq1GTvx8555ZVXYs+ePY2uacq2bdvilltuidWrV6fvXXzxxXHjjTc22ceTTz6ZPlowlUrF9ddf3+zvKpVKxZe//OWMnUlPP/30cfXdGo79vbRkV1ZE/T9vjf2e/1rPAQCA9kaYBQAAtHv79u07IXUnTpyY1bF8x+6+GjVqVIM7uY41evTo9HVtbW1s3LixwXkLFizIOF5wypQpWYV3PXv2jIsvvjg9rq6ujpdffrnZdcdavXp13HLLLRnH41155ZXxj//4j9GhQ+MfK8vLy+Oll15Kj88555wYMWJEVs/My8vL6H3p0qVx+PDhFvfeGo59bktDpmPnNxYyHfucbEPXxua31c8LAABamzALAABol/r165e+3rFjR/zxj39s9WfU3TnVlD59+rTKusZCuRUrVmSMJ02alFX9iIjJkyc3Was5b7zxRkyfPj3dW05OTnzta1+LadOmNbt2xYoV6V1ZERHnn39+i5595plnpq+rq6tj1apVLVp/orT03V1t9a6v2traNnkuAAC0tty2bgAAAOB4TJo0KX7/+9+nx7/4xS9i4cKF8ZGPfCTOPvvsJo/4y1bd4wOb0rlz54xx3aCtJesae5fS2rVr09cdOnSIoUOHZlU/ImLw4MHRsWPH9M6udevWZb32+eefj5/97GdRU1MTERGdOnWKb3/723HOOedktf6dd97JGHfr1i1KS0uzfv7R5x61Y8eOrNe2pmOPUaysrGzR+mPn5+fnt+lzAACgvRFmAQAA7dKwYcPikksuiWeffTZ9b/HixbF48eJIpVIxcODAOP3002PkyJExatSo6N69e4uf0aVLl6zm5eTktMq6uruY6qq7Y6u4uLhFx8/l5ORE7969Y/PmzfVqNWX+/PkZwVP37t3jpptualGQtnv37ozxXXfdlfXahhw4cOB9rT9ex4ZCdY98zMbxhlktfc6x84VZAACcLIRZAABAu/UP//APUVxcHE888UTG+4Fqa2tjw4YNsWHDhnj22WcjlUrFyJEj49JLL40JEyZkfezb8R4P19rHyh08eDB9fexurmzUDdcOHToU1dXV9YK0Yx27g2rq1KktCrIiWj98auxdUyfaseFkS9/Rduz8xn6Hxz5n//797+s52YaqAACQdMIsAACg3UqlUnH55ZfH1KlTY968ebFw4cJYs2ZNvR1OtbW1sXTp0li6dGmceeaZ8a1vfStOOeWUNuq6fRg1alSsWrUqvavoiSeeiIKCgvj0pz+ddY3Gdpodr7Z6B1RhYWF07tw5fQzkvn37oqqqKnJzs/tIvWvXrozxse9KO6qkpCRjvHPnzqx7PHLkSEaYVVBQEN26dct6PQAAJJkwCwAAaPeKioriM5/5THzmM5+JioqKWL16dSxfvjyWLl0aK1asyAhVli9fHv/2b/8W//Zv/xYdO3Zsw66z16VLl9i7d29ENP5eraYcu7OruV1ZERFnnnlmXHHFFXHXXXeld739+te/jsrKypg2bVpWzy0oKMgY33fffTFgwIAWdJ4c/fr1izVr1kTEe6FaaWlp1u9GO3aXW2Prjn1HW0veL5btMwAAoD3q0NYNAAAAtKb8/PwYPXp0fP7zn4/vf//78dOf/jT+5m/+JuM9Uxs2bIgXXnihDbtsmcLCwvT17t27672DqSnV1dUZQUfdWs0ZPXp0fPe73804Fm/WrFnxm9/8Jqv1x76nrKXH5iXJqaeemjFetWpV1mtXr16dMW4s0Hs/zzh27rHBGAAAtGfCLAAA4KRWWFgYl19+efzjP/5jxv033nijjTpquSFDhqSva2pqYu3atVmvXb9+fRw5ciQ9Hjx4cIuefcYZZ8T3vve9jF1WTzzxRPzqV79qdu3w4cMzxi0JZ5JmzJgxGePly5dnta6ysjIjzOrcuXOMGDGiwbnDhw+P/Pz89Hj16tUZv7umvPPOOxnjsWPHZrUOAADaA2EWAADwgTBx4sSMYwVbcoRbWzv99NMzxi+//HLWa1988cWMcWNBSlOGDRsWt956a8Y7mP7f//t/8fOf/7zJ91iNHj06UqlUevzKK6+0+NlJcc4552Qcz7hgwYKsdsgtXLgwfUxjxHshU2Pv2urYsWOcddZZ6fHhw4dj4cKFzT6jsrIyFixYkB7n5OTEOeec0+w6AABoL4RZAADAB0JOTk506tQpPW4sUEii8ePHZwRxL7zwQuzatavZdbt3744//elP6XFOTk5MnDjxuHoYNGhQfP/734+ioqL0vWeeeSZ++tOfRk1NTYNrioqKYty4cenxmjVr2m2g1bVr14zdTuXl5TF37twm19TW1sbTTz+dce/DH/5wk2smT56cMf7973/fZGAY8d6fh/Ly8vT43HPPjS5dujS5BgAA2hNhFgAA0C49++yzsW/fvqznL1q0KA4cOJAe9+vX70S0dUIUFhbGpEmT0uPDhw/HjBkzmtwZVFlZGTNmzIiKior0vQkTJkRxcfFx93HqqafG97///Ywac+bMiZ/85CeNBlrTpk3L2J318MMPx7Jly1r03D179sSbb755fE23os9//vMZ49/85jexY8eORuc//fTTGUcrDh48OD70oQ81+YwJEybEwIED0+NVq1bFH/7wh0bnl5aWZrzDLJVK1esTAADaO2EWAADQLj355JPx9a9/PWbMmBGvvfZaHDp0qMF51dXVMW/evHjggQcy7je3QyZpvvjFL0ZhYWF6vHz58pg+fXqsX7++3twNGzbE9OnTM0KjgoKC+Pu///v33Ue/fv1i+vTp0atXr/S9+fPnxwMPPBDV1dX15g8aNCj+5m/+Jj2uqKiI2267LX7xi1/Etm3bGn1OeXl5vPzyy3H//ffHN77xjZg/f36TfVVUVERpaWmD/zm2r8bm1Q3+GjJ06NCMnW3l5eXxr//6r/Xen1VZWRmzZ8/OeK9YKpWKv/3bv80I9hqSSqXiS1/6Usa8//iP/4gnnniiXni5bNmyuPXWW+PgwYPpe5MnT45BgwY1+QwAAGhv2s+5GgAAAMc4cuRIvPjii/Hiiy9GKpWKvn37Ru/evaOgoCAiIsrKymLdunUZ/2d/RMS4ceOa3SGTNEVFRXHNNdfE3XffHUeOHImI93bt3HjjjXHqqadG3759I5VKxdatW2Pjxo0Za3NycuIb3/jG+9qVVVdJSUlMnz49pk+fHtu3b4+I996HdeTIkfj2t79d7wjHz33uc7Fjx454/vnnIyKipqYm/vjHP8Yf//jH6N27d/Tv3z8KCgqiqqoqDh48GFu3bm1yx1NDXn311fjJT36S1dxrrrmmwftXX311TJkypcm1X/va1+Ldd99N/4x37doVt956a5x66qnRv3//qKioiDVr1sT+/fsz1l111VUZ78Nqytlnnx3Tpk2Lxx57LCLeO67wN7/5Tfz+97+PoUOHRl5eXmzZsiU2bdqUsW7QoEHxla98JatnAABAeyLMAgAATgq1tbWxZcuW2LJlS5PzJk6cGN/4xjf+Sl21rrPPPjv+5V/+Je67776MIxM3bdpUL9g4qqCgIK6//vqsg5Rs9ezZM6ZPnx633357bN68OSIiXn/99bj77rvjn/7pnyIvLy9j/le/+tUYOHBg/PrXv87YYXR0V1RzjgaUbS0/Pz9uuummuP/++zOOEGzsd5BKpeJzn/tcXH755S16zrRp06Kqqir+67/+K/3OrH379sWiRYsanH/66afH9ddfH/n5+S16DgAAtAfCLAAAoF264YYb4rXXXou33nor1q5d2+ARd0elUqkYPXp0XHbZZXHuuef+FbtsfaNHj44ZM2bE7NmzY968efV2AB3VtWvX+PCHPxxXXHFFxvGEram4uDi+//3vx+23357eqbRo0aK466674sYbb4xOnTplzP/4xz8e559/fjz11FPx0ksvxe7du5us37dv3xg7dmxMnjw5RowYcUK+h+PRs2fPuO222+Kpp56K5557rsFdZKlUKkaNGhXTpk2LkSNHtvgZqVQqvvCFL8TYsWPjsccei2XLlqVDrbp69eoVH/vYx+LTn/50dOjgTQIAAJycUrUN/W0YAACgHamsrIxNmzbFtm3boqysLCoqKiInJye6dOkSffr0iSFDhkTXrl3bus1WV1NTE6tXr44tW7bEvn37IiKisLAw+vbtG8OHD098uLF58+bYsGFD7Nu3Lw4ePBi5ublRUFAQJSUlMWDAgCgqKmrrFptVW1sbq1atim3btsWePXsiLy8viouLY+jQodGzZ89We87OnTtjzZo1sXv37qisrIxTTjkl+vTpE8OHD2/2PVwAANDeCbMAAAAAAABIrGT/Mz0AAAAAAAA+0IRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJNb/ByvE1DXbzQlkAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 477, "width": 857 } }, "output_type": "display_data" } ], "source": [ "cdc['smoke100'].value_counts().plot(kind = 'bar', color = 'turquoise', title = 'Bar plot of smoke100')\n", "plt.show();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice what we’ve done here! We created the bar plot using `kind = bar`. You could also break this into two steps by typing the following:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABrMAAAO7CAYAAAD3Gn9AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AACpm0lEQVR4nOzdd5RW1b0//s8wQ4ehd2mKqNQo2EClxBKNscSWRLxqirkab/wmJpobo1ETY0yI0RuVRHPFxN4TrxpLVEDAiGBEEBRQkF5mKENnyvP7w8Xzm2f6DIOc0ddrLdY6Zz97f/Y+0+CZN/ucrFQqlQoAAAAAAABIoEb7egEAAAAAAABQGWEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAMBecd9990VWVlbGHxqGV155JS699NI49NBDo3PnztG4ceOMz+MXvvCFfb1E9iLfuwAAJE3Ovl4AAAAAybB8+fI477zzYvr06ft6KfC5s3z58pg5c2YsWbIktmzZEs2aNYvu3bvH0KFDY+DAgXtt3pKSknjnnXdizpw5sXbt2ti1a1fk5ubG/vvvH0cccUR06tRpr80NAFBTwiwAAPaaSZMmxZgxY2o1pnnz5pGbmxsdO3aMwYMHx7Bhw+Kss86Kvn377qVVAhER+fn5MWLEiFi2bNm+Xgp8qoqLi2P+/Pkxc+bMmDlzZsyaNSveeeed2LFjR0a/iRMnxkUXXVSvc6dSqXjwwQfj9ttvj5kzZ1bar1evXnHJJZfEFVdcEa1ataqXufPy8uK3v/1tTJw4MdatW1dhn0aNGsVxxx0XV155ZZx66qn1Mi8AQF0IswAASJTt27fH9u3bY82aNfHee+/FI488EldddVWMHj06fve738Whhx66r5fIZ1CfPn3i448/Tp///Oc/j+uvv37fLWgfuPLKK8sFWU2aNIlDDz00unbtGjk5///bR+EyDd0zzzwTr776asycOTPeeeed2Lp166e+htrshFy6dGn87Gc/iwkTJsRDDz0Uxx133B7N/eSTT8Z3vvOd2LBhQ5X9SkpKYtKkSTFp0qQ47bTT4i9/+Uu0bdt2j+YGAKgLYRYAAImXSqXitddei8MPPzxuvvnm+PGPf7yvlwSfKevWrYuHH344o+3444+PBx98MDp37ryPVgV7z3XXXRezZ8/eZ/MvWrQoRo0aFStXrqzVuBUrVsTxxx8fjz/+eJx++ul1mvvOO++Myy+/vNbjnnnmmRg5cmRMmjTJrQcBgE+dMAsAgE/VIYccEgMGDKjwtVQqFZs3b47Vq1fH+++/H4WFhRmvFxcXx1VXXRWNGjWKK6+88tNYLnwuvPTSS7Fr1670eXZ2dtx///2CLNgLCgoK4uSTTy4XZLVs2TIuvvjiGDNmTPTs2TPWrVsXb7/9dvzxj3+MFStWpPsVFhbGeeedF2+88Uatdys/99xz8V//9V/l2g866KD47ne/G4MGDYo2bdrEkiVL4v/+7//i0Ucfzfi7eN68eXHmmWfGpEmTMnZrAgDsbf7lAQDAp+rcc8+t0e3btm3bFk8//XRcd9118dFHH2W8ds0118RXvvKV6N+//15aJXy+zJo1K+P8sMMOi65du+6j1cC+0bRp0xgyZEgMHz48Nm/eHA888MBemecHP/hBLFq0KKPt0EMPjeeeey66deuW0X7KKafEVVddFd/61rcy1rNz5874xje+Ee+++240bty4RvOuX78+LrrookilUhntP/nJT+JXv/pVZGVlpduOOOKIOPfcc+OnP/1pnHzyyRm3YZ02bVr8+te/jp/97Gc1vmYAgD3VaF8vAAAAKtKiRYs4//zz45133onDDz8847WdO3fGH/7wh320MvjsWb58ecZ5nz599s1C4FPStGnTGDZsWFxyySVx9913x9tvvx2bN2+OGTNmxF133RVf/OIX98q8//73v2PixIkZbX369IlJkyaVC7J2a9KkSfz1r3+NM888M6P9/fffjwkTJtR47l/84heRl5eX0faDH/wgbr755owgq7RDDjkkpkyZEm3atMlo/9WvfhWrV6+u8dwAAHtKmAUAQKK1bt067rvvvnLtf//73z/9xcBnVEFBQcZ5ixYt9tFK4NPxxhtvxMyZM+NPf/pTfOc734lDDz20xjuc9sQtt9xSbmfUPffcE7m5uVWOy8rKij/+8Y/Rrl27jPbx48dHUVFRtfPm5+fH3XffndHWr1+/uOmmm6od26tXrxg/fnxG2/bt2+P222+vdiwAQH0RZgEAkHgDBgyIoUOHZrQtW7Ys4xk/QN3t2LFjXy8BPlWNGn36vw5Zv359PP300xlthx9+eBx//PE1Gt+5c+f45je/mdG2bNmyeOmll6od+/DDD8e2bdsy2n7wgx9E8+bNazT3RRddVO7Wo3/5y1+iuLi4RuMBAPaUZ2YBANAgHHjggTF79uyMtry8vOjevXuta23dujXef//9+OCDDyIvLy82b94czZo1i/bt20fXrl3jyCOPjPbt29fX0iu1ZcuWmDFjRixYsCA2bNgQqVQqOnbsGF/96lejY8eOe33+0goKCuKNN96IhQsXxqZNm6JNmzbRo0ePOPzww2O//fb7VNdSmR07dsS//vWvWLFiRaxduzZ27doVnTp1ii5dusQRRxwRnTp12tdL3GtSqVT8+9//jkWLFsXatWujoKAg2rdvH507d47BgwfHgQceuK+XWG+Ki4tj4cKFMWfOnPS1plKpaNmyZbRt2zb69OkT/fr1ix49etT73B988EG8/fbbsWLFiti5c2e0b98+hg4dGkcccUTk5NTs7fOiRYti5syZsWLFiti1a1d07tw5Dj744DjqqKMiOzu7Xtf70Ucfxbvvvhtr166N/Pz8aNWqVXTu3Dn233//GDZs2D4JbOrTihUr4t///nesW7cu1q1bFzk5OdGpU6fo2bNnHH300dG0adN9vcRaeeaZZ8r9J4zvfOc7tapxySWXxO9+97uMtieeeCJOOeWUKsc98cQTGefNmzePcePG1XjenJycuPjii+Pmm29Ot61atSqmTZsWxx13XI3rAADUWQoAAPaS1157LRURGX9+/vOf16nW2WefXa7Whg0bajS2pKQkNXXq1NSPfvSj1LBhw1KNGjUqV6v0n6ysrNSgQYNSd9xxR2rbtm21XuvixYvL1XzttdfSr8+YMSN15plnpho3blzh/KX71oey9SdOnJh+be7cuamzzz670rVkZWWlRo4cmXrmmWdqPe/EiRPL1auLf/7zn6lTTjkl1bx58yo/Z4cffnjqzjvvTBUWFtaoblVfAzX5U/rjuLcsWLAgddFFF6U6depU5VoOOOCA1NVXX53Kz8+vUd3evXvX+bpHjRq1V671gw8+SF166aWpDh061Ggd3bt3T5177rmphx9+OLVly5Yqa//85z/PGNu7d+/0ayUlJal77703dcghh1Q6V7du3VK33XZbqqioqML6JSUlqQceeCA1ZMiQSmt07Ngx9Zvf/KbGX5+V2bBhQ+qaa65JHXjggVV+fDp06JC64IILUvPmzav1HHv6vbt9+/bUOeecU67G2LFjUxs3bqz2+q677rrUoEGDqry+5s2bp0499dTU1KlTa319NVHRx2BPv+e/8Y1vlKu5dOnSWtfp27dvRo0ePXpU2X/Lli3lfsaPHTu21vNOnjy53PqvueaaWtcBAKiLhv3ftAAA+NxYtGhRxnm7du3KPZC+IkuXLo0+ffrEMcccE+PHj49Zs2ZFSUlJlWNSqVTMnTs3Lr/88jjggANi6tSpe7T23UpKSuKnP/1pHHXUUfH0009HYWFhvdStqzvvvDMOO+yweOKJJypdSyqVimnTpsVpp50W5557bmzZsuVTW9+qVaviS1/6Uhx//PHx/PPPx/bt2yvtm0ql4q233orvfe97MWDAgJg8efKnts69obCwMK644ooYMGBA3HfffbFu3boq+3/44Ydxyy23xAEHHBATJkz4lFZZf375y1/G4MGDY8KECZGfn1+jMStXrozHHnssvv71r5e7dVtNrV+/Po4//vj45je/GfPnz6+036pVq+L//b//FyeffHK574H8/Pw46aSTYty4cfHuu+9WWiMvLy+uuuqqGDNmTJ2/j/785z/HAQccEDfddFMsXLiwyr75+flx//33x+DBg+N73/te7Ny5s05z1lZ+fn588YtfjMcffzyj/YILLogXXnih0p/bqVQqbr311ujbt2/ceOONMXfu3Crn2b59ezz77LNxzDHHxFlnnVXuuW9J9MYbb2Sc9+rVK3r27FnrOsccc0zG+YoVK2L58uWV9p81a1a5n/Fla9TEEUccEU2aNMlo+9e//lXrOgAAdSHMAgAg8d5///1ytxg89thjIysrq9qxBQUFsXTp0jrPvWrVqhg7dmy5WzTVxaWXXho333xztWHap+F//ud/4vLLL6/Vc8cef/zx+PKXvxxbt27diyv7xPz58+Ooo46KF198sdZjFy5cGCeeeGI8+uije2Fle19BQUGcfPLJ8T//8z9RVFRUq7EbN26Myy67LH7wgx9EKpXaSyusXz/+8Y/j2muv/dSfgbdp06YYM2ZMvPrqqzUe8/LLL8fXv/719Md2/fr1MXbs2Hj55ZdrXGPq1Klx1lln1WqtqVQqrr766vjOd74T69evr9XY4uLiuOuuu+Kkk06KjRs31mpsbS1atCiOPvromD59ekb7z372s/jrX/8ajRs3rnDczp074/zzz48rr7yyTmt86qmnYuTIkVUGOvtaQUFBLF68OKNt2LBhdao1fPjwcm3vvPNOpf0req0uczdr1iwGDhxY43kBAOqTZ2YBAJBoW7ZsiYsvvrjcL+a/+93v1rpWdnZ2HHHEEXHkkUfGwIEDo3fv3tG6deto1qxZbNmyJZYsWRJvvfVWPPHEE7Fy5cr0uMLCwrj44otj8ODBcdBBB9XpOv73f/83HnjggfT54MGD4+yzz47DDz88OnfuHJs3b46PP/44nnzyyRo/m6eu3nzzzbjnnnvS5/vtt1+cf/75cdxxx0WXLl1i06ZNMW/evHjooYfK7SSYMmVKnH/++fG3v/1tr61v3bp1MXbs2Fi9enVGe3Z2dpx22mlxxhlnRN++faNp06axYsWKePnll+ORRx6JDRs2pPvu2rUrvv71r0f79u3jhBNOqHCe0oHCP/7xj9i2bVv6/JBDDokBAwZUuc4+ffrU4eqqlkql4uyzz45XXnml3GtHHXVUfO1rX4uBAwdG+/btY82aNfHmm2/Ggw8+WG7n4m233RYtW7aMX/7ylxXOc8opp8TatWvT55MnT468vLz0ee/evSv8hXlElPtl9p6YPHlyuef/RESMHj06TjnllBgwYEB06tQpmjZtGlu2bImNGzfG+++/H++++268/PLLsWrVqjrPfdFFF6V3UrVs2TK+/vWvxwknnBA9e/aM7Ozs+Oijj+Lxxx+Pp556KmPcs88+Gw888ECcf/758fWvf73CGvvtt180btw4XePJJ5/MqPHSSy/FX//61/iP//iPGq31pptuit/85jfl2vv27Rvnn39+jBgxIjp37hwbN26M+fPnxyOPPBLTpk3L6Dt58uQ4/fTT47XXXtsrz9J644034rTTTsv4OsrJyYk//vGP8a1vfavScalUKs4888z4xz/+kdGenZ0dJ598cowdOzYGDx4c7dq1i8LCwli5cmVMmTIlHnjggYxdfHPnzo0zzzwzpk2bVm73UBKU/R6NqPvPkF69epVr+/DDDz+1uf/973+nz/Pz89PPWQQA2Kv21f0NAQD47NuTZ2Zt27Yt9fDDD1f4XJjzzjuvxmuYO3du6vDDD0/de++9qfXr19doTGFhYerWW28t94yRk046qUbjK3pm1u4/TZs2Td1zzz2pkpKSGl/Dniq7hqysrPTxJZdcUuXzhu6///4Kn1X18MMPVztvXZ+785WvfKXcuP79+6dmzpxZ6Zg1a9akTjvttAqfdbRu3bpq5yz7DKm6PtttT40fP77cNbRq1Sr10EMPVTpm165dqWuvvbbcuOzs7NSUKVNqNO+oUaMyxl544YX1dEVVO+OMM8o952nSpEk1GltSUpJ68803UxdddFHqiSeeqLJv2Wdmlf4eOP7441MrVqyodOwTTzyRysnJKff1eOedd6bPTzjhhCprPPbYY6ns7OyMGgcffHCNrvNf//pXufkjIvWTn/wktWPHjkrHPfroo6nc3Nxy42666aZq56zt9+4TTzyRatasWUb/1q1bp1544YVq57rxxhvLzfWlL30ptXjx4irHbd68OXXJJZeUG/uDH/yg2jlror6fmfX000+Xq/f73/++TrVmzZpVq+s+/fTTy/Wv6TMny/qv//qvcrVmz55dp1oAALUhzAIAYK+pKMw65JBDUmeddVaFf7761a+mTjrppNSQIUNSTZo0qTAMuvDCC1M7d+6s8Rr2JDR66qmnyv0CfN68edWOqyzMatSoUer555+v83rqqrJg7bvf/W6Nxj/77LPlfhHftWvX1K5du6ocV5cw64UXXig3pk+fPlUGBbsVFhZW+EvbK664otqxSQiz1q9fn2rRokXGOpo0aZJ69dVXazT+t7/9bblrHzp0aI3G7qswq+z1PvDAA3tlnrJh1u4/Y8eOrdHPkx//+Mflxu4Ou0844YRqvxdSqVTqyiuvLFfjzTffrHbcUUcdVadAKpVKpaZMmVIuZGrSpElq9erVVY6rzffurbfemmrUqFFG3+7du6feeeedatc3d+7ccj9bLrnkklr93P7Rj36UMb5p06aplStX1nh8Zeo7zLrnnnvK1asqpK7K8uXLy9W64IILKu0/cuTIcl8DdfXLX/6y3NyvvPJKnesBANSUZ2YBAPCpmj9/fjz55JMV/nnqqafixRdfjHfffTfj+Tn77bdfXHTRRTFt2rS47777anULqZo8V6syZ555ZnzlK19Jn6dSqXjkkUfqXO/yyy+Pk08+uc7j69P+++8ft99+e436fvnLXy53W8fVq1fH008/Xe/rqmhN9957b3Tv3r3asTk5OTFx4sTo1KlTufEFBQX1tsa95Z577sm41WFExE9+8pMYM2ZMjcb/6Ec/iuOPPz6jbfbs2TFp0qT6WmK9ys/PL3e9pb/f9rbWrVvH/fffX6OfJz/4wQ/K3ZqvsLAwWrduHX/5y18qfRZUaVdeeWW5GpMnT65yzIwZM+Jf//pXRtuoUaPipz/9abXzRXzybMFrrrkmo23Xrl0xYcKEGo2vSklJSXz/+9+PH/7whxnPARw0aFD861//iqFDh1Zb4ze/+U0UFxenz4cPHx533XVXrX5u//rXv46DDz44fb5z5874wx/+UOPxn5ZNmzaVa2vevHmdalU0rqpnjZWdu67z1mVuAID6IswCACDxNmzYEOvXr894JtKn5Ywzzsg4L/sMqZrKzs6Oq6++uh5WVD+uu+66aNq0aY3733DDDeV+6X/vvffW65pWrFgRL7zwQkbbKaecUuMwJyKiXbt25X55v3nz5njsscfqZY170//+7/9mnLdv3z7++7//u1Y1xo8fX67tz3/+8x6ta28pHWLslirzbLy96eKLL65RSBoR0a1bt/jCF75Qrv2b3/xmdOvWrc41Sj97qCJlvyYiIn7729/WaL7drrrqqujSpUtG255+TWzbti3OPPPMcqHRF7/4xZg6dWr07Nmz2hqrV6+Ohx9+OKPtV7/6VWRnZ9dqLdnZ2XHFFVdktD3//PO1qvFp2LFjR7m2Zs2a1alWRYHSzp07azx3Xeety9wAAPVFmAUAQOJt3bo1nnnmmTj11FPjmGOOicWLF39qc5f9peysWbPqVGfs2LE1/sX53taiRYs466yzajWmY8eOccopp2S0TZs2LWNHxp6aOnVquTDj4osvrnWdcePGlQveXn/99T1a2962Zs2aWLBgQUbb17/+9Vr/0nno0KExbNiwjLakXnuHDh3KXd9f/vKXT23+2n4PDBw4sN5rLF26tMr+U6ZMKTf+8MMPr9WcTZo0iXHjxmW0rVixos4/R9esWROjR4+OZ555JqP9P/7jP+If//hHtGnTpkZ1XnnllSgsLEyfd+nSJb74xS/WaU1jx47NOJ8zZ07idgsVFRWVa6vNLuPSKvqPCKU/ltXNXdd56zI3AEB9EWYBAPCp+vnPfx6pT57dWuGfXbt2xbp162L69Okxfvz4GDRoUMb4adOmxRFHHBHvvfdenebPy8uLe+65J7773e/GiBEjolevXtGuXbvIycmJrKyscn9OPPHEjPEbNmyocEdJdY488sg6rXdvOPLII6NVq1a1Hlf2F81btmyp8+ehIhXteit727ya6NChQwwfPrza2klS0fpOOOGEOtU66aSTMs6XLl0aK1eurFOtvSk7OztGjRqV0XbllVfGDTfcsNeDiEaNGtU6FCp7+8pGjRqV+zqrbY2qbn+5YcOG+OCDDzLa6utrIqJu3xPvv/9+HH300fHWW29ltF977bU1vt3ibmVvsXjooYeWuw1jTe23334Z5yUlJeU+dvtaTk5OubbSt9OtjYp2QlX1sS87d13nrcvcAAD1RZgFAECiNG7cODp27BhHH310XHnllfHuu+/G7373u4xnqOTl5cXJJ59cq+cgLVq0KL761a9Gt27d4pJLLom777473njjjVi2bFls3LixxgFVKpWq0y/aSz/TZV+r6HZpdR33/vvv79liSlm4cGHG+f777x9t27atU63DDjss43zRokX1uousvpW99ojy11BTFY0ru+srKa666qqM86Kiorj++uujW7ducfrpp8ddd90Vc+fOrffPXZs2bWr93KCyAXB91NiyZUulfRctWlRup+K+/JqYMmVKjBgxImNHV05OTvzv//5v3HjjjbVe09tvv51x/sILL1T4Hwpq8qdly5bl6ufn59d6TXtTRTuaKrr1YE1s3769RvUre62u89ZlbgCA+iLMAgAg0bKysuKHP/xh3HDDDRnty5Yti5///Oc1qjFx4sQYNGhQPP300xXe6qm2qvoFdGXqGsrsDTV9xk9ZFd0msT6fY1a2VtndFrVRdmwqlYpNmzbVud7eVvbas7KyokePHnWqVdHHbV88b64mxo4dG9dff3259h07dsQzzzwT3/ve92Lw4MHRvn37+NKXvhQ333xzuV1BddG6detajykdqNdXjapCuoo+Z3X9nqjolo61/Zo44YQTMsa0bt06nnvuufjmN79ZpzXl5eXVaVxNJe1rvqK/AyoKhmqionFV/R1T9rW6zluXuQEA6oswCwCABuHHP/5xdOnSJaPtz3/+c2zevLnKcQ888EB861vfqvQB9R07doyhQ4fG8ccfH1/+8pfjrLPOyvhz3HHHlRtTdrdETVS0c2Bfyc3NrdO4ip6FszfDrLquM6Lita5fv77O9fa2stfesmXLOt9yraFd+89//vN45JFHqgxqNm3aFC+++GL89Kc/jSOOOCL233//+NWvflWr3ZmllQ2V9lWNqlT0vVWf3xO1/Zooe2u6gQMHxogRI+q8nr29cyppz3Hq2LFjubY1a9bUqVZF4zp06FDjuXft2lXnW3nWdm4AgPpS/qbNAACQQM2aNYsTTzwx7r///nTbli1bYvLkyXHqqadWOGbdunXx/e9/v1z4dMwxx8Rll10Wo0ePrnaX0muvvRZjx47d8wsAKnXeeefFGWecEY8//ng89NBDMXny5Ni2bVul/RcvXhzXXHNN/P73v4977703vvKVr3yKq/18Gjt2bLz66qvp83/9619xwgknxD/+8Y867cwpG4716tWr1s8xq0qfPn3qrVZ96NWrV7m2jz/+uE61li5dWq6td+/etZ67Lp+32s4NAFBfhFkAADQYgwYNKtc2a9asSsOsu+66q9zuhuuvv77GtyeMiETfmq6u6rqbpaKPRbt27fZ0OZXWqus6Iypea/v27etcb28re+1bt26NkpKSOu3OamjXvlvTpk1j3LhxMW7cuCgsLIyZM2fG66+/HlOnTo3p06dXuJMnLy8vzjjjjHj00Ufj7LPP3ger3nsq+t6qz++J2n5NPPfcc3H22WfHc889l27717/+FWPGjImXXnopOnXqVKt67du3j9WrV6fPhw0bFk888UStajQkBxxwQLm2+gyz+vXrV+u5hw4dusdzd+jQwW0GAYBPhdsMAgDQYFT0y91169ZV2v+ZZ57JOB8xYkStgqyIvf9cl31h1apVdRq3cuXKcm17M8xasWJFnWuVHZuVlVXh7feSouy1p1KpCj/eNVHRx60+P0+fhsaNG8fRRx8dV111VTzzzDOxbt26mDlzZlxzzTXldlOWlJTEd7/73c9c8FzR56yu3xP5+fmxY8eOautXpVmzZvH000+XCw3feeedGDVqVK2/Xsve+u6z+LO2tDZt2kTfvn0z2mbNmlWnWhU9N66qYOrQQw8t11aXubdv3x7vvfdejecFAKhPwiwAABqMrVu3lmur7PlVqVQqZs+endH2jW98o9Zz1vWXjUn2zjvv1Nu4gw8+eM8WU8qBBx6Ycf7RRx/VOaAo+3nr169fnZ9B9Wkoe+0REW+//XadalX0Ndu/f/861UqKrKysGDZsWPzyl7+MRYsWxbhx4zJeX79+fTz66KP7aHV7R79+/co9l6uuXxMVjavL10Tjxo3jkUceiQsvvDCjff78+XHsscfGkiVLalzroIMOyjh/9913o7i4uNZrakiOOuqojPOlS5fG8uXLa11n6tSpGefdu3ePnj17Vtp/2LBh0bhx4ypr1MSMGTPK3R6y7DUBAOwtyX03BwAAZVT0i9IuXbpU2Dc/P7/cL0b333//Ws9Z+hkxnxUzZsyoMBisTtmPRatWrWLgwIH1tawYMWJExnkqlYpXXnml1nU2bNhQLtApW7usskFXZSHp3lLR+v75z3/WqdbLL7+ccd67d+/o3r17nWolUYsWLeLPf/5zuR1adfnlfJK1a9euXFhcX18TEdV/T1QmOzs7Jk6cGJdddllG+0cffRTHHntsfPDBBzWqc/zxx2ecb9q0qcIdR58lJ5xwQrm2f/zjH7WqsWDBgnJ/F5544olVjmnZsmUcffTRGW1vvPFGrW9b+eKLL5Zrq25uAID6IswCAKDBqOgXuRU9CyQiKvwf/kVFRbWa7+WXX44FCxbUakxDsHXr1njqqadqNSY/Pz/jWTkRESNHjqzX3U7HHHNMuZ0oEydOrHWdBx54IHbu3JnRdtxxx1U5pkWLFhnn27dvr/W8e6Jz587ldqo8/PDD5a6jOnPmzCkXCFR37Q1R06ZNY+TIkRlta9eu3Uer2XvKfu7mzJlT692ihYWFcf/992e09ezZM/r06VPndWVlZcWdd94ZV111VUb78uXL47jjjot333232hoVhSC33XZbndfUEJx22mnldkjdc889tapx9913l2uryfPiyvbZvn17PPDAAzWet6ioqNzP465du8YxxxxT4xoAAHtCmAUAQIPw3HPPlXtWR3Z2dpx00kkV9u/YseMe3aJr165d8aMf/aj2C20gbrzxxnK3i6rK9ddfX67/N7/5zXpdU/fu3eOUU07JaHv22WdjypQpNa6xcePGuOmmmzLacnNz45xzzqlyXNnnadX1eVV74tvf/nbGeV5eXtxyyy21qvHjH/+42rqfFWWDvlatWu2jlew9FX3uygZI1Rk/fnysXr262rp1ccstt8SNN96Y0bZ27doYPXp0zJgxo8qx+++/f5xxxhkZbY8//vhncjfsbh06dCh3zW+99VaNd9ytXbs27r333oy2Hj16VPr3YGnf+MY3onnz5hltv//978s9S60y9913X7mvowsvvDCys7NrNB4AYE8JswAASLx58+bFRRddVK79y1/+cnTs2LHCMdnZ2TFkyJCMtrvvvjs2b95c7XwlJSVx6aWX1mh3QUO1aNGi+OEPf1ijvi+88EJMmDAho61r165x5pln1vu6rrjiinJtF198cblfolakuLg4vvnNb8aaNWsy2r/1rW9F69atqxxb9vlB06ZN+9RvNfjtb387WrZsmdF28803x+uvv16j8b///e/L3Qbs0EMPTezOrPfffz/efPPNOo1dt25dvPbaaxltFT13rKEbPnx4udsBvvrqq/Hb3/62RuOnTZsWv/jFLzLamjZtGv/5n/9Zb2u89tpr4/e//31G24YNG+L444+vNoi+/vrrM/7TQUlJSZx77rl1fjZYRMT06dPj3//+d53H721XX311uf9occkll9Toln+XXnppbNiwIaPtRz/6UeTk5FQ7tkOHDuVCzEWLFsU111xT7dhly5aV+88dzZs3r/DnNQDA3iLMAgAgsT7++OO47rrrYvjw4ZGXl5fxWpMmTeJ3v/tdleNPO+20jPOVK1fGGWecEevXr690zOrVq+Pss89O/+/3mvySsKHZ/YvUO++8My677LLYtm1bpX0ffvjhOOuss8rdtvHWW28td7us+nDCCSeU27nw0UcfxdixY+Odd96pdFxeXl6cc8458fTTT2e0d+/ePX72s59VO++RRx6Zcb5kyZK47rrrarV7bU+1bds2fvnLX2a07dixI0499dR4/PHHKx1XWFgYN9xwQ1x55ZUZ7dnZ2fGHP/xhr6y1Prz//vtx1FFHxYgRI+Lee++N/Pz8Go1bunRpnHrqqbFly5aM9up23zVUt912W7nvtauuuqrar88nn3wyvvzlL5e7Zeb1118fnTt3rtc1/r//9//i7rvvzrjt6ObNm+NLX/pShc9Z2m3o0KHlvj/z8/NjxIgRMX78+Bo/22/9+vUxceLEGDFiRIwcObLcLt4kGTZsWFx44YUZbYsXL47Ro0fHqlWrKhyza9euuOCCC8rdHvaggw4q9+yyqvz85z+PDh06ZLTdeuut8dOf/rTS8H7+/Plx7LHHxqZNmzLaf/KTn5R7bh0AwN6Ulfq0/7shAACfG5MmTYoxY8ZktB1yyCExYMCASscUFhZGQUFBLFy4MFasWFFhn+zs7HjwwQfjvPPOq3L+vLy82H///cvtxurYsWNcfPHFMWrUqOjWrVvs2LEjli1bFi+++GI88cQT6f5ZWVlx7bXXlruN1uLFi6t83sySJUuib9++GW2vvfZajB49usr17i1ldwH853/+Z9x9991RUlISERH77bdfXHDBBXHsscdG586do6CgIObNmxcPP/xwTJs2rVy9008/Pf72t79VO+99990XF198cUZbTd5+5Ofnx5AhQ8rd6i8nJydOP/30OP3006Nv377RtGnTWLlyZbz88svx8MMPlwspGzVqFC+99FJ88YtfrNGcPXr0KHfrutzc3BgyZEh06NChXLB5+eWX1/vnNJVKxcknn1xhADBixIj42te+FgMHDoy2bdvG2rVrY8aMGfHAAw/EwoULy/W/7rrr4oYbbqjRvKNHj47Jkyenzy+88MK477776nwdNfG3v/0tY3dfdnZ2jBgxIoYPHx5f+MIXolu3btGuXbvIycmJTZs2xYIFC+LVV1+Np556qlyIc84558Rjjz1W6VzXX399xseid+/esWTJklqtd1/WuPnmm+OnP/1pufYDDjggzj///DjqqKOiS5cusWnTppg3b148+uijFe7oGz16dLzyyivVPuuurt+7Dz30UFx44YUZzyds0qRJPPLII5Xu5EylUnHOOefEk08+We619u3bx2mnnRbHHnts9O7dO9q3bx+FhYWxcePGWL16dbzzzjsxa9asmD59esac999/f4wbN67Kta5bty4uvfTSSl//+OOPY+bMmRltw4cPj969e1c65oknnqhyzt02btwYw4YNi48++iijvVWrVvHNb34zxowZE/vtt1/k5eXFrFmzYsKECeX+PmzSpElMmzYthg8fXqM5d3vmmWfijDPOKPf5PPjgg+M///M/Y9CgQdG6dev4+OOP49lnn42HH344CgsLM/oeddRRMWXKlL3yHxoAACqVAgCAveS1115LRUS9/unQoUPqySefrPEaHn744TrPdfvtt1d4DYsXL65yzsWLF5cb89prr+3ZB3MPlF3LxIkTU7feemudPibHHntsasuWLTWad+LEieXG19T777+f6t27d50/d02bNk099thjtfo43XDDDbWaY+LEibWqX1MFBQWpE044YY++T374wx+mSkpKajznqFGjMsZfeOGFe+XaSnv66afr5WfCsGHDUvn5+VXO9fOf/zxjTO/evWu93n1d4yc/+ckefZxGjx6d2rhxY43m2pPv3b/97W+ppk2bZozNyclJPfDAA5WO2bVrV+ryyy+vl6+HiEjdf//91a6zop/Te/qnNj744INU165d6zRPTk5Orf4eLOv222+v8zUefPDBqTVr1tR5bgCAunKbQQAAGoRWrVrFd7/73Zg/f3589atfrfG4r33ta/HnP/85mjZtWuMxLVq0iHvvvTe+//3v12WpDcIPfvCDuO2222p1G8Wzzz47nn/++XLPddobDjrooHjjjTfiS1/6Uq3H9u/fP1566aVa33buZz/7WfzsZz+L7OzsWs9Zn1q3bh3PPfdcXHHFFbW+zWXbtm3jrrvuit/97nflduQlTYsWLardIVSVrKysuPDCC2PSpEnRvn37elxZMt18883x5z//udbXmp2dHZdddlm88MIL0aZNm720uv/f6aefHs8880y0aNEi3VZUVBT/8R//EXfffXeFYxo3bhx/+MMf4tFHHy23q7W2jjjiiBg4cOAe1fg09O/fP95888046qijajWue/fu8fLLL9fq78Gyvv/978ejjz4abdu2rdW4L3/5yzFt2rR6v00lAEBNCLMAAEiURo0aRdu2baN3795xzDHHxPe///146KGHYvXq1fHHP/4xOnXqVOua3/rWt2LmzJlxzjnnVBlUtG7dOr7zne/Ee++9V+4WW59FV1xxRcyaNSvOPPPMSkOTrKysGDFiRDzzzDPx+OOPR6tWrT619XXr1i3+8Y9/xD//+c845ZRTonnz5pX2zcrKiuHDh8edd94Z7733Xhx33HG1nq9Ro0bxi1/8IpYsWRK33HJLnH766dGvX79o167dp347rcaNG8dtt90W8+bNi4svvrjar/v9998/rr766vjwww+rvHVakpx44omxevXquO++++L888+v8tadpbVr1y6+/e1vx1tvvRX33Xffp/o1ua9961vfig8//DCuueaaOPDAA6vs26FDh7jgggti7ty5ceedd9Yq0N9TJ554YrzwwguRm5ubbispKYnvfve7ceutt1Y67txzz40FCxbEX/7ylzj++OMzArHKNG3aNMaMGRM33XRTzJ8/P95888049NBD6+U69rZevXrFtGnT4q9//WscdthhVfbdb7/94sYbb4z333+/Xm5vuvtj/aMf/Sg6duxYab+srKw47rjj4u9//3s8++yzn4vgGABIJs/MAgDgc6WgoCCmTp0aS5YsiQ0bNkROTk507tw5Dj744Bg+fPhn8hkgZXfoTJw4MS666KKMto0bN8Ybb7wRCxcujM2bN0dubm507949jjjiiOjZs+enuNrK7dixI954441Yvnx5rFu3Lnbt2hWdOnWKLl26xBFHHPGZ3i1QUlISb7/9dnz44Yexdu3a2Lx5c7Rr1y46d+4cgwcPjv79++/rJdaLdevWxYIFC2Lx4sWRl5cXW7dujezs7MjNzU1f64EHHrhHO7o+Sz788MOYPXt2rFu3LvLz86NVq1bRqVOnOOCAA2L48OEN/uO0a9eumDlzZixbtizy8/Njw4YN0aRJk2jdunV07do1Dj744OjXr1+tdzAm1bJly+Ktt96Kjz/+OLZs2RLNmjWLbt26xdChQ2Pw4MF7bd7dP1/mzp0ba9asicLCwsjNzY2+ffvGkUce+Zn+2QoANBzCLAAA+IyrSZgFAAAASdWw/5sWAAAAAAAAn2nCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEytnXCwAAAPauVCq1r5cAAAAAdWZnFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABIrZ18vgM+OVCoVJSUl+3oZAOwD2dnZERFRXFy8j1cCAADsS94bABAR0ahRo8jKyqq3esIs6k1JSUmsWbNmXy8DgE9Zo0aNomvXrhERsW7dOv+xAQAAPqe8NwBgty5duqT/g0N9cJtBAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYuXs6wUAfBacX7huXy8B9q2P1+zrFUAiPNi4075eAgAAAHzm2JkFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASKycT2OSkpKSWLZsWXz44YfpPx9//HEUFxdHRMSAAQPi+uuvr1PtOXPmxOTJk2PhwoWxfv36yMnJiQ4dOsTQoUNj7Nix0aNHj1rXXL58ebz22msxe/bsyM/Pj6Kiomjfvn0ceOCBMWrUqBg8eHCtaxYUFMSkSZNixowZsXbt2ti6dWu0adMmevbsGSNHjowRI0ZETk7tPh1FRUUxffr0mDZtWixbtiw2bdoULVu2jM6dO8cRRxwRo0ePjtzc3FqvFQAAAAAAICmyUqlUam9OMGPGjPjDH/4QO3furLRPXcKsbdu2xd133x3Tp0+vtE92dnace+65ceaZZ9a47lNPPRWPP/54OmiryMiRI+OSSy6J5s2b16jmrFmzYsKECVFQUFBpn759+8YVV1wR3bt3r1HNFStWxO233x5LliyptE+bNm3i0ksvjcMOO6xGNfdUcXFxrFmz5lOZC5Lm/MJ1+3oJACTAg4077eslAADsM40aNYquXbtGRMTq1aujpKRkH68IgH2lS5cukZ2dXW/19vptBrdt21ZlkFUXRUVFMX78+Iwgq2fPnnHcccfF0UcfHe3atYuIT8KVhx9+OJ544oka1X300UfjkUceSQdZ7dq1i6OPPjqOO+646NmzZ7rftGnT4tZbb60y8Npt9uzZMX78+HSQ1bRp0xg2bFiMGTMmBgwYEFlZWRERsXjx4vjFL34R69evr7Zmfn5+3HjjjekgKysrKwYMGBBjxoyJYcOGRZMmTSIiYtOmTfHb3/425s6dW6PrBwAAAAAASJpP5TaDEZ/sEjrggAOiX79+ccABB8Ts2bPj+eefr1OtJ598Mh3QNG7cOC677LIYOXJk+vWioqJ45JFH4plnnomIiMcffzwGDBgQAwYMqLTmnDlz4sknn0yfn3baafG1r30t49Z/U6dOjQkTJkRhYWHMnj07nn766Tj77LMrrbl58+a47bbb0qHX4MGD44orrsi49d+SJUviN7/5TeTl5UV+fn7ccccdcd1111V5/f/zP/8TGzZsiIiITp06xY9//OPo06dP+vWCgoK4/fbbY86cOVFcXBy33npr/OEPf4iWLVtWWRcAAAAAACBp9vrOrC984Qtx1113xT333BM/+clP4uyzz45DDz00WrRoUad6mzZtimeffTZ9ftFFF2UEWREROTk5MW7cuBgxYkRERKRSqXjooYeqrFv69REjRsS4cePKPcPqmGOOiQsvvDB9/n//939V3jrw73//e2zdujUiPtlSd9VVV5V7hlWfPn3i6quvTm+3mzt3bsyePbvSmm+//XbMnz8/fZ1XX311RpAVEZGbmxs//vGPo0uXLhERsWXLlvj73/9eaU0AAAAAAICk2uthVtu2baNjx471Vm/y5Mnp2xZ269Ytjj/++Er7jhs3Ln0bvwULFsTixYsr7Ldo0aL48MMPI+KTW/aNGzeu0ponnHBCdOvWLSIitm/fHlOmTKmwX1FRUbzyyivp8/POOy+aNm1aYd/evXvHqFGj0ucvvvhipfOXfm3UqFHRq1evCvs1a9Yszj333PT5P//5zxrdFhEAAAAAACBJ9nqYVd/eeuut9PHo0aPTYVVFOnbsGIMGDUqfz5gxo9qaQ4YMqTJ8y8rKygieSo8tbd68eeldWc2bN48jjzyy0poRn1zLbrNnz44dO3aU67Njx46M51+NGTOmyppHHnlkNGvWLCI+2Z21e0cXAAAAAABAQ9Ggwqxdu3bFggUL0ucDBw6sdkzpPqWDoNLee++99HFVz9WqqOYHH3wQhYWF5fqUnqt///7RuHHjKmv269cvvXOrsLAw4zormqtp06ZxwAEHVFmzSZMm0b9//wrXBAAAAAAA0BA0qDBr5cqVkUqlIuKTHVJlnxVVkf333z99vGLFigr7lG7v27dvtTVL9ykpKYlVq1btcc2cnJyMWwZWtNbSbb169Uo/Z6uma12+fHm1/QEAAAAAAJKkwYVZu+Xm5kaTJk2qHVP6loFbtmyJgoKCjNc3bdqUvh1gRESnTp2qrdmkSZPIzc1Nn1cUPJVea02fGdahQ4ca16zJOsvOXXo8AAAAAABAQ5CzrxdQG1u2bEkft23btkZjyvbbsmVLRhC1efPmjNfbtGlT47q7g7HS66qvtVZUs/Raa7POqmpWJz8/v0Zz7N4l1qhRg8pHAQDqlX8LAQCfZ6X/LeTfRQDUpwYVZu3YsSN9XJNdWRX1K12jovO61C1bo2xbkmtW59JLL622z4QJE6JDhw6RnZ0dXbt2rfUc8Jnw8Zp9vQIAEsC/hQAAPtG5c+d9vQQAPkMa1H+R2LVrV/o4J6dmOVzZfqVrREQUFhZW2b8yjRs3rrRm2ba61Cy7rrJt9bVOAAAAAACAJGtQO7NK7zIqKiqq0Ziy/cruaCod9uzuX5NdT6WDpYr6N2nSJHbu3FmrtZauWXZdZdvqUrOmu7lKmzBhQrV9dt/KsLi4ONatW1frOQAAPitWr169r5cAALDPNGrUKL0ja+3atVFSUrKPVwTAvtKpU6f044nqQ4MKs5o1a5Y+rukuo7L9Steo6HzXrl01Cn1K1y1bY3fb7jCrLmutrGZFffekZnU6dOhQq/7+kQIAfJ75txAAwCdKSkr82wiAetOgbjPYqlWr9PHGjRtrNKZsv9I1IiJat26dcb5p06Za1y1bs2xbXdZaUc3Sa62vdQIAAAAAACRZgwqzunfvnj4uKCio0e6kvLy89HGrVq0iNzc34/U2bdpEy5Yt0+c1uU3erl27oqCgIH3eo0ePKtdaeg1Vyc/Pr3HNmt7Or/TcpccDAAAAAAA0BA0uzMrKyoqIiFQqFUuWLKl2zEcffZQ+riggKttek5qLFy9OHzdq1Ci6detWZc3S/StTXFwcS5curXKtpduWLl0axcXFtVrrfvvtV21/AAAAAACAJGlQYVaTJk2if//+6fN58+ZVO2b+/Pnp40GDBlXYZ+DAgenj9957r9qapec96KCDonHjxuX6lJ5rwYIFUVRUVGXNDz/8MP2MrcaNG2dcZ0Vz7dy5Mz788MMqaxYWFsbChQsrXBMAAAAAAEBD0KDCrIiIww8/PH08adKkKvvm5eXFnDlzKhxbWc05c+Zk3O6vIqXnrazmgAEDokWLFhERsX379njzzTdrXHPIkCHRrFmzcn2aNWuWEUhVd/1vvvlmbN++PSI+ucXiIYccUmV/AAAAAACApGlwYdaoUaOiadOmERGxcuXKeOWVVyrt++CDD0ZJSUlERPTv3z/233//Cvv169cvDjjggIiIKCkpiQcffLDSmv/85z9j1apVERHRvHnzOO644yrsl5OTE1/84hfT54899lilz/haunRpRjB10kknVTp/6dcmT54cy5Ytq7Dfzp0747HHHkufH3/88ZGdnV1pXQAAAAAAgCRqcGFWmzZt4tRTT02fT5w4MaZPn57Rp6ioKB588MGYNm1auu0b3/hGlXVLvz516tR48MEHy90acPr06XHfffelz7/yla9Ebm5upTXPOOOMaNmyZURErFq1Kn7zm9/E5s2bM/p8/PHHccstt6TnGjhwYHzhC1+otOZhhx2W3mFVWFgYv/71r+Pjjz/O6LN58+b47W9/G6tXr46IT3ZlnX766ZXWBAAAAAAASKqsVCqV2tuT3HzzzbF+/fqMto0bN8amTZsiIqJp06bRtWvXcuP++7//O9q3b1+uvaioKH71q1/F3Llz0229evWKvn37RmFhYcyfPz82bNiQfu3cc8+Ns88+u9p1PvLII/HUU0+lz9u1axeHHHJING7cOD766KOMXVBDhgyJ//7v/652t9M777wTt9xySxQXF6evdfDgwZGbmxtr1qyJefPmxe5PQfv27eNXv/pVhddcWn5+fvz0pz9NX2NWVlYMGDAgunTpEgUFBTFnzpz087eys7Pjpz/9aQwePLja699TxcXFsWbNmr0+DyTR+YXr9vUSAEiABxt32tdLAADYZxo1apT+Hd/q1avTd0wC4POnS5cu9Xq3uE8lzPre974X69bV/he9d9xxR3Tu3LnC17Zt2xZ/+tOf4o033qh0fHZ2dpxzzjnx1a9+tUbzpVKpeOqpp+KJJ55Ih08VGTFiRFxyySXpZ2JVZ+bMmTFhwoRyu7JK69u3b1xxxRXRvXv3GtVcsWJF3H777bFkyZJK++Tm5sZll10Whx12WI1q7ilhFp9nwiwAIoRZAMDnmzALgN2EWWW8++67MXny5FiwYEFs3LgxsrOzo0OHDjF06NAYO3Zs7LfffrWed/ny5fHqq6/G7NmzIz8/P4qLi6Nt27bRv3//GDVqVAwZMqTWNQsKCuK1116LGTNmxNq1a2Pr1q3Rpk2b6NmzZ4wcOTJGjhwZOTk5tapZVFQU06ZNi2nTpsWyZcti06ZN0bJly+jcuXMceeSRMXr06Cpvg1jfhFl8ngmzAIgQZgEAn2/CLAB2a5BhFp8Pwiw+z4RZAEQIswCAzzdhFgC71XeY1ajeKgEAAAAAAEA9E2YBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEytnXCwAAAAD4rDi/cN2+XgLsWx+v2dcrgER4sHGnfb0E+EyxMwsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxcvb1AvbUggULYsqUKbFw4cJYu3Zt7NixI5o0aRJt2rSJPn36xBFHHBFHHnlkNG7cuEb1UqlUvPXWW/H666/HkiVLYv369dGsWbPo1KlTDBs2LMaMGRMdO3as9ToXLVoUkyZNivfeey/Wr18fERHt27ePgQMHxujRo6Nfv361rpmXlxevvvpqzJo1K/Ly8mLHjh3Rvn376NOnTxx77LFx+OGHR1ZWVq3rAgAAAAAAJEVWKpVK7etF1MXmzZtjwoQJMXPmzGr7dunSJb73ve/FwQcfXGW/9evXxx133BFz586ttE+zZs3im9/8ZowePbpG6ywqKor7778/XnjhhajsQ52VlRUnn3xyjBs3LnJyapYvvvrqqzFx4sTYuXNnpX0GDx4c//Vf/xVt27atUc09VVxcHGvWrPlU5oKkOb9w3b5eAgAJ8GDjTvt6CQDsY94bABDhvQF06dIlsrOz661egwyzdu3aFT/72c9iyZIl6bbc3Nzo27dvtG/fPgoKCmL58uUZwUrTpk3juuuuiwMPPLDCmtu2bYtrr702li1blm7r169f7LfffrFt27Z47733YuvWrenXvve978WoUaOqXesdd9wRU6ZMSZ936dIlvYaFCxdmrHHMmDFx6aWXVlvz1VdfjT/+8Y/p85YtW8bAgQOjRYsWsWzZsvjwww/Tr/Xu3Tt+8YtfRLNmzaqtu6eEWXyeecMKQIQ3rAB4bwDAJ7w34POuvsOsBnmbwb/97W/pICsrKyvOO++8OPXUU6NJkybpPqlUKqZPnx733HNPbNu2LXbu3Bl/+tOfYvz48RXWvPfee9NBVqtWreKHP/xhDBo0KP36jh074u67746pU6dGRMSf/vSnOOigg6Jr166VrvPVV19NB1lZWVnxH//xH3HyySdHo0afPKqspKQk/vGPf8Rf//rXSKVS8dprr8WAAQOqDMlWrlwZ99xzT/r8mGOOiUsuuSQjrJo7d2787ne/i61bt8bHH38c9957b1x22WWV1gQAAAAAAEiqRvt6AXUxefLk9PHJJ58cX/3qVzOCrIhPwqORI0fGf/7nf6bbli5dGkuXLi1Xb+nSpfH666+nz7///e9nBFkRn9xe8PLLL4+DDjooIj65feCjjz5a6RoLCwvj8ccfT5+ffvrp8eUvfzkdZEVENGrUKL785S/Haaedlm577LHHoqioqNK6jzzySBQXF0dExEEHHRSXX355uV1XgwYNiu9///vp8ylTpsTy5csrrQkAAAAAAJBUDS7M2rZtW6xb9/9v2R85cmSV/Q8//PBo2rRp+nzlypXl+rz00kvp51kNGTIkvvCFL1RYq1GjRnH++eenz994440oKCiosO/MmTMjPz8/IiJatGgRZ511VqVrPPvss6N58+YREbFu3bp4++23K+y3cePGePPNN9Pn48aNywjHSjv00ENj8ODBEfHJDrCXX3650vkBAAAAAACSqsGFWTt27Mg4b9myZZX9s7Oz00FRRETZR4SlUqmYNWtW+nz06NFV1jv44IPTtxYsKSmJmTNnVtjvrbfeSh+PGDEiI1Arq2nTpnH00Uenz2fMmFFhv5kzZ6bX361bt/QuscqUvpbS6wEAAAAAAGgoGlyYlZubG40bN06fV3f7vIKCgti0aVP6vHfv3hmvr1q1Kr2DKiJi4MCB1a6hdJ+5c+dW2Oe9995LHw8YMKDamqVva1iTmrVdZ15eXqxevbraMQAAAAAAAEnS4MKsnJycOPTQQ9PnTz75ZOzcubPS/g888EB6N9PgwYOje/fuGa+vWLEifdy2bdto165dtWvo27dvheN327ZtW2zYsCF9vv/++9eq5vr162Pbtm3l+pSeq3T/yrRv3z7atGmTPvfcLAAAAAAAoKFpcGFWRMTXv/71aNasWURELF68OH70ox/FpEmTYvXq1bFr167Iy8uLt99+O6677rqYNGlSRETst99+cemll5arVfoZWp06darR/B07dqxwfGVtpfvXpGZN6tbXWgEAAAAAAJIsZ18voC569OgRv/jFL+KWW26JvLy8WLNmTdx1110V9m3ZsmUce+yx8fWvfz3j2Vm7bd68OX1cehdTVdq2bZs+3rlzZxQWFmbc+rB0zebNm0eTJk2qrdm0adNo3rx5bN++PSIitmzZkvH6rl27YteuXXu01rI1a6L0LRirmiM7OzsiIho1apD5KABAvfBvIQAAIMJ7A6hvDTLMivjk2Ve33357vPLKK/Hggw9WeqvBoUOHxjHHHFNhkBURsWPHjvRxTUKnivrt2LEjI8yqS83dfXeHWaVrVHRel7WWrVETFe1mK2vChAnRoUOHyM7Ojq5du9Z6DvhM+HjNvl4BAAng30IAeG8AQIT3BlDfGmyYVVBQEA888EC8/vrrUVxcHG3bto3+/ftHbm5ubN26NRYtWhTr1q2L6dOnx/Tp0+P444+Pb3/72+US8cLCwvRxTk7NPhylg6uIyNgxVdeaZfuWrVn2vC5rLVsDAAAAAAAg6RpkmLVq1aq48cYbIz8/Pxo3bhwXXnhhnHDCCelb3UVEpFKpmDZtWtxzzz2xffv2+Oc//xmNGjWKb3/72xm1Soc9RUVFNZq/dFgVUX6XVF1qlu1btmbZ87qstTa7xHabMGFCtX1238qwuLg41q1bV+s5AAA+K1avXr2vlwAAACSA9wZ83nXq1Ckjs9lTDS7MKi4ujvHjx6ef5fSd73wnRo8eXa5fVlZWHHPMMZGbmxu//OUvIyLipZdeitGjR0e/fv3S/Zo1a5Y+runOpbL9Steoa82yfauqWZu6VdWsiQ4dOtSqf0lJSa3nAAD4rPBvIQAAIMJ7A6hvDe4pdG+++WYsW7YsIiK6d+8eo0aNqrL/kCFDYvDgwenz1157LeP11q1bp483bdpUozVs3Lgxfdy0adNytx0sXXP79u01Cp527tyZfl5WRESrVq0yXm/SpEnGzqq6rLVsTQAAAAAAgKRrcGHWO++8kz4eOHBgZGVlVTtm0KBB6eOPPvoo47Xu3bunj2t6i7y8vLwKx1fWVrp/TWrWpG59rRUAAAAAACDJGlyYtX79+vRx6R1QVSndb9u2bRmv9ejRI328cePGjJ1MlVm8eHGF43dr0aJFtGvXrsL+NanZvn37aNGiRbk+peeqSc3169dn7ODab7/9qh0DAAAAAACQJA0uzCp9q70tW7bUaEzpfmVDom7dumU8F+q9996rtt68efPSx6V3fZU2cODAvVqzdP+a1OzYsWN07dq12jEAAAAAAABJ0uDCrI4dO6aPaxISRUTMnTs3fVw20MnKyophw4alzydNmlRlrQULFsSqVasiIqJRo0YxfPjwCvsdfvjh6eM33nijyudm7dq1K954440Kx5Y2fPjw9G0VV65cGQsWLKhyrZMnT84YCwAAAAAA0NA0uDBr8ODB6eMVK1bElClTquw/d+7cePfdd9PnQ4cOLdfnxBNPTIdEs2fPzuhfWklJSTzwwAPp86OOOipyc3Mr7Dt8+PD0jq+tW7fGU089Vekan3jiidi6dWtERHTq1CkjXCutbdu2ceSRR6bPH3zwwUilUhX2nT17dsyePTsiPgndTjzxxErnBwAAAAAASKoGF2Yddthh0a1bt/T5n/70p3jppZeipKQko18qlYrp06fH+PHj020dOnSIkSNHlqvZq1evOPbYY9Pnt99+e7ldXzt27Ii77ror3n///YiIyMnJia997WuVrrNx48ZxzjnnpM+ffvrpeP755zPWWVJSEs8//3z8/e9/T7ede+65kZOTU2nd8847L7KzsyMiYv78+XHnnXfGjh07MvrMnTs3/ud//id9ftxxx3leFgAAAAAA0CBlpSrb2pNgCxcujBtvvDF27tyZbmvXrl30798/WrduHdu2bYuFCxfGunXr0q83btw4rr322jj44IMrrLlt27a49tprY9myZem2Aw88MHr06BHbt2+PuXPnpndPRURcdtllMXr06GrXescdd2TsHuvSpUsceOCB6etYs2ZN+rXRo0fHZZddVm3NV199Nf74xz+mz1u2bBmDBg2K5s2bx4oVK2LhwoXp13r37h033nhjNG/evNq6e6q4uDjjeuDz5PzCddV3AuAz78HGnfb1EgDYx7w3ACDCewPo0qVLemNOfWiQYVZExKJFi+IPf/hD+vlVVencuXNcfvnllQZZu61fvz7uuOOOjGdsldWsWbO4+OKLY8yYMTVaZ1FRUfz1r3+NF198sdJbAmZlZcWXvvSluOCCC6rclVXaK6+8Evfdd19GoFfW4MGD4/LLL4927drVqOaeEmbxeeYNKwAR3rAC4L0BAJ/w3oDPO2FWKcXFxTFz5sx466234sMPP4wNGzbEjh07omnTptG2bdvo27dvDB8+PI466qgah0SpVCpmzJgRr7/+eixevDg2btwYzZo1i44dO8awYcNi7Nix0bFjx1qvddGiRfHqq6/GvHnzYv369RER0b59+xgwYECMHTs2+vXrV+uaeXl58eqrr8asWbMiLy8vduzYkb7u4447Lg4//PD0s8A+DcIsPs+8YQUgwhtWALw3AOAT3hvweSfMIrGEWXyeecMKQIQ3rAB4bwDAJ7w34POuvsOsRvVWCQAAAAAAAOqZMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkVs6+XkB9+eijj+KNN96IOXPmxPr162PLli3RunXraNu2bfTu3TsGDRoUQ4YMibZt21Zba86cOTF58uRYuHBhrF+/PnJycqJDhw4xdOjQGDt2bPTo0aPW61u+fHm89tprMXv27MjPz4+ioqJo3759HHjggTFq1KgYPHhwrWsWFBTEpEmTYsaMGbF27drYunVrtGnTJnr27BkjR46MESNGRE7OZ+ZTDAAAAAAAfA5lpVKp1L5exJ7YtGlT/OUvf4mpU6dW2/ekk06Kb33rW5W+vm3btrj77rtj+vTplfbJzs6Oc889N84888war/Gpp56Kxx9/PIqLiyvtM3LkyLjkkkuiefPmNao5a9asmDBhQhQUFFTap2/fvnHFFVdE9+7da7zWPVFcXBxr1qz5VOaCpDm/cN2+XgIACfBg4077egkA7GPeGwAQ4b0BdOnSJbKzs+utXoPetpOXlxfXX399rF27Nt3WvXv36NWrV7Rq1Sp27doVa9asiSVLlsTOnTurrFVUVBTjx4+PuXPnptt69uwZffv2jcLCwnj//fdjw4YNUVxcHA8//HAUFxfH2WefXe0aH3300XjyySfT5+3atYuDDz44GjduHIsXL45ly5ZFRMS0adNiy5Yt8ZOf/KTaT/Ds2bNj/Pjx6XCsadOmMWjQoMjNzY01a9bE/PnzI5VKxeLFi+MXv/hF3HTTTdG+fftq1woAAAAAAJA0DTbM2rZtW9xwww3pIGvgwIFx0UUXRe/evcv1LSoqirlz58b27dsrrffkk0+mg6zGjRvHZZddFiNHjsyo8cgjj8QzzzwTERGPP/54DBgwIAYMGFBpzTlz5mQEWaeddlp87Wtfy7j139SpU2PChAlRWFgYs2fPjqeffrrKkGzz5s1x2223pYOswYMHxxVXXBG5ubnpPkuWLInf/OY3kZeXF/n5+XHHHXfEddddV2lNAAAAAACApGq0rxdQV3/961/Tt7QbMWJEXHvttRUGWREROTk58YUvfCGOPvroCl/ftGlTPPvss+nziy66KCPI2l1j3LhxMWLEiIiISKVS8dBDD1W5xtKvjxgxIsaNG1fuGVbHHHNMXHjhhenz//u//6vy1oF///vfY+vWrRHxyTa9q666KiPIiojo06dPXH311ekdXnPnzo3Zs2dXuVYAAAAAAIAkapBh1pIlS+LVV1+NiIgOHTrEd7/73WjUqO6XMnny5PRtCLt16xbHH398pX3HjRsXWVlZERGxYMGCWLx4cYX9Fi1aFB9++GFERGRlZcW4ceMqrXnCCSdEt27dIiJi+/btMWXKlAr7FRUVxSuvvJI+P++886Jp06YV9u3du3eMGjUqff7iiy9WOj8AAAAAAEBSNcgw66WXXkofn3TSSdG8efM9qvfWW2+lj0ePHp0OqyrSsWPHGDRoUPp8xowZ1dYcMmRIdOzYsdKaWVlZGcFT6bGlzZs3L70rq3nz5nHkkUdWWjPik2vZbfbs2bFjx44q+wMAAAAAACRNgwuzSkpKYtq0aenzo446ao/q7dq1KxYsWJA+HzhwYLVjSvfZ/Zytst577730cVXP1aqo5gcffBCFhYXl+pSeq3///tG4ceMqa/br1y+9c6uwsDDjOgEAAAAAABqCnOq7JMvSpUtj+/btERHRokWL6NKlSxQXF8eUKVPi9ddfj2XLlsXWrVujdevW0bt37xg+fHiMGTOm0uBn5cqVkUqlIuKTHVJ9+vSpdg37779/+njFihUV9ind3rdv32prlu5TUlISq1atil69eu1RzZycnOjVq1csXLgwPX7IkCHVjgMAAAAAAEiKBhdm7X4OVcQnz8vKz8+PW2+9NRYtWpTRb8OGDbFhw4Z455134m9/+1v88Ic/jH79+pWrt3LlyvRxbm5uNGnSpNo1lL5l4JYtW6KgoCByc3PTbZs2bUrfDjAiolOnTtXWbNKkSeTm5kZBQUFEfBI8lQ2zSq+1qtsWltahQ4eMMKu28vPzq+3Ttm3byM7OjojYo2eXAQA0dP4tBAAARHhvAPWtwYVZZcOVm2++OZYtWxYRET169IgDDjggGjVqFB9//HEsXrw4IiLy8vLihhtuiBtuuCFjV1XEJ2HUbm3btq3RGsr227JlS0aYtXnz5ozX27RpU+O6u8Os0uuqr7VWVLM6l156abV9JkyYEB06dIjs7Ozo2rVrreeAz4SP1+zrFQCQAP4tBID3BgBEeG8A9a3BhVmldzztDrGaNm0al112WRx99NEZfefOnRu///3vY/PmzbFz5874/e9/H7///e8jJ+f/v+wdO3akj2uyK6uifqVrVHRel7pla5Rtq6+aAAAAAAAASdbgwqydO3eWa/uv//qvOOKII8q1Dxo0KK6++uq49tprI5VKxZo1a+L111+PMWPGpPvs2rUrfVw65KpK2X6la0REFBYWVtm/MqWf61W2Ztm2utQsu66amDBhQrV9du/+Ki4ujnXr1tV6DgCAz4rVq1fv6yUAAAAJ4L0Bn3edOnVKP56oPjS4MKt0OBMR0b9//wqDrNKvH3nkkfGvf/0rIiKmT5+eEWaV3rlUVFRUozWU7Vd2l1TZNRYVFdVoJ1XpsKmi/k2aNEmHeTVda+maZddVEx06dKhV/5KSklrPAQDwWeHfQgAAQIT3BlDfGtxT6Jo1a5ZxXlWQVVGfBQsWVFqvot1QFSnbr+yayp7XpW7ZGmXb6qsmAAAAAABAkjW4MKt169YZ5/vtt1+1Y3r06JE+3r59e2zfvj193qpVq/Txxo0ba7SGsv1K16hojZs2bap13bI1y7bVZa0V1QQAAAAAAEiyBhdmde/ePeO8JruNmjdvnnFeOswqXa+goKBGO57y8vLSx61atYrc3NyM19u0aRMtW7ZMn9fkOVK7du2KgoKC9HnpAK6itZZeQ1Xy8/OrrAkAAAAAAJBkDS7M6tWrV8b5jh07qh1TOryKiGjRokX6uHv37pGVlRUREalUKpYsWVJtvY8++ih9XFlAVLq9JjUXL16cPm7UqFF069atypql+1emuLg4li5dWu1aAQAAAAAAkqrBhVmdO3eOzp07p8+XL19e7ZgVK1akj1u1apWxm6tJkybRv3//9Pm8efOqrTd//vz08aBBgyrsM3DgwPTxe++9V23N0vMedNBB0bhx43J9Ss+1YMGCKCoqqrLmhx9+GDt37oyIiMaNG2dcJwAAAAAAQEPQ4MKsiIgjjjgiffzWW29V23/GjBnp40MOOaTc64cffnj6eNKkSVXWysvLizlz5lQ4trKac+bMybjdX0VKz1tZzQEDBqR3lW3fvj3efPPNGtccMmRIjW7JCAAAAAAAkCQNMsw68cQTIzs7OyIiPvjgg5g5c2alfRctWpQRZo0ePbpcn1GjRkXTpk0jImLlypXxyiuvVFrvwQcfjJKSkoiI6N+/f+y///4V9uvXr18ccMABERFRUlISDz74YKU1//nPf8aqVasi4pPnex133HEV9svJyYkvfvGL6fPHHnus0md8LV26NCPMOumkkyqdHwAAAAAAIKkaZJjVtWvXjHDm9ttvr3CX0rx58+LXv/51Onw68MADY/jw4eX6tWnTJk499dT0+cSJE2P69OkZfYqKiuLBBx+MadOmpdu+8Y1vVLnO0q9PnTo1HnzwwXK3Bpw+fXrcd9996fOvfOUrkZubW2nNM844I1q2bBkREatWrYrf/OY3sXnz5ow+H3/8cdxyyy3puQYOHBhf+MIXqlwrAAAAAABAEmWlUqnUvl5EXRQWFsYvf/nLjOdX9ejRIw444IBo1KhRLF26ND766KP0a+3atYubbropOnbsWGG9oqKi+NWvfhVz585Nt/Xq1Sv69u0bhYWFMX/+/NiwYUP6tXPPPTfOPvvsatf5yCOPxFNPPZWxjkMOOSQaN24cH330USxbtiz92pAhQ+K///u/07vOKvPOO+/ELbfcEsXFxRER0bRp0xg8eHDk5ubGmjVrYt68ebH709q+ffv41a9+Fe3bt692rXuquLg41qxZs9fngSQ6v3Ddvl4CAAnwYONO+3oJAOxj3hsAEOG9AXTp0qXarKM2GmyYFRGxbdu2uOeeezJ2S1XkwAMPjB/84AeVBlml6/3pT3+KN954o9I+2dnZcc4558RXv/rVGq0xlUrFU089FU888UQ6fKrIiBEj4pJLLkk/E6s6M2fOjAkTJpTblVVa375944orroju3bvXqOaeEmbxeeYNKwAR3rAC4L0BAJ/w3oDPO2FWBebNmxdTpkyJ999/P9avXx8lJSXRpk2bOPDAA2PEiBFx+OGHR1ZWVo3rvfvuuzF58uRYsGBBbNy4MbKzs6NDhw4xdOjQGDt2bOy33361XuPy5cvj1VdfjdmzZ0d+fn4UFxdH27Zto3///jFq1KgYMmRIrWsWFBTEa6+9FjNmzIi1a9fG1q1bo02bNtGzZ88YOXJkjBw5MnJycmpdt66EWXyeecMKQIQ3rAB4bwDAJ7w34PNOmEViCbP4PPOGFYAIb1gB8N4AgE94b8DnXX2HWY3qrRIAAAAAAADUM2EWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASKycfb2AveEvf/lLPPfcc+nzTp06xZ133lnj8XPmzInJkyfHwoULY/369ZGTkxMdOnSIoUOHxtixY6NHjx61XtPy5cvjtddei9mzZ0d+fn4UFRVF+/bt48ADD4xRo0bF4MGDa12zoKAgJk2aFDNmzIi1a9fG1q1bo02bNtGzZ88YOXJkjBgxInJyPpOfYgAAAAAA4HPiM5d0LFq0KJ5//vk6jd22bVvcfffdMX369Iz2nTt3xtatW2Pp0qXx/PPPx7nnnhtnnnlmjes+9dRT8fjjj0dxcXFG+6pVq2LVqlUxZcqUGDlyZFxyySXRvHnzGtWcNWtWTJgwIQoKCjLa8/LyIi8vL/7973/Hc889F1dccUV07969xmsFAAAAAABIks9UmFVUVBR//OMfI5VK1Wns+PHjY+7cuem2nj17Rt++faOwsDDef//92LBhQxQXF8fDDz8cxcXFcfbZZ1db99FHH40nn3wyfd6uXbs4+OCDo3HjxrF48eJYtmxZRERMmzYttmzZEj/5yU8iOzu7ypqzZ8+O8ePHp8Oxpk2bxqBBgyI3NzfWrFkT8+fPj1QqFYsXL45f/OIXcdNNN0X79u1r/TEBAAAAAADY1z5TYdbf//73WLp0aUREHHPMMTF16tQaj33yySfTQVbjxo3jsssui5EjR6ZfLyoqikceeSSeeeaZiIh4/PHHY8CAATFgwIBKa86ZMycjyDrttNPia1/7Wsat/6ZOnRoTJkyIwsLCmD17djz99NNVhmSbN2+O2267LR1kDR48OK644orIzc1N91myZEn85je/iby8vMjPz4877rgjrrvuuhp/LAAAAAAAAJKi0b5eQH1ZsWJFPPXUUxHxSZA1ZMiQGo/dtGlTPPvss+nziy66KCPIiojIycmJcePGxYgRIyIiIpVKxUMPPVRl3dKvjxgxIsaNG1fuGVbHHHNMXHjhhenz//u//yt368DS/v73v8fWrVsjIqJLly5x1VVXZQRZERF9+vSJq6++Or3Da+7cuTF79uwq1woAAAAAAJBEn4kwK5VKxR//+McoLCyMli1bZoRDNTF58uTYuXNnRER069Ytjj/++Er7jhs3LrKysiIiYsGCBbF48eIK+y1atCg+/PDDiIjIysqKcePGVVrzhBNOiG7dukVExPbt22PKlCkV9isqKopXXnklfX7eeedF06ZNK+zbu3fvGDVqVPr8xRdfrHR+AAAAAACApPpMhFkvvfRSfPDBBxERccEFF0SbNm1qNf6tt95KH48ePTodVlWkY8eOMWjQoPT5jBkzqq05ZMiQ6NixY6U1s7KyMoKn0mNLmzdvXnpXVvPmzePII4+stGbEJ9ey2+zZs2PHjh1V9gcAAAAAAEiaBh9m5eXlpW/nd8ghh8SYMWNqNX7Xrl2xYMGC9PnAgQOrHVO6z+7nbJX13nvvpY+req5WRTU/+OCDKCwsLNen9Fz9+/ePxo0bV1mzX79+6Z1bhYWFGdcJAAAAAADQEDT4MOvPf/5zbN++PXJycuI73/lOlbuqKrJy5cpIpVIR8ckOqT59+lQ7Zv/9908fr1ixosI+pdv79u1bbc3SfUpKSmLVqlV7XDMnJyd69epV7VoBAAAAAACSKmdfL2BPTJs2Ld5+++2IiDj99NNjv/32q3WNlStXpo9zc3OjSZMm1Y4pfcvALVu2REFBQeTm5qbbNm3alL4dYEREp06dqq3ZpEmTyM3NjYKCgoj4JHgqHUSVXWtVty0srUOHDrFw4cJ0zdrKz8+vtk/btm0jOzs7IiIaNWrw+SgAQJ35txAAABDhvQHUtwYbZm3evDkmTpwYERHdunWLr371q3Wqs2XLlvRx27ZtazSmbL8tW7ZkhFmbN2/OeL2mz/Bq27ZtOswqva76WmtFNatz6aWXVttnwoQJ0aFDh8jOzo6uXbvWeg74TPh4zb5eAQAJ4N9CAHhvAECE9wZQ3xpsPPyXv/wlHfx85zvfqfb5UZXZsWNH+rgmu7Iq6le6RkXndalbtkbZtvqqCQAAAAAAkGQNcmfW7NmzY8qUKRERMWrUqBg0aFCda+3atSt9nJNTsw9H2X6la0REFBYWVtm/MqUDubI1y7bVpWbZddXEhAkTqu2ze/dXcXFxrFu3rtZzAAB8VqxevXpfLwEAAEgA7w34vOvUqVP68UT1ocGFWTt27Ii77747IiJat24dF1xwwR7VK71zqaioqEZjyvYru0uq7C6xoqKiGu2kKh02VdS/SZMmsXPnzlqttXTNuuxe69ChQ636l5SU1HoOAIDPCv8WAgAAIrw3gPrW4G4z+Mgjj6R3/1xwwQUZz6qqi2bNmqWPK9oNVZGy/UrXqOi8LnXL1ijbVl81AQAAAAAAkqxBhVkfffRR/OMf/4iIiIEDB8bo0aP3uGarVq3Sxxs3bqzRmLL9SteI+GTHWGmbNm2qdd2yNcu21WWtFdUEAAAAAABIsgZ1m8GlS5dGKpWKiIi8vLy45pprKu1bUFCQPt6wYUNG37POOisOO+ywiIjo3r17xphdu3ZVe0vAvLy89HGrVq3K7Q5r06ZNtGzZMrZu3RoREevWrYsePXpUWXPXrl0Za66of/fu3WPFihXl1lCV/Pz8KmsCAADw/7V35+Fdlne++D9fEkIgEGJYwiayqyziUkCBKsVW22NXpTrtdOZc50zbaa3W2hmtY+1YtI7HulWs1V62nU5POW3RwfF4autSBOqGqFTZZN9kC1tYAiFk+f3hj++VL9m+wdA8wdfrunpdz/3kvj/PJwlXy7dv7vsBAACSrF2FWXVt3749tm/fntXcqqqqWLVqVXpcNzTq169fpFKpqK2tjdra2li/fn2MGDGiyXpr165NXzcWEPXv3z9WrlwZERHr16+Ps88+u8ma69atS1936NAh+vbt22DNhQsX1pvfmOrq6ti4cWOzvQIAAAAAACRVuzpm8ETIy8vLCK+WLVvW7Jrly5enr0ePHt3gnFGjRqWvly5d2mzNus89/fTTo2PHjvXm1H3WypUro6qqqsmaa9asicOHD0dERMeOHZsN6QAAAAAAAJKmXe3MmjJlStbvyZo7d2785Cc/iYiIXr16xUMPPdTo3HHjxsWKFSvS6z772c82Onfnzp2xePHijLWN1XziiSciImLx4sWxa9eu6NGjR5P9Nldz5MiR0aVLlzh48GAcOnQoFixYEJMmTcqq5llnnRX5+fmNzgUAAAAAAEiiD/zOrIiIiy66KDp16hQREVu2bIk//elPjc6dOXNm1NTURETEiBEjYsiQIQ3OGzZsWAwdOjQiImpqamLmzJmN1nz++edj69atERHRuXPnuPDCCxucl5ubGxdffHF6PGvWrKisrGxw7saNGzPCrEsvvbTR5wMAAAAAACSVMCsiunfvHp/85CfT43//93+Pl19+OWNOVVVVzJw5M1566aX0vS9+8YtN1q379RdffDFmzpxZ72jAl19+OX75y1+mx5/61KeisLCw0Zqf/exno6CgICIitm7dGj/84Q9j//79GXM2bNgQd911V/pZo0aNavadXQAAAAAAAEnUro4ZPJGuuOKKWLFiRSxZsiQqKyvjRz/6UcyePTsGDx4cR44cieXLl8eePXvS86+88soYOXJkkzXHjBkTl19+ecyePTsiIp588smYP39+nHnmmdGxY8dYu3ZtbNq0KT3/rLPOis997nNN1uzWrVtcd911cdddd0V1dXW8/fbbcfXVV8eYMWOisLAwtm/fHsuWLYva2tqIiCguLo5rr732eH8sAAAAAAAAbUqY9f/Lzc2Nf/7nf46f/vSn8corr0TEe0f1bdy4MWNeTk5OfP7zn4/LL788q7pXXXVVdOzYMR5//PGorq6OPXv21Nv1FRExceLE+OpXvxo5OTnN1jz77LPjn/7pn+Lhhx+O/fv3x+HDh+P111+vN2/w4MFx3XXXRXFxcVa9AgAAAAAAJI0wq44uXbrE9ddfHxdffHHMmzcvVq5cGWVlZZGTkxM9evSIsWPHxtSpU2PAgAFZ10ylUnHFFVfEhAkTYs6cOfHWW2/Frl27orq6OoqKimLEiBFx0UUXxVlnndWiXj/0oQ/F/fffHy+88EK89tprUVpaGuXl5dG9e/c49dRTY9KkSTFp0qTIzfUrBgAAAAAA2q9U7dHz6OB9qq6uju3bt7d1G9Am/vbIjrZuAYAEmNmxV1u3AEAb89kAgAifDaCkpCSrk+iy1aHVKgEAAAAAAEArE2YBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxMpt6waOV2lpabz99tuxbNmy2LRpU+zcuTMqKioiPz8/evToESNGjIjJkyfHyJEjW1x79erVMXfu3Fi6dGns3r07IiKKi4tj1KhRMWXKlBg2bFiLa+7cuTPmzJkTb7zxRrrX4uLiGDRoUHz4wx+OcePGRSqValHNioqKmD9/frzyyiuxdevW2LdvXxQWFkbfvn3jggsuiAsvvDDy8/Nb3CsAAAAAAEBSpGpra2vbuomWWLduXTz66KOxevXqrOaPGjUqvvGNb0TPnj2bnVtVVRX/+3//7/jjH/8Yjf1YUqlUfOITn4gvfelLkZubXRY4Z86c+Pd///c4fPhwo3PGjBkT1157bRQVFWVVc+XKlTFjxowoLS1tdE5JSUl885vfjOHDh2dV8/2qrq6O7du3/1WeBUnzt0d2tHULACTAzI692roFANqYzwYARPhsACUlJZGTk9Nq9drdMYNbtmypF2T17ds3xo8fHx/96EfjggsuiB49eqS/tnTp0vjud7+bVcjyyCOPxB/+8Id0kFVSUhKTJ0+OyZMnR0lJSURE1NbWxtNPPx2PPvpoVv3OmTMnHnnkkXSQVVBQEOPHj48pU6bE0KFD0/MWL14cd9xxR1RUVDRbc/369fGDH/wgHWTl5OTE2LFjY+rUqTF27Nj0H5Dt27fHD37wg9i4cWNWvQIAAAAAACRNuz1msE+fPjF16tS48MILo7i4OONrNTU1MXfu3PRuqD179sSMGTPiBz/4QaNH+c2ZMyfmz58fEe/tvvr7v//7+MQnPhEdOnRI1/zDH/4Qv/rVr6K2tjZeeOGFGDlyZFx00UWN9rhly5aM0Gvy5Mnx1a9+NePovyVLlsS9994b5eXlsWHDhvjFL34RV199daM1q6qq4t57702HXqeddlrccMMN0bt37/Sc0tLSuPvuu2PDhg1x6NChuPfee+O+++5r1RQUAAAAAADgr6Hd7cw65ZRT4uqrr44f/ehH8dnPfrZekBUR0aFDh5g6dWpce+216XurVq2Kt956q8GaR44cicceeyw9/sxnPhOXXXZZOsg6WvOyyy6LT3/60+l7s2bNiqqqqkZ7/e1vfxvV1dUREXH66afHNddcU+8dVqNHj45vfvOb6fH8+fPj3XffbbTmn/70p/Qus4KCgvjud7+bEWRFRPTu3TtuvvnmKCgoiIiIrVu3xgsvvNBoTQAAAAAAgKRqd2HWyJEjY8qUKRlBU2PGjx8fw4YNS4/ffPPNBue9/vrrsWvXroiI6NKlS1xxxRWN1pw2bVp07tw5IiJ27NjRaM2ysrJYsGBBevylL32p0Z7POeecGDNmTES8twPsueeea/T5zzzzTPr6U5/6VKPv2DrllFPiU5/6VIPrAAAAAAAA2ot2F2a11Omnn56+3rGj4ZewLly4MH09ceLE6NSpU6P1OnXqFBdccEF6/NprrzU47/XXX0+/e6tv374ZfTRkypQpDfZT17Zt2zJ2bdVd01zNDRs2ZPXeMAAAAAAAgCQ56cOsuu/IqqmpaXDO0qVL09cjR45stubo0aPT10uWLGm25qhRo5qtWXfOzp07Y9u2bfXm1H1W3759Gzxisa7i4uLo27dvs70CAAAAAAAk1UkfZm3cuDF93aNHj3pfP3jwYOzZsyc9HjJkSLM1Bw8enL7evXt3HDx4sN6czZs3Nzi/McXFxdG9e/f0uKH3ZtW9l03NY+fV7QkAAAAAAKA9yG3rBk6knTt3ZuxGOuuss+rN2bJlS8a4Z8+ezdY9ds6WLVsy3s11bN1evXpl1W/Pnj1j7969DfYVEbF169bjqnnU8YRZR98l1pSioqLIycmJiMjqXWYAACcrfxcCAAAifDaA1nZSh1n/8R//kT5asGfPnnHeeefVm7N///70defOnSMvL6/Zup06dYrOnTvHoUOHIiLiwIEDGV+vrKyMysrK9LjujqumFBUVpa+PrXlsr61Vszlf//rXm53z8MMPR48ePSInJyf69OnT4mfASWGDd9IBEP4uBIDPBgBEhM8G0NpO2nh47ty5sWDBgvT4i1/8YnTs2LHevIqKivR1NkFWQ3Pr1mhonG3dpmoee6+1agIAAAAAACTZSbkza82aNfHoo4+mx5MmTYrJkyc3OPfIkSPp69zc7H8cdefW3YXV0DjbunXDtmNrRBxfr031mY2HH3642TlHd39VV1fHjh07WvwMAICTxbZt29q6BQAAIAF8NuCDrlevXunXE7WGky7MKi0tjbvuuisd/Jx22mnxla98pdH5dQOkqqqqrJ9Td+6xu6SOHWdbt25Y1dDOq+Pptak+s9GjR48WzT96rCMAwAeRvwsBAAARPhtAazupjhncs2dP3H777VFWVhYRESUlJXHzzTdHly5dGl2Tn5+fvm7JzqW6c+vWaGicbd2mah57r7VqAgAAAAAAJNlJE2bt378/fvCDH8T27e+9aPWUU06J733ve3HKKac0ua5bt27p60OHDmUVEh0+fDgOHTqUHnft2jXj63l5eRm7oPbu3ZvV93A0hGuo5rG9tlZNAAAAAACAJDspwqyDBw/GHXfcEZs2bYqI90Kf733ve9G7d+9m1/br1y9jvHPnzmbXHDvn2BrH3sv2PVJ16zZUs2/fvu+rZv/+/bNaAwAAAAAAkBTtPsyqqKiIO++8M9auXRsREV26dInvfve7MWDAgKzWd+nSJWP31rp165pdU3dOcXFxg8cY1g2Osqm5e/fujN1WDfVf99769eubrXnss4VZAAAAAABAe9Ouw6zKysr44Q9/GCtWrIiIiE6dOsVNN90UQ4YMaVGdUaNGpa+XLl3a7Pxly5alr0ePHt1szbrzs6nZs2fP6NOnT5M1t2zZEnv27Gmy5u7du2Pr1q3N9goAAAAAAJBU7TbMqqqqinvvvTeWLFkSEREdO3aMG264Ic4444wW1xo3blz6+pVXXmnyvVmVlZXxyiuvNLi2rg996EORSqUi4r3gaeXKlU32MG/evIy1Denbt2/G7qy6a5qrOXDgwCgpKWlyPgAAAAAAQNK0yzCrpqYmZsyYEYsWLYqIiJycnLj++uvjrLPOOq56H/rQh6JHjx4REVFeXh6zZ89udO7jjz8e5eXlERHRq1evOO+88xqcV1RUFBMmTEiPZ86cGbW1tQ3Ofeutt+Ktt96KiIgOHTrEJZdc0ujz637tqaeeirKysgbnlZWVxVNPPZUeX3rppY3WBAAAAAAASKp2F2bV1tbGww8/HK+++mpERKRSqbjmmmsa3c2UjY4dO8bnP//59PiJJ56Ip59+OmpqatL3ampq4umnn44nn3wyfe/KK6+M3NzcRuteddVVkZOTExERy5cvj4ceeigqKioy5ixZsiRmzJiRHl944YVNvu/rox/9aHqH1f79++POO++MHTt2ZMzZsWNH3HnnnXHgwIGIeG9H19SpUxutCQAAAAAAkFSp2sa2CyXUM888Ez//+c/T4759+7ZoR9Y//MM/NPq1H//4xzF//vz0uKSkJIYPHx4REatWrYrt27envzZlypS4+uqrm33enDlz4pFHHkmPCwoKYvTo0dG5c+fYvHlzrFq1Kv210047LW677bbo3LlzkzXXr18f//qv/5oOxnJycmLMmDFRXFwcu3btiiVLlkR1dXVERHTu3Dluv/32GDhwYLO9vl/V1dUZPyP4IPnbIzuanwTASW9mx15t3QIAbcxnAwAifDaAkpKS9Gaf1tD4tqKE2rt3b8Z469atsXXr1qzXNxVmfe1rX4suXbrEM888E7W1tbF9+/Z64UwqlYqPf/zj8Xd/93dZPW/q1KlRW1sbv/zlL+Pw4cNRXl4eCxYsqDdvzJgxcc011zQbZEVEDBo0KG655ZaYMWNGlJaWRnV1dfzlL3+pN6+kpCSuvfbav0qQBQAAAAAAcCK0uzDrRMrNzY3/+T//Z1x44YUxZ86cWLZsWezevTsiIoqLi2PkyJExderUGDZsWIvqXnzxxTF27NiYM2dOvPHGG7Fz586oqKiIoqKiGDx4cFx44YUxbty4SKVSWdccMWJE3HPPPTFv3rx45ZVXYuvWrbF///7o1q1b9O3bNy644IK46KKLIj8/v0W9AgAAAAAAJEm7O2aQ5HLMIB9kjhIBIMJRIgD4bADAe3w24IOutY8Z7NBqlQAAAAAAAKCVCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYuW2dQMcv6qqqnj55ZfjpZdeik2bNsXevXujoKAgevfuHePHj48pU6ZEYWFhW7cJAAAAAABw3IRZ7dTmzZvjgQceiPXr12fcLysri7Kysli5cmU89dRT8fWvfz3OPffctmkSAAAAAADgfXLMYDu0a9euuO2229JBViqVipEjR8ZHPvKROO+88yIvLy8iIvbu3Rt33313LFmypA27BQAAAAAAOH52ZrVDM2bMiD179kRERK9eveKGG26IQYMGpb++b9++eOCBB2Lx4sVRXV0d9913Xzz44INRUFDQRh0DAAAAAAAcHzuz2pk333wzli9fHhERubm58Z3vfCcjyIqIKCwsjBtuuCFKSkoiIuLAgQPx5JNP/rVbBQAAAAAAeN+EWe3MM888k76+6KKLYuDAgQ3Oy8/PjyuvvDI9fv7556O6uvqE9wcAAAAAANCahFntSEVFRcb7rz7ykY80OX/ChAmRn58fEe/tzjq6owsAAAAAAKC9EGa1IytWrIgjR45ERESnTp1i6NChTc7Py8uLESNGpMd1gzAAAAAAAID2QJjVjmzevDl9PXDgwMjJyWl2zeDBg9PX77777gnpCwAAAAAA4ETJbesGyN6WLVvS17169cpqTc+ePRtcn61du3Y1O6eoqCgdrHXoIB8FAD64/F0IAACI8NkAWpswqx3Zv39/+rp79+5ZrSkqKkpfHzhwoMXP/PrXv97snP/zf/5PRETk5OREnz59WvwMOBnMqipu6xYASIBeuXlt3QIAbcxnAwAifDaA1ibMakcqKirS13l52f2XYd15dde3plQqdULqQnviLygAAECEzwYAACeCMKsdOXLkSPo6Nze7X13Hjh3T15WVlS1+5sMPP9zsHFtmAT7Yqquro6ysLCIyj54FAAA+WHw2AOBEEWa1I3WDqaqqqqzW1A3Ast3NVVePHj1avAaAD5aysrL0sbQPP/yw/+0AAIAPKJ8NADhRbKlpR/Lz89PX2e6yqjuv7noAAAAAAID2QJjVjnTr1i19vXfv3qzWHN3aHRHRtWvX1m4JAAAAAADghBJmtSP9+vVLX+/YsSOrNTt37mxwPQAAAAAAQHsgzGpH+vfvn77euHFjVFdXN7tm3bp16esBAwackL4AAAAAAABOFGFWO3L66adHx44dIyLi8OHDsWbNmibnHzlyJFatWpUejx49+oT2BwAAAAAA0NqEWe1Ifn5+RiA1d+7cJucvWLAgDh06FBHvvS/rzDPPPJHtAQAAAAAAtDphVjtz6aWXpq/nzZsXmzZtanDe4cOHY9asWenxRz/60cjJyTnh/QEAAAAAALSmVG1tbW1bN0HL3HrrrbF8+fKIiOjVq1fceOONcdppp6W/vn///njggQfi7bffjoj3dmU9+OCDUVBQ0Cb9AgAAAAAAHC9hVju0a9euuPnmm2PPnj0REZFKpWLkyJFRUlIS+/bti8WLF8fhw4cjIiInJyduvvnmGDNmTFu2DAAAAAAAcFyEWe3U5s2b44EHHoj169c3OqewsDCuvvrqOPfcc/96jQEAAAAAALQiYVY7VlVVFS+99FK89NJLsWnTpti7d28UFBRE7969Y8KECTFlypQoLCxs6zYBAAAAAACOmzALAAAAAACAxOrQ1g0AAAAAAABAY4RZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkVm5bNwAAJF9NTU0sX748lixZEps3b47NmzfHgQMHoqKiIiorKyMvLy/y8/Oja9eu0b9//+jfv3+MHj06zjzzzOjQwb+dAQAAAOD4pWpra2vbugkAIJkOHjwY//f//t947rnn4sCBAy1e37Vr1/jYxz4Wn/70p6NLly4noEMAAKA9Kisri6qqqoiI6NmzZxt3A0DSCbMAgAYtXbo07rvvvuMKsY7VrVu3uP7662PUqFGt0BkAANDe3XjjjbFhw4ZIpVLx29/+tq3bASDhHDMIANSzaNGiuOeee9L/UjIiIj8/P0aMGBGDBw+Onj17RlFRUeTl5UVubm5UVVVFZWVllJWVxc6dO2PdunWxcuXKqKioiIiI/fv3xx133BE33nhjnH322W30XQEAAEnj39kDkA1hFgCQYf/+/fGTn/wkHWT17t07rrrqqpgwYUJ07Ngx6zpVVVXx6quvxmOPPRbbtm2L6urqeOihh+L++++Prl27nqj2AQAAADjJeCM7AJBh7ty5sW/fvoiIGDNmTNxzzz0xefLkFgVZERG5ubkxefLkuPvuu2PMmDEREbFv376YO3dua7cMAAAAwElMmAUAZHjttdciIiIvLy++9a1vRadOnd5Xvby8vLjuuusiLy8vIiIWLFjwvnsEAAAA4IPDMYMAQIbS0tKIeG9XVmsdB9itW7cYM2ZMvPHGG7F9+/ZWqQkAAJx406dPPyF1t23bdkLqAnByEmYBABkOHDgQERGFhYWtWvdovfLy8latCwAAnDjLli1r6xYAwDGDAECmoqKiiIhW30F1tN7R+gAAAACQDTuzAIAMAwYMiJ07d8by5ctj48aNMXDgwPddc+PGjel/0TlgwID3XQ8AAPjryMnJierq6oiI+MQnPhEFBQWtUve5556LvXv3tkotAE5+wiwAIMOkSZPiL3/5S9TW1sYPf/jDuOmmm95XAPXuu+/G3XffnVEfAABoH0477bRYu3ZtREScffbZcfbZZ7dK3YULFwqzAMiaYwYBgAwTJ06M0047LSIiduzYEd/5znfi0UcfjVWrVkVNTU1WNWpqamL16tXxs5/9LG666aYoLS2NiIhBgwYJswAAoB0ZOnRo+nrNmjVt2AkAH2R2ZgEAGXJzc+O6666L2267LcrKyqKqqiqef/75eP755yM/Pz8GDhwYPXv2jO7du0deXl7k5uZGVVVVVFZWxt69e2Pnzp2xcePGqKioyKhbVFQU1113XeTk5LTRdwYAALTUkCFD0tfCLADaijALAKinf//+ceedd8YDDzwQ77zzTvp+RUVFrFy5MlauXNmiemeccUZcd911UVxc3NqtAgAAJ9CwYcPS18IsANqKMAsAaFBxcXFMnz493nzzzXj22Wdj8eLFUVVVlfX63NzcGDNmTFxyySVx7rnnnsBOAQCAE2XAgAGRl5cXlZWVUVZWFrt27YoePXq877qnnHJKlJeXt0KHAHwQpGpra2vbugkAIPmO7sp69913Y8uWLXHgwIGoqKiII0eORMeOHSM/Pz+6du0a/fr1iwEDBsSIESMiPz+/rdsGAADep4ULF6aDp3POOSe6d+/exh0B8EEjzAIAAAAAACCxOrR1AwAAAAAAANAYYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAImV29YNAAAA0PZKS0vjmmuuSY+nTZsWV155ZRt21D7U1tbG6tWrY9u2bbF79+7o1KlTFBcXx5AhQ6Jnz56t9pydO3fG2rVrY/fu3XH48OEoLi6Ovn37xtChQyOVSrXacwAAIImEWQAAAJw0KioqYu3atbF69epYvXp1rFmzJnbs2JExZ9asWe/7OdXV1fHUU0/Fc889V69+REQqlYrRo0fHFVdcESNHjjzu5yxbtiwef/zxWLp0adTW1tb7eu/eveNjH/tYfOpTn4oOHRy+AgDAyUmYBQAAQLv3s5/9LJYvXx7vvvtug6FPa9q1a1fcd999sWrVqkbn1NbWxuLFi2PJkiVx+eWXx1VXXdWiZ9TW1sbvfve7eOKJJ5r8fkpLS2PmzJnx+uuvx/XXXx/FxcUteg4AALQH/tkWAAAA7d6LL74YmzZtOuFBVkVFRdx55531gqxTTz01JkyYEGPHjo1u3bql79fW1sZ//ud/xuzZs1v0nMcffzxmz56d8f1069Ytxo4dG+PHj48BAwZkzF+xYkX8r//1v+Lw4cPH8V0BAECy2ZkFAADASaukpCR2794dR44caZV6jzzySGzcuDE97tGjR3zzm9+MM888M32vsrIynnrqqZg1a1Y6jPrd734Xw4YNi7POOqvZZ/zlL3+Jxx9/PD1OpVJx1VVXxSc/+cnIy8tL31+2bFnMmDEjdu/eHRER69evj0cffTTj3WcAAHAysDMLAACAk0JRUVGcd955ceWVV8bNN98cP//5z+PBBx+MoqKiVqm/Zs2aePnll9PjgoKCmD59ekaQFRGRl5cXV1xxRfzd3/1d+l5tbW3MnDmz2WccnVd3R9Z//+//PS6//PKMICsiYuTIkXHbbbdFly5d0vf+/Oc/x/r161v6rQEAQKLZmQUAAEC7d//998cpp5xyQp/x2GOPZYy/8IUvRO/evRudf9lll8Urr7ySPpJw3bp1sXDhwhg3blyjaxYsWBAbNmxIj4cPHx6f+MQnGp3fu3fv+MIXvhA///nPI+K9MOyxxx6LG264IavvCQAA2gM7swAAAGj3TnSQdeDAgXjrrbfS44KCgpgyZUqTa1KpVPy3//bfMu79+c9/bnLNiy++mDG+7LLLIpVKNbnmIx/5SBQUFKTHb775Zhw8eLDJNQAA0J7YmQUAAJw0tmzZEuvXr4+ysrKoqKiIDh06RH5+fvTs2TP69OkT/fv3bzYYaMqePXti1apVsWvXrjh8+HAUFxfHyJEjo2fPnk2u27dvXyxfvjxKS0ujuro6unfvHmeccUb07dv3uHuJiKipqYk1a9bEli1bYu/evRERUVhYGP369Ythw4ZFhw7J/feLVVVVsXLlyigtLY19+/ZFKpWK7t27x8CBA2PQoEFt3V49f/nLX6K6ujo9njBhQr1j/xoybty46NSpUxw+fDgiIt56662oqqqK3Nz6H8ePHDkSb7/9dnrcqVOnJndxHZWXlxfjx4+PF154ISIiqqurY9GiRTFp0qRm1wIAQHsgzAIAANq1qqqq+MMf/hDPPvtsbN++vcm5Xbp0idGjR8cll1wSZ511Vr2vz5o1Kx5//PH0+Mc//nH07t07NmzYEL/97W9j0aJFUVNTk7EmlUrFBRdcEP/jf/yP6N69e8bXdu7cGTNnzoxXX301Iwg5atSoUfHlL385+vfv35JvOcrLy2P27Nkxd+7c2L9/f4NzunXrFh/+8Idj2rRp0bVr1xbVb4l58+bFI488kv7+OnXqFNdff32ce+65Dc7fsmVLPPbYY/HGG29ERUVFg3OKi4vjk5/8ZHz84x9vMPRpC3VDpoio956sxuTl5cXQoUNj2bJlERFx6NChWLVqVYPrV61alfEzGTZsWHTs2DGr55x55pnpMOtov8IsAABOFsn4VAAAAHAc9u3bF3fccUesW7cuq/kHDx6M1157LWpqahoMsxry6quvxoMPPhhHjhxp8Ou1tbXx8ssvx+rVq+O2226L4uLiiIh455134oc//GEcOHCg0dpLly6NW265JW699dasdyMtW7Ys7r333kZDrKP2798fTz/9dMybNy++/e1vx5gxY7Kq3xKzZ8+O3/72t+lx9+7d4zvf+U4MGzas3tza2tqYNWtW/Nd//VeDwV5du3fvjl/96lfxwgsvxL/8y780u/Ptr2HTpk0Z44a+x8YMHz48HWYdrdVQmPV+n1HXu+++m/VaAABIuuSeOQEAANCE2trauOeee+oFWd27d48xY8bExIkTY/LkyXHuuedG//79Iycnp8XPWLFiRcyYMSMdZPXv3z/Gjx8f559/fpx66qkZc0tLS+PBBx+MiPeChDvvvDMdZPXq1SvOO++8mDhxYgwdOjTjqMPy8vK4//77o6qqqtl+3n777bjjjjvqBVlH+xo/fny9vsrLy+POO++MN998s8Xff2Nqamri0UcfzQiy+vTpE7fffnujQdZDDz0U//mf/5kRZOXl5cXpp58e559/fpx//vkxePDgjJ/Npk2b4nvf+16UlZW1Wu/Ha8uWLenrVCoVvXv3znrtsXPr1mrqfklJSdbP6NWrV1bPAACA9sjOLAAAoF1atGhRvPPOO+lxnz594itf+UqMHj26wfdiVVRUxOLFi+Oll16qd1RgY37xi19EVVVVDB8+PL7yla/U2z21dOnSuO+++9Lh0tKlS+P111+P3/3ud3Ho0KHo379/fPnLX45Ro0ZlrFu/fn3cc889UVpaGhERW7dujT/96U9x6aWXNtrL3r176+0QGzJkSHz1q1+NIUOG1Kv/05/+NNasWRMR7x3F+OMf/zjuueee9M6x43X48OH40Y9+FG+88Ub63rBhw+Kmm26KwsLCBtc8+eSTMX/+/PS4oKAgvvCFL8SUKVPqvXeqtLQ0fvnLX8brr78eERG7du2Khx56KG6++eb39b6z92Pfvn1x6NCh9LiwsDDr4/8iInr06JEx3rZtW4Pzjj0m89h1TcnLy4tu3bql/yyWl5fH/v37o1u3blnXAACApLIzCwAAaJfqhik5OTlxyy23xJgxYxoNPPLz82PcuHHxrW99K6655pqsnlFeXh6jRo1q9BjAUaNG1av10EMPxYYNG+LUU0+N22+/vV6QFRExaNCg+Od//ueMXufNm9dkL7/5zW9i79696fGIESNi+vTp9YKso/WnT58eZ5xxRvregQMH4te//nWTz2jOvn37Yvr06Rk/+3PPPTduvfXWRoOsTZs2xe9+97v0uEePHnHXXXfFJZdcUi/IinhvF9MNN9wQU6ZMSd976623YtGiRe+r9/fj4MGDGePGvtfGHDu/bjB2Ip9zbD0AAGivhFkAAEC7tHPnzvT1oEGDWnTsW0MhSmPzrr322ibnn3POOdG/f//0uLy8PFKpVFx77bXRtWvXRtcNGjQo471da9asiYqKigbn7t+/P/785z9n9PXNb34zOnXq1GTvx8555ZVXYs+ePY2uacq2bdvilltuidWrV6fvXXzxxXHjjTc22ceTTz6ZPlowlUrF9ddf3+zvKpVKxZe//OWMnUlPP/30cfXdGo79vbRkV1ZE/T9vjf2e/1rPAQCA9kaYBQAAtHv79u07IXUnTpyY1bF8x+6+GjVqVIM7uY41evTo9HVtbW1s3LixwXkLFizIOF5wypQpWYV3PXv2jIsvvjg9rq6ujpdffrnZdcdavXp13HLLLRnH41155ZXxj//4j9GhQ+MfK8vLy+Oll15Kj88555wYMWJEVs/My8vL6H3p0qVx+PDhFvfeGo59bktDpmPnNxYyHfucbEPXxua31c8LAABamzALAABol/r165e+3rFjR/zxj39s9WfU3TnVlD59+rTKusZCuRUrVmSMJ02alFX9iIjJkyc3Was5b7zxRkyfPj3dW05OTnzta1+LadOmNbt2xYoV6V1ZERHnn39+i5595plnpq+rq6tj1apVLVp/orT03V1t9a6v2traNnkuAAC0tty2bgAAAOB4TJo0KX7/+9+nx7/4xS9i4cKF8ZGPfCTOPvvsJo/4y1bd4wOb0rlz54xx3aCtJesae5fS2rVr09cdOnSIoUOHZlU/ImLw4MHRsWPH9M6udevWZb32+eefj5/97GdRU1MTERGdOnWKb3/723HOOedktf6dd97JGHfr1i1KS0uzfv7R5x61Y8eOrNe2pmOPUaysrGzR+mPn5+fnt+lzAACgvRFmAQAA7dKwYcPikksuiWeffTZ9b/HixbF48eJIpVIxcODAOP3002PkyJExatSo6N69e4uf0aVLl6zm5eTktMq6uruY6qq7Y6u4uLhFx8/l5ORE7969Y/PmzfVqNWX+/PkZwVP37t3jpptualGQtnv37ozxXXfdlfXahhw4cOB9rT9ex4ZCdY98zMbxhlktfc6x84VZAACcLIRZAABAu/UP//APUVxcHE888UTG+4Fqa2tjw4YNsWHDhnj22WcjlUrFyJEj49JLL40JEyZkfezb8R4P19rHyh08eDB9fexurmzUDdcOHToU1dXV9YK0Yx27g2rq1KktCrIiWj98auxdUyfaseFkS9/Rduz8xn6Hxz5n//797+s52YaqAACQdMIsAACg3UqlUnH55ZfH1KlTY968ebFw4cJYs2ZNvR1OtbW1sXTp0li6dGmceeaZ8a1vfStOOeWUNuq6fRg1alSsWrUqvavoiSeeiIKCgvj0pz+ddY3Gdpodr7Z6B1RhYWF07tw5fQzkvn37oqqqKnJzs/tIvWvXrozxse9KO6qkpCRjvHPnzqx7PHLkSEaYVVBQEN26dct6PQAAJJkwCwAAaPeKioriM5/5THzmM5+JioqKWL16dSxfvjyWLl0aK1asyAhVli9fHv/2b/8W//Zv/xYdO3Zsw66z16VLl9i7d29ENP5eraYcu7OruV1ZERFnnnlmXHHFFXHXXXeld739+te/jsrKypg2bVpWzy0oKMgY33fffTFgwIAWdJ4c/fr1izVr1kTEe6FaaWlp1u9GO3aXW2Prjn1HW0veL5btMwAAoD3q0NYNAAAAtKb8/PwYPXp0fP7zn4/vf//78dOf/jT+5m/+JuM9Uxs2bIgXXnihDbtsmcLCwvT17t27672DqSnV1dUZQUfdWs0ZPXp0fPe73804Fm/WrFnxm9/8Jqv1x76nrKXH5iXJqaeemjFetWpV1mtXr16dMW4s0Hs/zzh27rHBGAAAtGfCLAAA4KRWWFgYl19+efzjP/5jxv033nijjTpquSFDhqSva2pqYu3atVmvXb9+fRw5ciQ9Hjx4cIuefcYZZ8T3vve9jF1WTzzxRPzqV79qdu3w4cMzxi0JZ5JmzJgxGePly5dnta6ysjIjzOrcuXOMGDGiwbnDhw+P/Pz89Hj16tUZv7umvPPOOxnjsWPHZrUOAADaA2EWAADwgTBx4sSMYwVbcoRbWzv99NMzxi+//HLWa1988cWMcWNBSlOGDRsWt956a8Y7mP7f//t/8fOf/7zJ91iNHj06UqlUevzKK6+0+NlJcc4552Qcz7hgwYKsdsgtXLgwfUxjxHshU2Pv2urYsWOcddZZ6fHhw4dj4cKFzT6jsrIyFixYkB7n5OTEOeec0+w6AABoL4RZAADAB0JOTk506tQpPW4sUEii8ePHZwRxL7zwQuzatavZdbt3744//elP6XFOTk5MnDjxuHoYNGhQfP/734+ioqL0vWeeeSZ++tOfRk1NTYNrioqKYty4cenxmjVr2m2g1bVr14zdTuXl5TF37twm19TW1sbTTz+dce/DH/5wk2smT56cMf7973/fZGAY8d6fh/Ly8vT43HPPjS5dujS5BgAA2hNhFgAA0C49++yzsW/fvqznL1q0KA4cOJAe9+vX70S0dUIUFhbGpEmT0uPDhw/HjBkzmtwZVFlZGTNmzIiKior0vQkTJkRxcfFx93HqqafG97///Ywac+bMiZ/85CeNBlrTpk3L2J318MMPx7Jly1r03D179sSbb755fE23os9//vMZ49/85jexY8eORuc//fTTGUcrDh48OD70oQ81+YwJEybEwIED0+NVq1bFH/7wh0bnl5aWZrzDLJVK1esTAADaO2EWAADQLj355JPx9a9/PWbMmBGvvfZaHDp0qMF51dXVMW/evHjggQcy7je3QyZpvvjFL0ZhYWF6vHz58pg+fXqsX7++3twNGzbE9OnTM0KjgoKC+Pu///v33Ue/fv1i+vTp0atXr/S9+fPnxwMPPBDV1dX15g8aNCj+5m/+Jj2uqKiI2267LX7xi1/Etm3bGn1OeXl5vPzyy3H//ffHN77xjZg/f36TfVVUVERpaWmD/zm2r8bm1Q3+GjJ06NCMnW3l5eXxr//6r/Xen1VZWRmzZ8/OeK9YKpWKv/3bv80I9hqSSqXiS1/6Usa8//iP/4gnnniiXni5bNmyuPXWW+PgwYPpe5MnT45BgwY1+QwAAGhv2s+5GgAAAMc4cuRIvPjii/Hiiy9GKpWKvn37Ru/evaOgoCAiIsrKymLdunUZ/2d/RMS4ceOa3SGTNEVFRXHNNdfE3XffHUeOHImI93bt3HjjjXHqqadG3759I5VKxdatW2Pjxo0Za3NycuIb3/jG+9qVVVdJSUlMnz49pk+fHtu3b4+I996HdeTIkfj2t79d7wjHz33uc7Fjx454/vnnIyKipqYm/vjHP8Yf//jH6N27d/Tv3z8KCgqiqqoqDh48GFu3bm1yx1NDXn311fjJT36S1dxrrrmmwftXX311TJkypcm1X/va1+Ldd99N/4x37doVt956a5x66qnRv3//qKioiDVr1sT+/fsz1l111VUZ78Nqytlnnx3Tpk2Lxx57LCLeO67wN7/5Tfz+97+PoUOHRl5eXmzZsiU2bdqUsW7QoEHxla98JatnAABAeyLMAgAATgq1tbWxZcuW2LJlS5PzJk6cGN/4xjf+Sl21rrPPPjv+5V/+Je67776MIxM3bdpUL9g4qqCgIK6//vqsg5Rs9ezZM6ZPnx633357bN68OSIiXn/99bj77rvjn/7pnyIvLy9j/le/+tUYOHBg/PrXv87YYXR0V1RzjgaUbS0/Pz9uuummuP/++zOOEGzsd5BKpeJzn/tcXH755S16zrRp06Kqqir+67/+K/3OrH379sWiRYsanH/66afH9ddfH/n5+S16DgAAtAfCLAAAoF264YYb4rXXXou33nor1q5d2+ARd0elUqkYPXp0XHbZZXHuuef+FbtsfaNHj44ZM2bE7NmzY968efV2AB3VtWvX+PCHPxxXXHFFxvGEram4uDi+//3vx+23357eqbRo0aK466674sYbb4xOnTplzP/4xz8e559/fjz11FPx0ksvxe7du5us37dv3xg7dmxMnjw5RowYcUK+h+PRs2fPuO222+Kpp56K5557rsFdZKlUKkaNGhXTpk2LkSNHtvgZqVQqvvCFL8TYsWPjsccei2XLlqVDrbp69eoVH/vYx+LTn/50dOjgTQIAAJycUrUN/W0YAACgHamsrIxNmzbFtm3boqysLCoqKiInJye6dOkSffr0iSFDhkTXrl3bus1WV1NTE6tXr44tW7bEvn37IiKisLAw+vbtG8OHD098uLF58+bYsGFD7Nu3Lw4ePBi5ublRUFAQJSUlMWDAgCgqKmrrFptVW1sbq1atim3btsWePXsiLy8viouLY+jQodGzZ89We87OnTtjzZo1sXv37qisrIxTTjkl+vTpE8OHD2/2PVwAANDeCbMAAAAAAABIrGT/Mz0AAAAAAAA+0IRZAAAAAAAAJJYwCwAAAAAAgMQSZgEAAAAAAJBYwiwAAAAAAAASS5gFAAAAAABAYgmzAAAAAAAASCxhFgAAAAAAAIklzAIAAAAAACCxhFkAAAAAAAAkljALAAAAAACAxBJmAQAAAAAAkFjCLAAAAAAAABJLmAUAAAAAAEBiCbMAAAAAAABILGEWAAAAAAAAiSXMAgAAAAAAILGEWQAAAAAAACSWMAsAAAAAAIDEEmYBAAAAAACQWMIsAAAAAAAAEkuYBQAAAAAAQGIJswAAAAAAAEgsYRYAAAAAAACJJcwCAAAAAAAgsYRZAAAAAAAAJNb/ByvE1DXbzQlkAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 477, "width": 857 } }, "output_type": "display_data" } ], "source": [ "smoke = cdc['smoke100'].value_counts()\n", "smoke.plot(kind = 'bar', color = 'turquoise', title = 'Bar plot of smoke100')\n", "plt.show(); " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here, we've made a new object, called `smoke` (the contents of which we can see by typing `smoke` into the console) and then used it in as the input for `plot`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "

Exercise 2

\n", "Create a numerical summary for height and age, and compute the interquartile range for each. Compute the relative frequency distribution for gender and exerany. How many males are in the sample? What proportion of the sample reports being in excellent health?\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `value_counts()` with `groupby` command can be used to tabulate any number of variables that you provide. For example, to examine which participants have smoked across each gender, we could use the following." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
smoke10001
gender
f60124419
m45475022
\n", "
" ], "text/plain": [ "smoke100 0 1\n", "gender \n", "f 6012 4419\n", "m 4547 5022" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc.groupby('gender')['smoke100'].value_counts().unstack() \n", "# By doing unstack we are transforming the last level of the index to the columns. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here, we see column labels of 0 and 1. Recall that 1 indicates a respondent has smoked at least 100 cigarettes. The rows refer to gender. To create a mosaic plot of this table, we would enter the following command." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABl4AAAOUCAYAAADD/E5iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AAB9rUlEQVR4nOzdd5hU1f0/8M8udeldQEVQFBCxYENFmg3F2Cv2mKKxxZiYYr6aZjQxMZZYYlfURMTeYhcRsSFWEFABFZDel879/WHcn7Ozy84sd3cpr9fzzANz5p57zszeuTNz3/eeU5AkSRIAAAAAAACss8Ka7gAAAAAAAMDGQvACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwBAlldeeSUKCgoybpMnT67pbm3w+vXrl/Gann766TXdJXKwePHiuPHGG+Poo4+ObbbZJpo1axaFhYUZf8trrrmmprtJFfLehQ2X9y9r87vf/S5j++jYsWNNdwmAjUTtmu4AAACsrx566KH44Q9/GPPmzavprsAmZc2aNfHee+/Fhx9+GDNnzowVK1ZEkyZNYuutt4499tgjWrduXWVtL1y4MN58882YOHFizJ8/P2rVqhWtWrWK7bffPnbbbbeoU6dOlbUNAMDGQfACQIVeeeWV6N+/f5mPtWjRIqZPnx5169ZdpzauueaauPDCC8t8rG/fvvHKK6+s0/oB8jV06NA44YQTIkmSmu4KVKtFixbFu+++G++8807J7bPPPst6L1TFe2P27Nlx1VVXxZ133hmzZs0qc5nCwsLo06dPXHTRRXHooYem1vbIkSPjL3/5S/z3v/+NlStXlrlMkyZNYvDgwfHLX/7SmfEAAJRL8ALAOpk7d248/vjjccwxx6zTeu68886UegSsq7LC1kmTJm1SBxnnz58fP/rRj7IOLLdp0yZ23HHHaNKkSRQUFJSUb7vtttXdRUjNggUL4q677ioJWSZMmBBr1qyp9n7keoXZmjVr4pVXXolXXnklDjvssLj77rujWbNmlW532bJlcf7558ett95a4bILFy6Mm2++Oe6+++646qqr4pxzzql0uwAAbLwELwCss7vuumudgpd33303PvjggxR7BLBu7rnnnliwYEFG2bXXXhvnnHNO1KpVq4Z6BVVj0qRJ8dOf/rRG+3DDDTfEueeem3e9xx9/PPbZZ5945ZVXKjX8WHFxcRxyyCExfPjwvOotXbo0zj333JgyZUr89a9/zbtdAAA2boIXANbZf//73/j666+jbdu2larvapf1T79+/QyvxCbtiSeeyLg/aNCgOP/882uoN7Bxe+qpp+K8887LKu/SpUv8+Mc/jh122CGaNm0akydPjieeeCIeeOCBjKHAxo4dG0ceeWS88sorUbt2fj9xzzjjjKzQpbCwMA477LA49thjY+utt47i4uIYP3583HbbbfHuu+9mLHvVVVdFp06d4uyzz86rXQAANm6FNd0BADZM7dq1K/n/6tWrY8iQIZVaz/Lly+P+++8vuV9QUFDpAAcgLaNHj864f8ghh9RQT6DmtG7dOgYOHBi//e1vo0uXLlXSxty5c+P000/PCvt/9atfxbhx4+LCCy+MAw44IPbYY4847rjjYsiQIfH+++/HVlttlbH8yJEj48orr8yr7SFDhsTQoUMzylq0aBGvvvpqPPLIIzF48ODo1atXDBgwIM4+++wYPXp0XHfddVFYmPkz+sILL4xPP/00r7YBANi4CV4AqJRTTjkl4/5dd91VqfU8/vjjMXfu3JL7AwYMiM0333xdugawToqLi7PmmNiU5rdh09SyZcs48MAD4ze/+U089NBDMWXKlJg5c2Y888wz8cc//rHKTor44x//GLNnz84ou/DCC+OKK67ImEfpu7p16xavvvpqNG3aNKP8z3/+c3z99dc5tbts2bK4+OKLM8pq164dzz33XOyzzz7l1jvvvPPi6quvzihbvnx51roAANi0CV4AqJR99903OnfuXHJ/7Nix8dZbb+W9ntLDjJ1xxhnr3DeAdbFw4cKssgYNGtRAT6B67LjjjjF79ux49tln4/LLL4+jjjoqOnToUOXtzpkzJ2655ZaMss6dO8fll19eYd0OHTrE3/72t4yypUuXxrXXXptT23fddVdWSPPLX/4ydt111wrrnn/++dG7d++MskcffTQ++eSTnNoGAGDjJ3gBoNJOO+20jPv5XvUybdq0eO6550ruN2nSJI466qg0ugZQacuWLavpLkC1Kj10VnX597//HcXFxRllF154YRQVFeVU//TTT8+6Eufuu++O1atXV1j3tttuy7hfv379+NnPfpZTuwUFBfHLX/4yoyxJkrjjjjtyqg8AwMYvv5kHAeA7TjvttLjssstizZo1ERHxn//8J/7xj39EvXr1cqo/ZMiQjIMjxx9/fM4HW/KxbNmyeOONN2Lq1Kkxc+bMWLFiRbRu3To222yz2GOPPaJ169aptbV48eL48MMPY/z48TF//vxYvHhx1K1bNxo2bBibbbZZdOrUKbp06RKNGjVap3Zmz54d48aNi08//TTmz58fxcXF0bhx42jevHl07Ngxdt9996hfv35Kzyody5Yti7feeiumTp0as2fPjoULF0aDBg2iRYsW0aVLl+jevXs0bty4prtZ4tNPP43Ro0fHV199FStWrIjNNtssOnToEL17915vXttp06bF6NGjY8aMGTF79uyoX79+tGnTJjp06BB77rln1KlTp6a7WGUWLVoUb7zxRkyfPj1mzpwZSZJEmzZtol27dtGrV69o0qRJTXcxNdW1XyltxYoV8eabb8a4ceNizpw5Ubt27Wjfvn3stddesfXWW+e0jpUrV8bbb78dH3/8ccyZMyfq1q0bbdu2jb333jv14dtWrVoVb7/9dkyePDlmzZoVS5YsiVatWkWbNm2iZ8+eseWWW6baXnVbs2ZNvPfee/H555/HrFmzYt68edGsWbNo3bp17LDDDtGtW7ea7mLehg0blnG/qKgoTj755Jzr165dO84444y44oorSsqmT58eI0eOjD59+pRbb/LkyVnzOB111FHRokWLnNs++OCDY4sttoivvvqqpGzYsGHx17/+Ned1pCFJkvjiiy/ik08+iSlTpsSCBQti5cqV0axZs2jRokV069YtevToUS3h2vjx4+Odd96JadOmxerVq6NVq1bRsWPH1D83kySJt956KyZOnBjTpk2LiIg2bdpEjx49omfPnuUOUVfTlixZEiNGjIipU6fGjBkzol69erHFFlvErrvumnEVeVVZtmxZvPnmmzFt2rSYOXNmFBcXl+wj99hjj4z5G6vC119/HW+88UZMmjQpiouLo0WLFtGuXbvYd999o2XLlqm2NWHChHj//fdj6tSpsXTp0mjevHl06dIl9tprr2r5DvfZZ5/FRx99FLNmzcr4ftapU6fYfffdo3btqjsUt2rVqnj33Xdj7NixJb97mjVrFv3794/u3btXWbsAlCEBgAq8/PLLSURk3J544okkSZJk//33zyj/z3/+k/N6u3btmlF35MiRSZIkya677ppR3rdv30r1+4UXXkgOOeSQpKioKKv/394KCgqS3XffPbnhhhuSlStXVqqdJEmSYcOGJQcddFBSq1atctv69larVq1kp512Sn72s58lo0aNymn9y5YtSx5++OHkBz/4QbLNNttU2EbdunWT/v37J48//niyZs2avJ9PWX/zSZMm5b2eVatWJXfddVcyYMCApF69emvtc+3atZN99tknueqqq5JZs2bl3Vau7rzzzqy2v2vIkCFJjx49yu1n48aNk9NOOy354osv8m67b9++Ges67bTT8l5HcXFx8te//jXZcccd1/p6Nm7cODnyyCOTN954I6f1lvW65HurDkOHDk369euX1KlTZ63bUp8+fZL77rsvp+2/rO09n9udd95ZJc+1KvcrW221VUb9yy67rOSxmTNnJueff37SpEmTctvbd99917ptzZo1K7nooouSFi1alLuOPfbYI3nttdfW+XV65513kmOPPTZp2rTpWl+jHXbYIbn88suTJUuW5N3Gur5333///WTzzTfPWEdhYWHyj3/8I6fnN3jw4KRVq1ZrfX5bbLFFctFFFyUzZ87M+/nlovRrsK7v+cWLF2e9jwcMGJD3eoYPH57Vr0suuWStdW655ZasOvfcc0/ebZ9xxhlZ65k4cWLe68nX7Nmzk1tuuSU55phjKtwuIiJp2rRpcuKJJyZjxoypVHunnXZaxvq++71szZo1yR133JF069at3PaLiooq/bn5XUuWLEl++9vfZr2Xvntr27Zt8sc//jEpLi4uqZfGZ++6GDduXHLssceu9ftojx49kiFDhmTUS+OzZs2aNcmDDz6YHHTQQUn9+vXXup306NEjue6665Lly5fn1UZF36uGDx+e7LfffklBQUGZ7RYWFib9+/fP+Tvx2txxxx3JzjvvXO5zbNCgQfLDH/4w+fLLL0vqXHbZZRnLbLXVVpVqe+rUqcmFF15Y4ff0pk2bJieccELy4Ycf5t3G2j67p06dmpx77rlJs2bNymz3u8sCUD0ELwBUaG3By3333ZdRPnDgwJzW+frrr2fU22677UoeW9fgZdq0aclBBx1U4YGI0rdtt902eeWVV/Jqa8aMGUm/fv3ybuvbW61atSps47HHHlvrAdCKbr169Uq++uqrvJ5XGsHL448/nnTu3LlSfa5bt25ebeWjvAMECxYsSA4++OCc+9ioUaPktttuy6vtdT3489hjjyVbbLFF3q/nsccem8ybNy/v1yXfW1UaO3Zssscee+Tdp1133TX54IMP1rru9S14qY79SnkHb1544YWkZcuWObdzww03ZK37hRdeSNq0aZPTOgoKCnIKH8qyYMGCZPDgweUezCvv1q5du2TYsGF5tbUu791nn302ady4cUb9oqKi5KGHHlprvenTpyfHHHNM3s+vUaNGyU033ZTX88tF2sFLWYHJpZdemvd6li5dmtStWzdjPfvtt99a65QVmHz++ed5t3377bdnraf0wfO0XXLJJUnt2rUrvX8488wzk2XLluXVZnnBy8yZM8vcLta2bT7//POVet6vv/560qlTp5zb2nbbbZNx48YlSVKzwcvll1+etX2u7TZw4MBkwYIFSZKse/Dy5ptvJrvttlve28hWW22VVyhe3veqlStXJuedd15ebf/5z3/O6zl+a9q0aUn//v1zbqdJkybJI488kiTJugcvK1asSH7961+vNVgr61ZYWJicddZZeQVd5X12P/jggxX+VhC8AFQ/c7wAsE6OPPLIaNq0acn9559/vmTYh7W58847M+6fccYZqfRn3Lhx0atXr3j22Wfzrjtx4sQ48MAD44EHHshp+blz58a+++4br7zySt5t5eOLL74oc7LvXL3xxhux6667xvjx41PsVfmSJIk//OEPcfjhh8enn35aqXWsWLEi5V6t3bJly2LgwIHxzDPP5Fxn8eLF8YMf/CCuv/76KuzZ//fPf/4zjjzyyIxhbXL14IMPRu/evStVd30wcuTI2GeffeKtt97Ku+7o0aOr5X2alurar5Tlueeei4MPPjjmzJmT0/KrV6+Oc889Nx588MGSsqeeeioOOeSQmDlzZk7rSJIkLrzwwrj//vvz6uv06dOjT58+cf/990eSJHnXPfbYY+Pqq6/Oq15l3H777TFo0KBYtGhRSVmrVq3ipZdeWuucZh999FHsueeeMWzYsLyf3+LFi+Pss8+OCy+8sNL9rg7vvfdeVlkuE9uXVr9+/azhc8pa99oeb968eXTq1CnvtnfbbbcK1522Tz75JFatWlXp+rfffnv0799/neeymjlzZvTu3TuGDx+ec53FixfHoEGD8t6Xjxw5Mg488MCYNGlSznUmTpwYffr0ic8//zyvttL0i1/8Ii655JK8vtP897//jYEDB67z32fo0KHRt2/feOedd/KuO2XKlNhvv/1y/j5cltWrV8cJJ5yQ93ek3/zmN3HttdfmVWfGjBkxYMCAePnll3Ous3Dhwjj66KPjsccey6ut0ubPnx8DBw6MK664IpYuXZpX3TVr1sTNN98cBx54YMyfP7/SfbjvvvviuOOOW6ffCgBUDXO8ALBOioqK4vjjj49bbrklIr75oXXPPffEr371q3LrLF26NOPHXGFhYZxyyinr3JdZs2bFgAED4uuvv84or1WrVhx22GFxxBFHRKdOnaJevXoxderUeP755+M///lPzJs3r2TZFStWxIknnhgtWrSIAw44YK3t/fznP48JEyZklDVq1CiOOeaY2HfffWPrrbcumWdi4cKF8fXXX8fHH38cb731VgwfPjyWL1+e93Ns0KBB9O3bN3r27Bndu3ePzTbbLJo0aRKFhYWxYMGCGD9+fLz22mvx2GOPxeLFi0vqzZgxI4477rh48803q3xs61/96ldljnHfuHHjGDRoUOy///6x1VZbRcuWLaO4uDhmzZoVY8aMiZEjR8bw4cPX6YBSZf3iF7+IUaNGldzv06dPnHDCCdG1a9do0qRJTJ8+PYYPHx733ntv1vZ1/vnnxxZbbBFHHnlklfXv3nvvjfPOOy+rfLPNNovBgwdH//79o127drFkyZKYOHFiPPTQQ/Hss89mHLD9+OOPY7/99osxY8ZEgwYNstbVsWPHOProoyPim/fSq6++mvH4wQcfXGa9qjZ+/Pg48MADsybgrl+/fhx99NFx6KGHRocOHaKwsDC++OKLeOqpp2LYsGEZyy9YsCAOPvjgePvtt2OHHXbIaqN169Ylzz0iori4OCuE69OnT7nzQaU5V0lN7Fcivgl4r7nmmli5cmVERHTp0iVOPPHE6NWrV7Ru3ToWL14c77zzTtxyyy0ZIW6SJHH22WfH/vvvHzNmzIgTTzyx5CDjt+vYc889o3Xr1rFkyZIYPXp0/Otf/8oKgi+44II46KCDchrnf9myZXHggQfGRx99lPXYAQccEMccc0xst9120bhx45L37v33359xUkCSJHHRRRdFkyZN4gc/+EGlXrOK/N///V/86U9/yijbdttt45lnnoltttmm3Hrjx4+P3r17x4IFCzLKW7VqFccdd1zstdde0aFDh2jSpEnJfv+pp56KJ598smTOtYiIa665JrbYYou46KKL0n1iKSkrmK/se6lDhw4xZsyYkvtz5syJBQsWZJwY8l2fffZZau1WtO6q1KZNmxgwYED06NEjunXrFi1atIgmTZrEypUrY+7cufHxxx/Hs88+Gy+99FLGnHqjRo2K8847L2699dZKtbtq1ao46qijSvZVDRo0iOOPPz7233//6NChQxQVFcW0adPihRdeiNtuuy1jf7xixYo444wz4r333stpHrIpU6bEIYcckvGdJiKiYcOGcdxxx8UhhxwSW265ZaxcuTImT54cjz32WDz66KOxatWqmDVrVhxzzDE18tl14403xt/+9res8q233jpOOumk2GuvvaJNmzaxcOHCmDBhQjz88MPx3HPPRcQ3f5+LL7640m3/+9//jpNOOikrtO3WrVsceeSRsfvuu8dmm20W9evXjzlz5sTo0aNj2LBhGSHN8uXL45RTTomtttoqevXqlXcffvOb38RDDz0UEREFBQVxyCGHxKGHHhrbbbddNG/ePObOnRujRo2KW265Jb788suMur/+9a9j0KBBOc17s2rVqhg0aFB88sknGeXftnn00UfHNttsE0VFRTF16tR47rnnSr77r1mzJk4++eQ45phj8n5+Ed/8nhkwYEDGviciol69enHEEUdEnz59omvXrtGsWbNYtmxZfPHFF/HSSy/F/fffH0uWLClZfvjw4XHaaafFo48+mvf8RB9//HFceeWVJX/rtm3bxnHHHRf9+vWLtm3bRkFBQXz11Vfx/PPPl7s/BKAK1di1NgBsMNY21FiSJMmoUaMyHuvateta1zdkyJCsYRW+q7JDjX3ve9/L6ud2222XvPPOO+XWmTFjRnLYYYdl1WvXrt1a5xmZPXt21lAfBx54YDJ79uyc+rp48eLkvvvuS3r37l3hsjfddFNy+OGHJ0899VTOw4PMmTOnzKFUrrjiipzqV3aosWHDhpU5vMFZZ52V07wDs2fPTq655ppKj6+di7KGxPh2KJ8mTZqsdfifBQsWJCeddFJW/bZt2yZz586tsO3KDHfy+eeflzl8xOmnn14yHElZXnzxxaR9+/ZZ9X74wx9W2GZac/ysqxUrViQ9e/bM6suee+6ZTJgwodx6n332WbL33ntn1evRo0dO76FJkyZl1X355ZdTfGZlq879SunhSr59DxQWFiZ//etfk1WrVpVZb/ny5cnxxx+f9fr84Q9/SPbaa6+SdVx11VVrXcexxx5b6f3TueeeW+Z78Lnnniu3zqJFi5If/vCHWfUaNmyYjB8/vsI283nvLl++vMz9xN57713h/FXFxcVZc0zVq1cvueKKKyrcdt9///2sudNq16691s/AfKQ91Njhhx+etb6KhkQsT1nDGb3//vtlLjtv3rysZQ8//PBKP4/Sw8jtsssulV5XLr7//e8nZ599dvL222/nPIfbxx9/XPL+/O4t1zk1Sg819t3h7wYNGpRMmzat3LqTJ09Ott1226y2hw4dmlPbBx54YFbdffbZJ5k8eXK5dUaPHp3RZunh+qp6qLFJkyYljRo1yur3b37zm7UOK/XdYRoLCwuz6ucy1Ni4ceOShg0bZtRr165dybBaa/Pggw9mzZW15ZZbJosWLVprvbV9r9p2222T0aNHl1u3uLi4zH3BT37ykwr7myTfDOVWum779u3XOnTw119/nTG0bOntI9fvoN///vez2j755JMr/L47a9asMp/ztddeW2GbpT+7v3s777zzKvxbAVC9BC8AVKii4CVJkqyDPWv7MT9gwICMZf/zn/9kPF6Z4OW///1vVh87duyYTJ06tcK6K1euLPMH0AUXXFBunQceeCBj2RYtWiQLFy6ssK3KyPXASlkuuOCCjH5uvvnmycqVKyusV5kD74sWLSpzIu3KzDWQSx8rq7y5TOrWrZvTHD9r1qxJTjzxxKz6F110UYV1KxO8nHDCCVlt/ehHP8rlqSZjx44tc76OiiZYXl+Cl5tvvjmrH7vuumtO77VFixYle+65Z1b9XOYTqangpTr3K+UdvMll3qLi4uKkQ4cOGfW+O0l6LgcHlyxZkmy55ZYZ6+jWrVuF9caNG5d1kKx58+bJRx99lMvTTs4555ys55zLQfdc37vz5s0rc36eo48+Olm6dGmF7fzyl7/MqFe/fv3khRdeyOm5JUmSzJ07N+sg9/e+972c669N2sHLPvvsk7UPrqw//elPWX178cUXy1x24sSJld6nlqX0XGZbbrllpdeVi8p+JyguLk569eqV0dfjjjsup7qlg5fvbtflBazf9dFHH2XsIyIiOfjggyus99hjj2W1udtuu+V0cPmLL74od060qg5eTjnllKw2f//73+dU94MPPih3ro5c9q2lP/e23nrrjInkK/LWW29lzVXy97//fa11yvte1blz5wrD5iT5Zp6m0hPSN2vWrMK5T2bMmJHUq1cv6/Pg448/rrDN5cuXJwcccECZ/c4leHnmmWey6l1++eUV1vvWmjVrsk5AaNOmTYWfE+V9dv/qV7/KuW0Aqo85XgBIxemnn55xv/QcLt+aMmVKxhjMzZs3jyOOOGKd2y9rPOg77rgj2rdvX2Hd2rVrx5133pk1jNAdd9xR7njJpYdF6Nu3bzRu3DiPHucu32EHvuvKK6/MeF5Tp06NESNGpNGtLDfffHPMnTs3o+zcc8+Ns846K+911a5d/aOh/vznP4++fftWuFxBQUHcfPPN0bZt24zyO++8c53HZC9t6tSpMWzYsIyy7bbbLq677rqc6nfr1i2uueaarPKyytZHpZ9n3bp147777svpvdaoUaO49957s4bWu/766zOGY1qfVOd+pSxHHXVUnHnmmRUuV1RUFD/5yU8yyr4douyYY47J+jwoS4MGDeKcc87JKBs3blzMmjVrrfWuu+66rOFz/v73v2fN8VGef/zjH9GtW7eMsieeeCKVeSCmTJkS++yzT9b8PD/96U9j6NChFQ7zuGDBgrjpppsyyq688srYb7/9cu5D8+bN46677sooe/LJJ6ttjq98lB5KraioqNLrKqtueXMmlG437bbXZa6GXFT2O0FRUVHccMMNGWWPPvpopT+32rdvH7fffnvUqlWrwmW7d++eNZzTa6+9VuH8RaXfD7Vr14677747GjVqVGGbW265ZVb96jBnzpyMea8iInbffff47W9/m1P9Hj16xB//+MdKtf3yyy/Hm2++WXK/Vq1a8eCDD8YWW2yR8zrK6uvVV1+d9+dmQUFB3H///dGqVasKl61fv37W0Grz58+PDz74YK317rzzzqzhNf/yl7/E9ttvX2GbdevWjbvvvrvSn7FXXHFFxv0jjjgifvOb3+Rcv6CgIG6//faM4TVnzpwZ99xzT9596dmzZ6W3GQCqluAFgFSccsopGT++H3jggTInmbz77rszfmifeOKJUa9evXVqe+rUqfHf//43o+yQQw6J/v3757yO5s2bxyWXXJJRtmjRohg6dGiZy393rPSIyHvy4+pSv379GDhwYEbZd+cySVPpg+StWrUqc66X9VGjRo3y+sHcpEmT+PWvf51RNnfu3Hj00UdT7dc999yTNefNn/70p7zeMyeffHLssssuGWX/+c9/MsYXXx+NGjUqxo4dm1H2gx/8ILp06ZLzOjp37pwV/H3++efx0ksvpdLHtNX0fqX0PnBtDjnkkCpZR+mx8r9r5cqVMWTIkIyy7t275xT0fKtOnTpZB8zWrFkTd9xxR87rKMvo0aOjV69eGdtsYWFhXHvttfGPf/wjCgsr/tl12223ZYT9W265ZZx77rl592XvvfeOPffcs+R+kiRZcxatD0of8F+X+cfKCk7Km++orKAhzbYrO89SdejZs2dsueWWJfdXrFgR7777bqXWdcEFF+Q1Z0TpedAWLVqUNZ/Vd307H8d3nXzyyTkdVP/WoYceGvvss0/Oy6fhwQcfzNrGLr300pz2Ad/6yU9+Em3atMm77auvvjrj/vHHHx89e/bMez3nnntuxvw7U6dOrTAEKW3gwIGx++6757x8WfPkjR49eq11Su+3t9lmm5xOHvhWu3bt4vzzz895+e/2q/Q8eH/5y1/yXk/jxo2z5hh7+umn817PL3/5yxo5YQmAigleAEhF+/bt48ADDyy5v2DBgnjkkUcylkmSJOtM3HwOmJWnrLMmzzjjjLzXc/LJJ0fdunUzysq7OmTzzTfPuP/CCy/E1KlT826zOnz3IEtExT9kK2P8+PFZZ+v/8Ic/XKeziKvTUUcdFQ0bNsyrzuDBg7MmBi79Q3xdlV5fixYt4vDDD897Pd///vcz7i9fvjzeeuutdepbVSvrtazM+7qsgzBVddXXuqrJ/UqnTp3yOkDXpUuXrDPdt95669h5553XaR1ffPFFucu/++67WRNsn3766XlfATBo0KCsK9bWZZt48skno2/fvvH111+XlBUVFcVDDz2U10G90icQHH/88TldTVCWAQMGZNxPe9+UhtKhcunP33yUFUZ/exVWRe2m3XZ57a4v0vpOcNxxx+W1/E477ZRV9tVXX5W7/GuvvZZ1lcWpp56aV5sR6XzPzMfIkSMz7rds2TLrBJiK1K5dO0444YS86qxcuTLrpILBgwfntY5vNWnSJHbbbbeMsnz3IfluH61bt4527dpllK1t+5gxY0ZWcHfSSSflFXBFRJx22ml5LR+Rva/ebbfdYrvttst7PRHZ++oRI0bkddJFw4YNUxk5AICqIXgBIDWlD4qWDlmGDx8ekyZNKrnfvXv3vM6GK09ZV3Dsv//+ea+nZcuWWT80y7s6pH///hk/7hYvXhx9+vSJJ598ssqHMZowYUJcddVVcfLJJ8fOO+8cm2++eTRp0iQKCwujoKAg6/bnP/85o35FQ/lURumhdSK+OdN0Q5HPUD7fatWqVey4444ZZd8d4mNdJUmStb4+ffpU6gDhQQcdlFVWVVc+paV0/5o3b571/szFDjvskDXk4Pr63Gtyv/LdKyRyUbdu3ayz3dNYR3nDO0aU/Xc74IAD8moz4puDmqUPdr3zzjtlHpCvyI033hhHHHFExhVkrVu3jpdffjmvg2ErV66M119/PaOsMtv7t0oPLTRu3LhKr6uqlD5De8WKFZVeV1lXmZQOxstrN+22y2u3KiRJEiNGjIhLL700jjjiiOjatWu0bds2GjRoUOb3gYKCgqztrDLfCTbbbLPo2LFj3nVKK2vYt2+98cYbGffr1q0bvXv3zqvNiMp9vq+L0p/bvXr1qtTVCPk+17fffjuKi4szympyH9KrV6+82yy9jeSzfURU7m+97bbbRocOHfKqM3z48Iz7ab7Oc+fOjZkzZ+Zcf5dddlmn4BiAqiV4ASA1hx12WLRo0aLk/osvvphxtlrpeV/SOgtx4sSJGfe33nrraNasWaXWVfqM708//bTMA57t27ePk046KaPs888/j+9973vRsWPHOOecc+Lhhx+OGTNmVKofZXnxxRdjjz32iC5dusTFF18c9913X7z//vsxbdq0WLRoUc5nyM2bNy+1Pn2r9JBQderUiV133TX1dqpKPmfpr63eJ598su6d+Z/Zs2dn/a0qM2RIxDdDbjVp0iSjbG1DvKwPSr+vSw+Xlo/Sr9v6+txrYr/yrdJnGuei9DwLpa8iqcw6Sl/R8l2lt4l69erlPLdLaaW3ieLi4rWeXV1akiRx8cUXxznnnJMxRNy2224bo0aNyjuEGj9+fNZB0xNOOKHcg+cV3UrPnzNnzpy8+lMdSl8psi5zZJU1tGl5QzKWVZ5m2+s6fGou1qxZEzfffHN07Ngx+vTpE3/84x/jsccei/Hjx8eMGTPKfD3KU5nvBJXZX5Q1l8ba3u+lP0+7d+9eqVCrU6dOeQ2Jtq4mT56ccb/0CRq5yrdeWUPGtW3bttL7kNLz1OS7D0ljG8ln+4go+6qqXOT7/aL0a33zzTdX+nUu6zMsn9e6a9euefUdgOoleAEgNfXq1YsTTzyx5P6aNWvi7rvvjohvxvL+7iThtWvXjlNOOSWVdksfNMhnEtHSStdNkqTcM+7++c9/lvkj78svv4wbb7wxjj766Gjbtm1ss802cdppp8Wdd94Z06dPz7tPa9asibPOOiv233//ePvtt/OuX9rafshWVukfiW3atKmWg09pqcwBgojIupKiuLh4nc6c/q6yDoZVdtsuKCjI6mtVBHBpqsr39fr83Ktrv1JaZSYYLj3EVxrrWNuVPaX/bptttlmlx7Uva3vKZ7v4z3/+E1dddVVG2d577x2jRo2KbbbZJu/+zJ49O+86+Vgft/nSJ0jkExaUVlbd8k7AKKs8zbYre+JHrubOnRv77LNPnH322Wsdmi9XlflOUDrIz0VZQ0Dl836v7Od0RPZndVVZsmRJ1lBzrVu3rtS6cpmU/rvWt31IGttIPttHgwYNKh2w5bN9rFmzpsr3p/msv6r3NwCsGzNwAZCqM844I2644YaS+3fffXdccsklMXTo0IyzeQ8++OAyh52ojNI/UCrzY+9bZf1omzt3bjRv3jyrvEmTJjFy5Mi4+OKL45Zbbil3mJrPP/88Pv/887jnnnuisLAw+vXrFz/72c9i0KBBOfXprLPOiltvvbXMxwoLC6Nt27ax5ZZbRpMmTaJ+/fpZQw6MHTs2Y4iIqpiwu3TwsqH9EKzsNlPW9jJv3rxUtu2yfninuW3PnTu30uuqDlX5vl60aFGsXr260vNnVKXq2q+Ulu88KVW1jrWpjn19rsoKWI888sho2bJlpfpT1VekVGYYtapW+sDyihUrYv78+ZX6/CjrKrDy/hZlHdBel6vISg8LVNltIBfFxcUxYMCAeP/998t8vG7durH55pvH5ptvHg0bNoyioqKs/dzw4cMzDtJX5jtBVb/XIyLmz5+fcT/t93tVKN3niMoF0hH5P9+q3ofkO3dRVW8jNbV9zJs3r8qH/szntc53fkIAqpfgBYBU7brrrtGjR4/48MMPI+KboWFGjhyZNd9LdU92WlUaNmwYN9xwQ1x88cVx1113xbBhw+Ljjz8u90DGmjVr4qWXXoqXXnop+vfvH0OGDMmaUPu7XnjhhazQpVatWnH88cfHqaeeGnvvvXeFP+ovu+yy+MMf/pD/k4ONVJIkVRJApqWq9yusu549e8Znn32WcUXkL37xi1i1alX86le/ynt9ZQU5ffr0qfTZ8huCsuZVmDJlSqWCl7Ku/Nhqq63KXLZZs2bRuHHjWLRoUUa7lTF//vyseYnKazcNf/7zn7NCl6ZNm8aPf/zjOOqoo6Jnz54VDsfVt2/fvCdKJzdlXelb2atg861X1vJHH310pdouS2WHddzYlPU6d+vWLbbffvvU2tiY9/sAmxrBCwCpO/300+Oiiy4quf9///d/8dprr5Xcb9WqVXzve99Lrb3SV6OsbXLmipQ1rNh3560pz1ZbbRWXXXZZXHbZZTF79uwYMWJEvPbaa/Haa6/FmDFjyjx77eWXX46+ffvGqFGjyv2Rdfnll2fcr1u3bjzxxBNx4IEH5viM1j45aVpKn+Fb1lmf67OFCxdW6oduWa9tWVdHVUZZ60lz285lu65JzZs3zxhCK83n3qRJk0oPUVWdqmq/sqFaH/b13+rRo0fcdtttceCBB2ZcPfDrX/86Fi9eHH/605/y6k9ZbV900UVx2GGH5bWeDUlZQ7JNmTKlUvM0lA5eWrZsudYAZ5ttton33nsvo93KKCvw6dy5c6XWVZGlS5fGP/7xj4yyTp06xYsvvhidOnXKeT3V8Z0gDaX/fmm/36tCWdtcZfudb72y9iF33HHHOl0Jsj6rqe2jrNd54MCBcfXVV1e6fQA2XuZ4ASB1J598csZBzZdffjnj8ZNOOqlSE6SWp/TBuKlTp1Z6XaXrFhQU5D1ERatWreLII4+Mv//97/Hmm2/GvHnz4tFHH41jjz0262DvZ599Vu7Z0fPmzcsIrCK+ORCXT+gSUfXjfkdkBy8zZ86M5cuXV3m7aansHBnTpk3LuN+gQYOsod4qq6zgpbLbdpIkWX1NKyCqKlX5vl7fn3tZ0tqvbMhK/91mzJhR6SG0ytqe8t0udtlllxg+fHjW3BOXX355/PSnP83rqqqyhr+qjn13TSprQuvRo0fnvZ6lS5fGxx9/nFFWUXhTuu158+bFpEmT8m67rHnXKjvBd0VeeOGFjCFbI76Z1Duf0CViw9muSr8f12UuqzTmwcpF7dq1s74zfv7555Va12effZbX8pvaPqT09lFcXFzpgK3096O1qVevXjRq1CijbGN+nQFYN4IXAFLXpk2bOOSQQ8p9PO1hxrbddtuM+59//nmlf3yVPujTuXPnMieEzUfDhg3j8MMPj6FDh8Z7772XNbzKkCFDypzc9sMPP8w6qHjSSSfl3X5lDmTlq/QQFCtXrqyWdtPy3TOf16Ve165d170z/9OqVausAwvvvvtupdb16aefZp0Nut1221W6b9Wh9Pt6zJgxlV5X6W1xfX/uuajsfmVDVnqbWL58eYwdO7ZS6yq9TTRo0CC22GKLvNez/fbbx4gRI7KGl7r22mvjRz/6Uc5zAXTu3DlrLo7Kvt83FLvuumvWSRilTzbIxVtvvZU1/E+vXr3WWqesxyvTdll1Kmq7skrvA1u3bh0HHHBAXuuYMWPGOoXY1an05+nHH3+c9zwjERGTJk2q1qtwd95554z7lX0f5/uZ16VLl6yyjXkfUtb3rfLmPqrIur7WG/PrDMC6EbwAUCXOOOOMMst33nnnrB+l62rvvffOuJ8kSbz44ot5r2fevHlZB+NKr3tdde/ePa6//vqMspUrV8Zbb72VtWzpCXsjIrbeeuu82vvqq69i/Pjx+XWyEvr165dV9uSTT1Z5u2l56aWX8q4zZ86c+OCDDzLK9txzz7S6FAUFBVkH8F599dVKjRf//PPPZ5WtbdsuK2ys7jlRSvdv7ty5lTq4MXbs2KyzWdN+X9e0fPYrG7Ky/m4vvPBC3utZvXp11pWYu+++e6WHn9tmm21ixIgRWYHebbfdFieffHJOV+U0bdo0dtttt4yyynyObUgaNmwYe+21V0bZqFGj8h4y6Nlnn80qq+jK0LICi//+9795tbt69eqs7a9jx45ZAWFaSn8n6NSpU94TmG9I21Tpz9MVK1bEyJEj815PZT7f10Xpz+133303vvzyy7zX8+ijj+a1fN++fbP2YZXZP24oyvq+VZm/9aefflrmkIFrs//++2fcHzt2bLVdVQXAhkXwAkCVGDRoUJnzC6R9tUtERO/evbMOPtx55515r+fee+/NGh6rT58+69S3suy3335ZZWWFLKtXr84qy3dYnZtuuqlaDphvt9120bFjx4yyW2+9NZYuXVrlbafh4YcfjiVLluRV59///nfW2bdpby+l1zdnzpx44okn8l7PHXfckXG/Xr16sccee5S7fIMGDbLKqvtvWdZrWZn39e23357Tujd0ue5XNmS77LJL1hAvd911V97refrpp7MOkq3rNrHlllvGq6++Gj169Mgo//e//x3HHHNMTkMvHnTQQRn3P/nkk7zDgA3NMccck3F/6dKlce+99+Zcf9WqVVn7hbZt20bv3r3XWq9Tp07Rs2fPjLKHH3445s6dm3PbzzzzTHz11VcZZaWfT5pKfyeozDB7N9xwQ1rdqXL77rtv1kkAQ4YMyXs9d999d1pdysnBBx+ccT9Jkrj11lvzWseECRPilVdeyatO48aNs8Lpe++9N+bMmZPXejYUbdu2zQq777vvvry/895zzz15t116X50kSVx77bV5rweAjZ/gBYAqUadOnfjvf/8bzzzzTMbt+9//fupttW/fPmtosyeffDJeffXVnNcxf/78rInsmzRpEscee2wqffyusg7AlT6YGBFlBlf5nPH/2WefVesPwfPPPz/j/uzZs+OXv/xltbW/LhYtWhR/+ctf8lr+iiuuyChr0aJFHHHEEan269RTT80aiue3v/1tXle9/Pvf/866kmvw4MFlhivfKmteo3zGQE9Dr169Yocddsgou/XWW2PixIk5r2PSpElx0003ZZR17ty5zCu0NnS57lc2ZHXq1InTTjsto+zDDz/M68DZqlWr4te//nVGWWFhYblXaeZjs802i1deeSV23333jPLHHnssDjvssKz5OUo7++yzo6ioKKPsF7/4xUY3ZNx3DR48OOs5/+Mf/4hly5blVP+uu+6Kr7/+OqPstNNOyxq2rSxnnnlmxv1ly5blPEF2kiRZnxkFBQWpbEflKf2dYNy4cXkF4v/5z3/i9ddfT7tbVWbzzTfPunJpyJAheV3F+/TTT8eIESPS7tpa9e3bN7p165ZR9re//S3nuV6SJInzzjsv52EKv+tnP/tZxv0lS5bEz3/+87zXs6Eo/Zvi008/zesEja+//rpS35P79euXNU/UP//5z6y5pgBA8AJAlenZs2cMHDgw49a4ceMqaeuCCy7IKjvjjDOyDsiUZfXq1fH9738/ZsyYkVF+5plnltvfp59+OmbNmlWpvj7wwANZZWUNTbLzzjtnne3597//Pac25s2bF8cdd1zeV3Gsix/96EfRsmXLjLLrr78+br755rzXVdkJs9fFX//615zG+E+SJH7yk59kBRFnnHFG1K9fP9U+tW/fPiv8++STT+LCCy/Mqf6ECRPKfG+UVfZdHTt2jLp162aUVWb+g3VVOsxbvnx5nHzyyTkdiF6yZEmcdNJJWQcmzzvvvHWet6mqVMd+ZUN33nnnZV3h+LOf/SzGjRuXU/2LLroo6+DY4YcfnvcE5eVp0aJFvPjii1lX0Dz33HMxcODAtQ6j1bZt2zj77LMzyj766KM44YQTKr0vX7ZsWdx2222VqlsdWrZsGT/4wQ8yyj799NO45JJLKqz75ZdfZh1ULioqqnD/9q0zzjgjNttss4yyv/71rzmd4HD99ddn7RMPO+yw2H777XNquzJKX6GzdOnSrGC5PO+991785Cc/qYpuVanS74eVK1fGqaeemtP7YerUqVn1q8tFF12UcX/p0qVx8MEH5/Sd9IILLojnnnuuUu0efvjhWdvJXXfdFX/4wx8qtb6Ib+YFevDBBytdvyqdccYZUa9evYyyiy++OKdwbuXKlXH66afnPbRhxDch6+9///uMsiVLlsRhhx2Wc8BWlmeeeWad6gOwHkoAoAIvv/xyEhEZtyeeeKLK2tt1110z2urbt29O9Y444oisfnbr1i0ZM2ZMuXVmzZqVHHnkkVn12rdvn8yZM6fceocffnhSv3795Pvf/37ywgsvJCtXrsypjw899FDSsGHDjLZ69OhR7vL77rtvVt8uuuiiZNWqVeXWGT16dLLDDjuULF+7du2M+ltttVWF/Szrbz5p0qQK6z388MNZ9SIiOfvss5NZs2ZVWH/evHnJ9ddfn3Ts2LHCZSvrzjvvzOpfQUFBEhFJ06ZNk0ceeaTcugsXLkxOPfXUrPpt27ZN5s6dW2Hbffv2zah32mmnVVhn8uTJSdOmTbPa/OEPf5gsWrSo3HqvvPJKsvnmm2fV+/GPf1xhm0mSJHvuuWdGvebNmyevvfZaTnXTsmLFimS33XbLeg5777138tlnn5Vbb9KkSUnv3r2z6u20007JsmXLKmx30qRJWXVffvnlFJ9Z2aprv5IkSbLVVltlLH/ZZZfl3d+aWscFF1xQ5j77xRdfLLfO4sWLk7POOiurXqNGjZKJEydW2Ga+793i4uLkoIMOympvt912W+tny8KFC5Pu3btn1dt+++2Tl156qcJ+fuuDDz5Ifvvb3yZt2rRJatWqlXO9tSn9GqT1U3L27NlJy5Yts9b961//OlmzZk2ZdcaOHZu17URE8vvf/z6vtu+6666sdbRs2TIZOXJkuXWuv/76pLCwMKNO3bp1kwkTJuTVdr4WLFiQ9T6vW7du8sADD6y13gMPPJA0a9as3O8EuXwOnXbaaZX6XlZa6df6zjvvrLDOAQcckFVv3333TaZMmVJunTFjxiRdunTJ+ozP5zmvizVr1iT9+vXL6nfr1q2T22+/PVmyZElWnTfeeCPjPda5c+dKvV7vv/9+0qhRo6y6hx12WDJ+/Pic+r9q1arkxRdfTM4888ykfv36yX777bfW5cv6XlUZlfmOdPnll2e1vcUWWyQjRowot86MGTOSQw89tNztI5fvyUmSlPl9sFmzZsntt9+erFixIqd1TJ06Nbn++utLvrevrd9Jks7nLgDVp3IzSALAeui2226Lt956K+NKhHHjxsXuu+8ehx9+eMlZzfXq1Ytp06bF888/H//+97+zxnQvLCyMe+65J1q0aLHW9pYtWxZ33HFH3HHHHdGyZcvo27dv7LLLLtG9e/do2bJlNG3aNFauXBkzZsyI999/Px599NF4++23s9Zz5ZVXltvGb3/726yxpP/+97/HU089FWeccUbsvvvu0bx585g/f35MnDgxHn/88Xj66adLhqho06ZNHH300TmfFbuujjzyyPjFL34RV111VUb5TTfdFPfee28ceuihsf/++0fHjh2jRYsWUVxcHLNmzYoPPvggRo4cGS+99FLWvCnV4eyzz44bb7wxFixYEEceeWT069cvjj/++OjWrVs0atQovv7663j11VdjyJAhZU6geuONN0bz5s2rpG9bbbVV3HTTTTF48OCM8ltvvTWefPLJGDx4cPTr1y/atWsXS5YsiU8//TQeeuiheOaZZ7LGOu/atWvOQ+mcfPLJ8eabb5bcnzdvXvTu3Ts6duwY2223XTRq1CjryoNhw4ZV8lmWrU6dOnH//ffHLrvsknGG8+uvvx477LBDHHvssXHIIYdEhw4dorCwML788st46qmnYujQoVnDOhUVFcX999+fdXbs+qY69isbur/85S/x8ssvxwcffFBSNm3atNhvv/3ioIMOiqOPPrpkG/32vXvvvfeWOVzeddddF507d069j0VFRfH444/H8ccfnzFJ9jvvvBP9+vWL559/Putqi4hv5ml44oknYo899ojZs2eXlI8dOzYGDBgQO+20UwwcODD22GOPaNOmTTRu3DgWLVoU8+fPj88++yzGjBkTr7/+esaQfLkMuxURMXTo0Bg6dGi5j5c1jM7a5jTp379/nHPOORW227Jly7jjjjviiCOOyNhnXXHFFfHII4/EWWedFTvssEM0btw4pkyZEk8++WSZc2z16tUraxi5ipx22mnxxBNPxEMPPVRSNmfOnNh3333jiCOOiGOOOSY6deoUy5Yti08++SRuu+22rKEbI775XK7qK8yaNGkS559/fsYwlytWrIjjjz8+br311jjuuOOie/fuUVRUFLNmzYr33nsvHnzwwXjnnXdKlh8wYECsWrUqr6FYa9qtt94aO+64Y8aVCSNGjIju3bvH8ccfH4ccckhsscUWsWrVqpg8eXI8+uij8cgjj5RcObvzzjtHw4YNY+TIkdXW54KCgrjzzjtjn332ydjvzJo1K84888w477zzokePHtGmTZtYtGhRTJgwIWO5OnXqxJ133hn77rtv1norsuOOO8a9994bRx11VMZwZY8//ng8+eSTsd9++8WAAQNixx13jBYtWkS9evViwYIFMXfu3Bg3blyMGTMmXn311UpffVndLr744nj44Ycz3pdfffVV9OnTJw499NA46qijonPnzhnf/e+///6YN29eRHwzJOfRRx9dqbmAbrnllpg4cWKMGjWqpGz+/Plx5plnxqWXXhqHHnpo9O7dOzbffPNo3rx5LFu2LObPnx9Tp06NMWPGxNtvvx1vv/12tczFCEANqeHgB4ANwIZyxUuSJMknn3xS5lmwud7q1auXDB06tMJ2Dj/88Eq38d3b7373uwrbKuss7VxuDRo0SF5//fXksssuy/tMvspe8ZIk35zpeemll67za1NVyjozs7i4OOsKj1xv1157bc5tV+Zszm/dcMMNWWdZ53PbYYcdkq+++irn9pYsWVLmmfc18TcbOXJk0qJFi0o/92bNmiXDhw/Pub2avOKluvYrG/IVL0mSJNOnT0923nnnSr9GBQUFyT/+8Y+c+1nZ9+7KlSuTk046Kav97bbbLvniiy/KrTdx4sSkR48eqWwPuV7xUvqzYl1v+V5VcO2111a6ra5duyYzZszIq71vLV68uMyrS3O9XXjhhZVqtzKWLFmS9R0p19t2222XzJw5s1Lbck1e8ZIkSfLaa6+VeRVHRbeWLVsmEydOXKfP3nUxfvz4pH379nn1uXbt2sl9992XrF69OuuxXL6ffuvpp59Omjdvnsp7eX2+4iVJkuTrr7/OuMIp11thYWHy0EMPVep78rcWLVqUHHPMMam8zhGueAHY2KyfA1wDQCV16dIlRo0aFQMHDsy77nbbbRfPPfdc1pwaZVnXuWpatmwZd911V1x22WUVLnv99dfHj3/847zW36FDh3jllVdir732qmwXK+3bsa+HDRsWW221VaXW0bBhw5R7tXZFRUXx7LPPxv77759znUaNGsWtt96aNQ9JVfnJT34Sjz76aGyxxRZ51z3uuONixIgRsfnmm+dcp0GDBvH0009H7969824vbXvvvXeMHDky9txzz7zr7rrrrjFixIisOTfWR9W5X9nQtW3bNl599dU46aSTcjoL/Lvat28fw4YNi5/+9KdV07nvqF27dtxzzz3xox/9KKN8woQJse+++8Znn31WZr3OnTvHG2+8Eeedd946XaVVVFQUJ5xwQqXrV6fzzz8/HnjggWjWrFle9QYNGhQjR46MNm3aVKrdhg0bxrPPPps1UXdF6tevH9dee23OVxGmoUGDBvHUU0/FPvvsk1e9vn37xogRI6J169ZV1LOqtc8++8Szzz4bHTt2zLnO1ltvHa+++mqVXNGWq+222y7ee++9OOWUU3Je/qWXXorBgwfHggULsh5v2rRpzm0ffPDBMXr06DjkkENyrlOWzTbbLAYNGrRO66hqm222Wbz88svRt2/fnOs0atQoHnjggTjqqKPWqe1GjRrFgw8+GP/85z8rvQ+K+Oa7c//+/aNDhw7r1B8A1i+CFwA2Ou3atYtnnnkmXnjhhTjkkEOiqKio3GULCgpit912ixtuuCE+/vjjnA/ODhkyJN57773405/+FPvvv380adIkp3o9evSIK664Ij799NM47bTTcqpTu3btuPnmm+PJJ5+MXr16rXXZLbbYIv7whz/E2LFjY/fdd89p/VXl6KOPjgkTJsSNN94Ye+21V4XD3dSrVy/222+/uOGGG8ocEqiqNW3aNJ577rm44447olu3buUu17hx4zj11FNj7NixWZNCV7Xvfe97MXHixPjrX/8aO+6441qXbdy4cRx11FHxxhtvVOpgZsQ3Ad6rr74ar776apx//vnRp0+faN++fZnDjFW1rl27xhtvvBEPPvhg9OvXL+rUqVPusrVr145999037r///nj77bdjhx12qMaeVl517lc2Bo0bN45777033n777Tj22GMrfL26d+8ef/7zn2PixInrfLAtH4WFhfGvf/0rfvazn2WUT5kyJfbdd98YO3ZsmfUaNGgQ1113XUyaNCl+9atfRffu3XN637Vt2zYGDx4cd999d3z99ddx7733pvI8qsNxxx0XEyZMiJ///OfRqlWrcpcrKCiIPn36xGOPPRZPPvlkhUODVqSoqChuv/32GDFiRAwaNChq1y5/RO7GjRvHD3/4wxg7dmy1Be/f9e1B5uuuu67Ckxt69uwZd999d7z88svrdFB4fbD33nvHxx9/HJdccslaTyJo06ZNXHbZZfHBBx/E9ttvX409LFvr1q3jnnvuiQ8//DD+7//+L/bcc8/YfPPNo06dOtGwYcPo0qVLnHTSSTFs2LAYO3ZsyfBi3x1q8Fv5fo536tQpnnrqqRgzZkycfvrpOZ+40aVLlzj33HPj6aefjq+++iouvPDCvNqtCe3atYuXX345br/99rV+PyoqKorTTz89Pvroo7UOlZivc845JyZPnhzXX3997LPPPlG3bt0K6zRs2DAOPvjguPrqq2Py5Mnx0ksvCV4ANjIFSWJASQA2bsuWLYtRo0bFV199FbNmzYoVK1ZE69atY7PNNisZJ39drVmzJj777LP47LPP4osvvoiFCxfG0qVLo0GDBtG0adPo2LFj7LTTTqmcbTp16tQYOXJkTJ8+PRYtWhRFRUXRvn372HHHHaN79+7rvP6qsmDBgnjzzTfj66+/jlmzZsWyZcuiUaNG0bp16+jSpUtsv/32aw3J0nLXXXfFGWeckVFW1tehCRMmxOjRo+Orr76KlStXxmabbRYdOnSIfffdN+rXr1/l/czF1KlTY/To0TFjxoyYPXt21K9fP9q0aRMdOnSIXr16rTWc2NAtWrQoRo0aFdOnT4+ZM2dGkiTRunXraNeuXey11155nRm8vqrO/crGYNWqVfHmm2/GlClTYtasWVFcXBwtW7aMNm3aRM+ePTeKA1qzZs2Kd955J2bNmhVz5syJJUuWRKNGjaJJkybRsWPH6NatW7Rr166mu5mKNWvWxLvvvhsfffRRzJgxI1auXBlNmjSJTp06xZ577lmlQcKCBQvijTfeiIkTJ8aCBQuiVq1a0apVq+jWrVvsscce69W+9eOPP4533nknZs+eHUuXLo3GjRtHx44dY7fddsvrKscNyZo1a+Ktt96KiRMnxvTp02PNmjXRpk2b6NGjR+y6665RWLjhn1/6wAMPZF2tNnv27GjZsuU6rXfixInx8ccfx5w5c2LOnDmxevXqaNy4cTRr1iy23Xbb6Nq160bx+Tl+/Ph47733Ytq0abF06dJo1qxZdO3aNfbaa69q+a5ZXFxcMu/knDlzYsGCBVFUVBSNGzeOzTffPLp27RqdOnXaKLZVAMoneAEANim5Bi8AADXhRz/6Udx6660l97feeutyhyYEANZP4nUAAACA9cC8efPi/vvvzyiraKhZAGD9I3gBAAAAWA+ce+65sWTJkoyyTWn+LgDYWAheAAAAAFL0r3/9KxYtWpTz8qtXr44LL7ww62qXzp07xwEHHJB29wCAKiZ4AQAAAEjRJZdcEltuuWX8+Mc/jhdffDGWLl1a5nKLFi2KBx54IHbbbbe45pprMh4rKCiI66+/PgoKCqqhxwBAmmrXdAcAAAAANjYLFiyIW265JW655ZaoVatWdOnSJdq2bRuNGzeOxYsXx8yZM2Ps2LGxevXqMutfeOGFMXDgwGruNQCQBsELAAAAQBVavXp1jB07NsaOHZvT8pdeemn8/ve/r+JeAQBVxVBjAAAAACnq169f1KlTJ+96vXv3jhdeeEHoAgAbOFe8AAAAAKRo2LBhMX/+/HjppZdi1KhR8cEHH8SUKVNi5syZsWTJklizZk00b948WrRoEdtss0306dMn9ttvv9htt91quusAQAoKkiRJaroTAAAAAAAAGwNDjQEAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASmrXdAdqSpIkNd0FAAAAAABgPVBQUJDaujbZ4CUi4pEJX9d0FwAAYIPXo0ESDWtVX3uFs2dH0SOPVF+DAADARq3JpZemuj5DjQEAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASmrXdAcAAAAAoCp8OX9+/H3EiHjl889j+sKFsXz16oiIuPf44+PQbt1quHcAbKwELwAAAABsdL6cPz/63XJLzCkurumuALCJEbwAAAAAsNH526uvxpzi4qhdWBj/N2BA7L3VVtGwbt2IiNiyWbOa7RwAGzXBCwAAAAAbnVc+/zwiIgZ17RoX9O5dw70BYFNSWNMdAAAAAIC0TV+0KCIiOrdsWcM9AWBTI3gBAAAAYKOzYvXqiIioXejwFwDVy1BjAAAAAGwU7hszJs557LGMsr8MHx5/GT685P6JO+0UNx15ZHV3DYBNiMgfAAAAAAAgJa54AQAAAGCjMKhr19ilffuIiNj7ppsiIuLM3XaLM3ffvWSZZkVFNdI3ADYdghcAAAAANgrNioqygpVWDRvG9pttVkM9AmBTZKgxAAAAAACAlAheAAAAAAAAUiJ4AQAAAAAASIngBQAAAAAAICWCFwAAAAAAgJQIXgAAAAAAAFIieAEAAAAAAEiJ4AUAAAAAACAlghcAAAAAAICUCF4AAAAAAABSIngBAAAAAABIieAFAAAAAAAgJbVrugMAAAAAkLb5v/tdTXcBgE2UK14AAAAAAABSIngBAAAAAABIieAFAAAAAAAgJYIXAAAAAACAlAheAAAAAAAAUiJ4AQAAAAAASIngBQAAAAAAICWCFwAAAAAAgJQIXgAAAAAAAFIieAEAAAAAAEiJ4AUAAAAAACAltWu6AwAAAACwrmYtXhyjp06N0VOnxphp0+LdqVNj7tKlERFx4k47xU1HHlnDPQRgUyF4AQAAAGCDt+3f/lbTXQCAiDDUGAAAAAAbmS2aNo0B22xT090AYBPlihcAAAAANngX9+0bPdu3j56bbx5tGjWKKfPmxU7XXlvT3QJgEyR4AQAAAGCD95v+/Wu6CwAQEYYaAwAAAAAASI3gBQAAAAAAICWCFwAAAAAAgJQIXgAAAAAAAFIieAEAAAAAAEiJ4AUAAAAAACAltWu6AwBsOh64/m8x9IarIyLioU+mRfHiRfHEnf+KN557OmZO/SLq1i+KbXbYKY4564Lo2nP3knoL5syOp4bcHm++8EzMmvpl1KlbP7rtunscd+5FsfX2PWrq6QAAAABAFsELADVi9vSp8fszjo9pkz8vKVtWXBxjXn0p3h85PC78+42x98DvxeTxY+PyH50Sc2dML1lu+dKl8fZLz8V7rw2PS265N3r02qcmngIAAAAAZBG8AFAj/vbTH8ecGdPjqB+dFzvv2z/q1S+KT959Kx64/m9RvHhR3HjJRbHNDjvFFWedGiuWLYvBP/1VdN+jV9SqXSfGjHg5Hrr5uli5Ynn88zc/jX/+d2TUqVu3pp8SAAAAAAheAKgZk8d9HH8Y8lBst1PPkrLOPXaKdlt1ij+fdWosXbI4fnXcoIgkib88+FS07dCxZLltd9wlmjRvEbf+4Tcxe9rUeHf4i7HnAQfXwLMAAAAAgEyFNd0BADZNg077QUbo8q1d++0frdtvERERC+fOiRMuuDgjdPlW/6OOj7r16kdExNh33qzSvgIAAABArgQvANSI3occXu5jW3XpFhERBQUFsc/Bh5W5TL36RdF2q04RETHjqynpdxAAAAAAKkHwAkCNaN9x63Ifa9ikaURENG7eIho1bbaW5ZpERMSyJUtS7RsAAAAAVJY5XgCoEfWKGpT7WEHBN+cF1KtftNZ1FP5vuTWrV6fXMQAAYIM0asqU+Hzu3JL7c4uLS/4/ae7cuG/MmIzlT9pll2rrGwCbFsELAAAAABu8e959N/79/vtlPvbGl1/GG19+mVEmeAGgqhhqDAAAAAAAICWueAEAAABgg3fTkUfGTUceWdPdAABXvAAAAAAAAKSlWq54WbNmTXz55Zfx2WefldymTJkSq/83GfL2228fv/vd76qjKwAAAAAAAFWmyoOXt956K66//vpYvnx5VTcFAAAAAABQo6p8qLHi4mKhCwAAAAAAsEmolqHGIiKaNm0a22yzTXTu3Dm22WabeP/99+Ppp5+uruYBAAAAAACqXEGSJElVNjB//vxYtWpVtGrVKqN86NChMWzYsIiomTlekiSJRyZ8Xa1tAgDAxqhHgyQa1qq+9gpnz46iRx6pvgYBAICNWpNLL42CgoLU1lflV7w0a9asqpsAAAAAAABYL1T5HC8AAAAAAACbCsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApKR2TXcgTXPmzKlwmRYtWkRBQUE19AYAADYNBYUFUVhYfd+xfZ8HAADWZxtV8HL22WdXuMwDDzxQDT0BAIBNR8uWraJ5/TrV1t7qJInF1dYaAABAfgw1BgAAAAAAkJKN6oqXm266qaa7AAAAm5w5c2bH8lrVONTY7NlRv9paAwAAyM9GFby0bNmyprsAAACbnGRNEmsKkmprrzCpvrYAAADytVEFLwBseBbMmR0TPxgTEz8cE599+H58+uF7sWj+vIiI6HfEcXHeldfUbAcBAAAAIA+CFwBq1Pf32bGmuwAAAAAAqSms6Q4AwLdatd88dtqnb013AwAAAAAqzRUvANSoY39yYXTusXN07rFzNGvVOmZ+9WWcvf+eNd0tAAAAAKgUwQsANeqE839R010AAAAAgNQYagwAAAAAACAlghcAAAAAAICUVMtQY1dccUXMnTs3o2z+/Pkl///ss8/iF7/IHmrm17/+dbRo0aKquwcAAAAAAJCKaglevvrqq5g1a1a5jy9fvjymTJmSVb5q1aqq7BYAAAAAAECqDDUGAAAAAACQkmq54uWGG26ojmYAAAAAAABqlCteAAAAAAAAUiJ4AQAAAAAASIngBQAAAAAAICWCFwAAAAAAgJQIXgAAAAAAAFIieAEAAAAAAEiJ4AUAAAAAACAltWu6AwBs2saNfjOmT5lccn/RvLkl///6i0nx0sMPZCw/4Kjjq6trAAAAAJA3wQsANeqFB/8drzw6tMzHPnn37fjk3bczygQvAAAAAKzPDDUGAAAAAACQEle8AFCjzrvymjjvymtquhsAAAAAkApXvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAGxQkvr1I6lVq6a7AQAAUKbaNd0BAACAfCSNGsXS446LgmXLarorAKynCgoKolWrVhERMXv27EiSpIZ7BMD6rEnK6xO8AAAAG5ykUaNIGjWq6W4AsJ4qLCyMWm3bRkREUlAQa9asqeEeAbApMdQYAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKSkdk13AAAAIF8FixdHwbJlNd0NANZTBQUFsTpJvvn/7NlR+L//A0CZ2rVLdXWCFwAAYINSsHhxFA0dGgWrV9d0VwBYjy3+37/1a7QXAGwQevRIdXWGGgMAADYoBcuWCV0AAID1luAFAAAAAAAgJYIXAAAAAACAlAheAAAAAAAAUiJ4AQAAAAAASIngBQAAAAAAICWCFwAAAAAAgJQIXgAAAAAAAFIieAEAAAAAAEiJ4AUAAAAAACAlghcAAAAAAICUCF4AAAAAAABSIngBAAAAAABIieAFAAAAAAAgJYIXAAAAAACAlAheAAAAAAAAUiJ4AQAAAAAASIngBQAAAAAAICWCFwAAAAAAgJQIXgAAAAAAAFIieAEAAAAAAEiJ4AUAAAAAACAlghcAAAAAAICUCF4AAAAAAABSIngBAAAAAABIieAFAAAAAAAgJYIXAAAAAACAlAheAAAAAAAAUiJ4AQAAAAAASIngBQAAAAAAICWCFwAAAAAAgJQIXgAAAAAAAFIieAEAAAAAAEiJ4AUAAAAAACAlghcAAAAAAICUCF4AAAAAAABSIngBAAAAAABIieAFAAAAAAAgJYIXAAAAAACAlAheAAAAAAAAUiJ4AQAAAAAASIngBQAAAAAAICWCFwAAAAAAgJQIXgAAAAAAAFIieAEAAAAAAEiJ4AUAAAAAACAlghcAAAAAAICUCF4AAAAAAABSIngBAAAAAABIieAFAAAAAAAgJYIXAAAAAACAlAheAAAAAAAAUiJ4AQAAAAAASIngBQAAAAAAICWCFwAAAAAAgJQIXgAAAAAAAFIieAEAAAAAAEiJ4AUAAAAAACAlghcAAAAAAICUCF4AAAAAAABSIngBAAAAAABIieAFAAAAAAAgJYIXAAAAAACAlAheAAAAAAAAUiJ4AQAAAAAASIngBQAAqLSCSKJ2QU33AgAAYP1Ru6Y7UJN6NEhqugsAlFJQWBAtW7aKiIg5c2ZHssa+GmB9Vrsgop7TuQAAAEps0sFLw1o13QMASissLIjm9etERMTyWgWxpkDwAgAAAMCGw7lpAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKSkdk13oCYtWV3TPQCgtIIkiXnLVkZExOLVSSRrarhDAKxV7YKIek7nAgAAKLFJBy8fFhfUdBcAKMvi2d+5Y18NsD4riCR2bih8AQAA+JafRwAAQKUlURCrkpruBQAAwPpD8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKBC8AAAAAAAApEbwAAAAAAACkRPACAAAAAACQEsELAAAAAABASgQvAAAAAAAAKRG8AAAAAAAApETwAgAAAAAAkBLBCwAAAAAAQEoELwAAAAAAACkRvAAAAAAAAKRE8AIAAAAAAJASwQsAAAAAAEBKatd0BwAAAACgKnw5f378fcSIeOXzz2P6woWxfPXqiIi49/jj49Bu3Wq4dwBsrAQvAAAAAGx0vpw/P/rdckvMKS6u6a4AsIkRvAAAAACw0fnbq6/GnOLiqF1YGP83YEDsvdVW0bBu3YiI2LJZs5rtHAAbNcELAAAAABudVz7/PCIiBnXtGhf07l3DvQFgU1JY0x0AAAAAgLRNX7QoIiI6t2xZwz0BYFMjeAEAAABgo7Ni9eqIiKhd6PAXANXLUGMAAAAAbBTuGzMmznnssYyyvwwfHn8ZPrzk/ok77RQ3HXlkdXcNgE2IyB8AAAAAACAlrngBAAAAYKMwqGvX2KV9+4iI2PummyIi4szddoszd9+9ZJlmRUU10jcANh2CFwAAAAA2Cs2KirKClVYNG8b2m21WQz0CYFNkqDEAAAAAAICUCF4AAAAAAABSIngBAAAAAABIieAFAAAAAAAgJYIXAAAAAACAlAheAAAAAAAAUiJ4AQAAAAAASIngBQAAAAAAICWCFwAAAAAAgJQIXgAAAAAAAFIieAEAAAAAAEiJ4AUAAAAAACAltWu6AwAAAACQtvm/+11NdwGATZQrXgAAAAAAAFIieAEAAAAAAEiJ4AUAAAAAACAlghcAAAAAAICUCF4AAAAAAABSIngBAAAAAABIieAFAAAAAAAgJYIXAAAAAACAlAheAAAAAAAAUiJ4AQAAAAAASIngBQAAAAAAICW1a7oDAAAAAJCWL+bPj3+9+WY8N2FCTF24MOrWqhWdWrSII7t3jx/svns0qFu3prsIwEZO8AIAAADARuGZ8ePjxw8/HAuXLy8pK165MsZMmxZjpk2Le959N4YOHhxbt2xZg70EYGNnqDEAAAAANnjvT58e33/wwVi4fHk0qls3/m/AgHjuzDPjsVNPjdN69oyIiE/nzInj7r8/Fn0nmAGAtLniBQAAAIAN3q+eeSaWrloVtQsL4+FTTok9ttyy5LG+W28d27RsGZc+/3x8OmdO/PP11+PX/fvXYG8B2Ji54gUAAACADdror76KUV98ERERp+yyS0bo8q1z99orurRqFRERN7/5Zqxcvbpa+wjApkPwAgAAAMAG7alPPin5/0m77FLmMoWFhXHCTjtFRMSCZctixKRJ1dI3ADY9ghcAAAAANmjfXu3SsE6d2Lldu3KX26djx5L/v/Hll1XdLQA2UYIXAAAAADZoE2bPjoiITi1aRO1atcpdbrv/DTUWETFh1qwq7xcAmybBCwAAAAAbrGUrV8ac4uKIiNi8SZO1LtusqCga1qkTERFTFy6s8r4BsGkSvAAAAACwwVq8YkXJ/xvWrVvh8g3+t8yS79QDgDQJXgAAAADYYC1btark/3XWMszYt+r9b5mlK1dWWZ8A2LTVrukOALDpeOD6v8XQG66OiIiHPpkWxYsXxRN3/iveeO7pmDn1i6hbvyi22WGnOOasC6Jrz91L6i2YMzueGnJ7vPnCMzFr6pdRp2796Lbr7nHcuRfF1tv3qKmnAwAArAfq1/7/h7dWrl5d4fLL/7dM0f+GHAOAtAleAKgRs6dPjd+fcXxMm/x5Sdmy4uIY8+pL8f7I4XHh32+MvQd+LyaPHxuX/+iUmDtjeslyy5cujbdfei7ee214XHLLvdGj1z418RQAAID1QKPvDC+Wy/Bhxf9bJpdhyQCgMgQvANSIv/30xzFnxvQ46kfnxc779o969Yvik3ffigeu/1sUL14UN15yUWyzw05xxVmnxoply2LwT38V3ffoFbVq14kxI16Oh26+LlauWB7//M1P45//HRl1/GgCAIBNUv06daJFUVHMXbo0pi5cuNZl5y9dGkv+N8TY5k2aVEf3ANgECV4AqBGTx30cfxjyUGy3U8+Sss49dop2W3WKP591aixdsjh+ddygiCSJvzz4VLTt0LFkuW133CWaNG8Rt/7hNzF72tR4d/iLsecBB9fAswAAANYHXVq3jlFffBGT5s6NVatXR+1y5nqZMHt2yf+3a926uroHwCamsKY7AMCmadBpP8gIXb61a7/9o3X7LSIiYuHcOXHCBRdnhC7f6n/U8VG3Xv2IiBj7zptV2lcAAGD9tleHDhERsWTlynhv+vRylxs5eXLJ/3ttuWVVdwuATZTgBYAa0fuQw8t9bKsu3SIioqCgIPY5+LAyl6lXvyjabtUpIiJmfDUl/Q4CAAAbjEFdu5b8/74xY8pcZs2aNfGf99+PiIim9evHvp06VUvfANj0CF4AqBHtO25d7mMNmzSNiIjGzVtEo6bN1rLcN2MyL1uyJNW+AQAAG5Zdt9ii5KqXIWPGxFtffpm1zD9HjYrx/xtq7Kw994w65QxHBgDrSvACQI2oV9Sg3McKCr75eKpXv2it6yj833JrVq9Or2MAAMAG6cqDD46i2rVj1Zo1cdSQIXH1iBHx9pdfxquTJsVPn3giLn3++YiI6NyyZZy799413FsANma1a7oDAAAAALCudmrXLu449tj48cMPx8Lly+MPL76YtUznli1j6ODB0bhevRroIQCbCsELAAAAABuFg7t0idfOPjtufuONeG7ixJi2cGHUqVUrtm7RIo7Yfvv44R57RIO6dWu6mwBs5AQvAAAAAGw0OjRrFn8eODD+PHBgTXcFgE2UOV4AAAAAAABSUm1XvKxatSpef/31GDlyZHz55ZexYMGCaNiwYbRp0yb22GOP6NevXzRp0qS6ugMAAAAAAJC6aglepk6dGtdee21Mnjw5o3z+/Pkxf/78mDBhQjzxxBNx9tlnR8+ePaujSwAAAAAAAKmr8qHG5syZE3/4wx9KQpeCgoLYfvvto3///rHrrrtG3f9NaLZgwYK46qqr4qOPPqrqLgEAAAAAAFSJKr/i5brrrot58+ZFRETr1q3jF7/4RXTs2LHk8YULF8a1114bH374YaxevTquvvrquP7666Nhw4ZV3TUAAAAAAIBUFSRJklTVyt9999248sorIyKidu3aceWVV0aHDh2yllu2bFn84he/iBkzZkRExBFHHBGDBw+uqm5FRESSJPHIhK+rtA0AANgU9GiQRMNa1dde4ezZUfTII9XXIAAAsFFrcumlUVBQkNr6qnSosWeffbbk/3379i0zdImIqF+/fhx33HEl91944YVYvXp1VXYNAAAAAAAgdVUWvCxbtixjvpb+/fuvdfk999wz6tevHxERixcvjnHjxlVV1wAAAAAAAKpElQUv48ePj5UrV0ZERL169WKbbbZZ6/J169aN7bbbruT+d0MbAAAAAACADUGVBS9Tp04t+X+H/9fevcbYXdd5HP/MrQwzpYUWRTr0AnKnNZGogKwpy9ZFs4voumujRLOuiddYVrM2GzZWNBvWhKyb+MALQdi0yxK6F4NG0lBk4UHdoAWCpSu7TAGhlltbKL3NdNo5+6Dx0Gov0/I9c4b29Xr0m873/z/f4Uk7efM/Z9asdHUd/k2fzzzzzOZ5/fr1LdkLAAAAAACgVVoWXjZs2NA8v+lNbxrTNaeeeuoBrwcAAAAAAHgj6G7Vjbdu3do8T506dUzXnHzyyc3ztm3bjvg1N23adNiZadOmpaOj44jvDQAAHFhHZ0c6O8fv39j+PQ8AAExkLQsvQ0NDzfOkSZPGdM2+c/teP1af+9znDjtz5513HvF9AQCAg5s+/dSc0tszbq+3p9HIkf9vWgAAAOOjZW81NjIy0jx3d4+t7/T0vPbL2q5du8p3AgAAAAAAaKWWPfGyb0TZvXv3mK7ZN9aM9SmZfX33u9894msAAIDXZ9OmjRnuGse3Gtu4Mb3j9moAAABHpmXhpbf3tV+Fxvr0yr5z+14/VtOnTz/iawAAgNenMdrIaEdj3F6vszF+rwUAAHCkWhZeTjrppOZ5y5YtY7rmlVdeaZ4nT55cvRIAE9yLv1mfu5f9IA89cG82Pb8hPZNOyGkzZ+fd77867//YX+aEE/vavSIAAAAAHFLLwsuMGTOa55deemlM12zcuPGA1wNw7PvFfffk24u/mB3btjb/bHjnzmzb8krWPfZofvpv/5rrv78sp88+s41bAgAAAMChdbbqxgMDA83zM888kz179hz2mqeeeqp5PuOMM1qyFwATz5P/sybf+vJns2Pb1vT29edjf/23ufGOH+WGf16eBX9xbZJkw9NP5sbPfDw7t21r87YAAAAAcHAte+LlvPPOS09PT0ZGRjI8PJx169bl3HPPPej8yMhInnjiiebXc+fObdVqAEwwt964JLuGhtLV3Z0lP7gj5739Hc3vzbv0D3L6nDOz7Ka/z4ann8yPbvteFn7xb9q4LQAAAAAcXMueeOnt7d0vntx///2HnH/wwQezc+fOJHs/3+WCCy5o1WoATCBP/PKR/Gr1g0mSP/rwR/eLLr/1gU9+Nme89ZwkyU+W/SC7R0bGdUcAAAAAGKuWhZckueqqq5rnBx54IM8+++wB54aHh7N8+fLm1wsWLEhXV1crVwNggvj5vSua5z/8s4UHnOns7Mz8a/48SbL91S157MFV47IbAAAAAByploaXiy++uPnkysjISL75zW/m17/+9X4zW7duzU033ZTnn38+yd6nXa655ppWrgXABPKrh3+eJOnt68tbL3rbQecueudlzfPjD/+i5XsBAAAAwNFo2We8/NaiRYty/fXX5+WXX85LL72UxYsX58ILL8xpp52WV199NWvWrMnw8HCSpKurK1/60pfS39/f6rUAmCB+s27v53u9ZdacdHUf/K+lgbPObp7XPznY8r0AAAAA4Gi09ImXJJk+fXqWLFmSOXPmJEkajUbWrl2b++67L6tXr25GlylTpuQrX/lK5s2b1+qVAJggdg0P5dWXNydJpp8245Czk6eenN6+viTJpuc2tHw3AAAAADgaLX/iJUkGBgZy4403ZtWqVVm1alWeffbZbNmyJf39/Xnzm9+cSy65JFdccUWmTJkyHusAMEHs3L69ee7t7zvs/Akn9mVox44M7dh+2FkAAAAAaIdxCS9J0t3dnfnz52f+/Pnj9ZIATHAjw0PNc3fPpMPO90zaO7Nrn+sAAAAAYCJp+VuNAcDB9JzQ2zzvHtl12PmRXXtnJu1zHQAAAABMJMILAG1zYn9/8zy0fcdh54d37p3p7es/zCQAAAAAtIfwAkDbTDqhNyedfEqSZNMLGw45u23LKxnasTe8TD99Rst3AwAAAICjIbwA0FZnnH1ukuT5Z57Ont27Dzr3mycHX7vmrLNbvhcAAAAAHA3hBYC2uuDidyVJhnbsyLq1vzzo3Npf/HfzfP7F72z5XgAAAABwNIQXANrqXQve1zz/13/eecCZ0dHRPHDXvydJ+qdMzdxLLh+X3QAAAADgSAkvALTVOW97ey54xyVJkp/+xx3530dW/97Mj277XtaveyJJ8icf/1S6e3rGdUcAAAAAGKvudi8AAH91/Tfydx+7JruGhvKNT300H/7Mosy95N0ZHhrKqrvvysrl/5IkmTHnrHzgk59t87YAAAAAcHDCCwBtd9aF8/Llb30v3178xezYtjW3/9M//N7MjDln5frvL8uJkye3YUMAAAAAGBvhBYAJ4Z1X/nH+8a6f5idLb8nDD9ybTS88l+6eSXnLrDl59/v+NO+/9pM54cS+dq8JAAAAAIfU0Wg0Gu1eoh0ajUZ++H/Pt3sNAAB4w5vX10h/1/i9XufGjTnxhz8cvxcEAACOaVOWLElHR0fZ/TrL7gQAAAAAAHCcE14AAAAAAACKCC8AAAAAAABFhBcAAAAAAIAiwgsAAAAAAEAR4QUAAAAAAKCI8AIAAAAAAFBEeAEAAAAAACgivAAAAAAAABQRXgAAAAAAAIoILwAAAAAAAEWEFwAAAAAAgCLCCwAAAAAAQBHhBQAAAAAAoIjwAgAAAAAAUER4AQAAAAAAKCK8AAAAAAAAFBFeAAAAAAAAiggvAAAAAAAARYQXAAAAAACAIsILAAAAAABAEeEFAAAAAACgiPACAAAAAABQRHgBAAAAAAAoIrwAAAAAAAAUEV4AAAAAAACKCC8AAAAAAABFhBcAAAAAAIAiwgsAAAAAAEAR4QUAAAAAAKCI8AIAAAAAAFBEeAEAAAAAACgivAAAAAAAABQRXgAAAAAAAIoILwAAAAAAAEWEFwAAAAAAgCLCCwAAAAAAQBHhBQAAAAAAoIjwAgAAAAAAUER4AQAAAAAAKCK8AAAAAAAAFBFeAAAAAAAAiggvAAAAAAAARYQXAAAAAACAIsILAAAAAABAEeEFAAAAAACgiPACAAAAAABQRHgBAAAAAAAoIrwAAAAAAAAUEV4AAAAAAACKCC8AAAAAAABFhBcAAAAAAIAiwgsAAAAAAEAR4QUAAAAAAKCI8AIAAAAAAFBEeAEAAAAAACgivAAAAAAAABQRXgAAAAAAAIoILwAAAAAAAEWEFwAAAAAAgCLCCwAAAAAAQBHhBQAAAAAAoIjwAgAAAAAAUER4AQAAAAAAKCK8AAAAAAAAFBFeAAAAAAAAiggvAAAAAAAARYQXAAAAAACAIsILAAAAAABAEeEFAAAAAACgiPACAAAAAABQRHgBAAAAAAAoIrwAAAAAAAAUEV4AAAAAAACKCC8AAAAAAABFhBcAAAAAAIAiwgsAAAAAAEAR4QUAAAAAAKCI8AIAAAAAAFBEeAEAAAAAACgivAAAAAAAABQRXgAAAAAAAIoILwAAAAAAAEWEFwAAAAAAgCLCCwAAAAAAQBHhBQAAAAAAoIjwAgAAAAAAUER4AQAAAAAAKCK8AAAAAAAAFBFeAAAAAAAAiggvAAAAAAAARYQXAAAAAACAIsILAAAAAABAEeEFAAAAAACgiPACAAAAAABQRHgBAAAAAAAoIrwAAAAAAAAUEV4AAAAAAACKCC8AAAAAAABFhBcAAAAAAIAiwgsAAAAAAEAR4QUAAAAAAKCI8AIAAAAAAFBEeAEAAAAAACgivAAAAAAAABQRXgAAAAAAAIoILwAAAAAAAEWEFwAAAAAAgCLCCwAAAAAAQBHhBQAAAAAAoIjwAgAAAAAAUER4AQAAAAAAKCK8AAAAAAAAFBFeAAAAAAAAiggvAAAAAAAARYQXAAAAAACAIsILAAAAAABAEeEFAAAAAACgiPACAAAAAABQRHgBAAAAAAAoIrwAAAAAAAAUEV4AAAAAAACKCC8AAAAAAABFhBcAAAAAAIAiwgsAAAAAAEAR4QUAAAAAAKCI8AIAAAAAAFBEeAEAAAAAACgivAAAAAAAABQRXgAAAAAAAIoILwAAAAAAAEWEFwAAAAAAgCLCCwAAAAAAQBHhBQAAAAAAoIjwAgAAAAAAUER4AQAAAAAAKCK8AAAAAAAAFBFeAAAAAAAAiggvAAAAAAAARYQXAAAAAACAIsILAAAAAABAEeEFAAAAAACgiPACAAAAAABQRHgBAAAAAAAoIrwAAAAAAAAUEV4AAAAAAACKCC8AAAAAAABFhBcAAAAAAIAiwgsAAAAAAEAR4QUAAAAAAKCI8AIAAAAAAFBEeAEAAAAAACgivAAAAAAAABQRXgAAAAAAAIoILwAAAAAAAEU6Go1Go91LtMNx+mMDAAAAAAC/o6Ojo+xe3WV3eoOp/I8IAAAAAACQHMfhBYCJ6XefSBTKAQCAI+X3CgDayWe8ADChbN68OQsXLszChQuzefPmdq8DAAC8Afm9AoB2El4AAAAAAACKCC8AAAAAAABFhBcAAAAAAIAiwgsAAAAAAEAR4QUAAAAAAKCI8AIAAAAAAFBEeAEAAAAAACjS0Wg0Gu1eAgAAAAAA4FjgiRcAAAAAAIAiwgsAAAAAAEAR4QUAAAAAAKCI8AIAAAAAAFBEeAEAAAAAACgivAAAAAAAABQRXgAAAAAAAIoILwAAAAAAAEW6270AAAAAALTC1q1bs2LFijzyyCN57rnnsmPHjjQajSTJ5z//+VxxxRXtXRCAY5LwAgAAAMAx54UXXsjXvva1bN68ud2rAHCcEV4AAAAAOObcfPPNzegyadKkzJs3L9OmTUtn59533h8YGGjnegAcw4QXAAAAAI4pL7/8ctasWZMk6enpyU033ZTTTz+9zVsBcLzobPcCAAAAAFDpqaeeap7PP/980QWAcSW8AAAAAHBM2b59e/N8yimntHETAI5HwgsAAAAAx5Q9e/Y0zx0dHW3cBIDjUUej0Wi0ewkAjm0f+chHmufly5cnSZ5++umsXLkyjz32WPMDL2fOnJn58+dnwYIF6erq2u8e69aty4oVKzI4OJiNGzemp6cns2fPzpVXXpn3vOc94/fDAAAAE9LatWvz9a9/fUyz8+fPzxe+8IUWbwTA8aq73QsAcPy56667cscdd2R0dHS/Px8cHMzg4GBWr16dxYsXp6enJ6Ojo7n11ltzzz337Dc7PDyctWvXZu3atXnooYeyaNGidHZ6kBMAAACA9hJeABhXK1euzO23354kmT17dmbPnp3Ozs4MDg5m/fr1SZJHH300t912Wz796U/nlltuyb333puOjo6cffbZGRgYyOjoaB5//PG8+OKLSZKf/exnmTNnTj74wQ+268cCAADabNq0abnqqquSJBs2bMiaNWuSJAMDA5k7d+5+s+ecc8647wfA8cNbjQHQcvu+1VhPT0/6+/tz3XXX5aKLLtpv7sc//nGWLVuWJOnq6sq1116bpUuXZmBgINddd13mzJnTnB0dHc3SpUtz9913J0l6e3tz8803p7e3t/U/EAAAMKHdf//9+c53vpPE24oBMP68JwsA4+6rX/3q70WXJLn66qszb968JHs/DHPp0qWZOnVqbrjhhv2iS5J0dnbmE5/4RGbMmJEkGRoaysMPP9zy3QEAAADgUIQXAMbVe9/73sycOfOg37/88sv3+/pDH/pQpk6desDZzs7OXHbZZc2vBwcHa5YEAAAAgKMkvAAwri699NJDfn/WrFlHNL9vxPntZ74AAAAAQLsILwCMq0M97ZIkkydPbp77+voybdq0Mc/v3Lnz9S0HAAAAAK+T8ALAuOrr6zvk9zs7X/ur6XCzSdLV1dU879mz5+gXAwAAAIACwgsA46qjo6MlswAAAAAwEQgvAAAAAAAARYQXAAAAAACAIsILAAAAAABAEeEFAAAAAACgiPACAAAAAABQRHgBAAAAAAAoIrwAAAAAAAAUEV4AAAAAAACKCC8AAAAAAABFOhqNRqPdSwAAAAAAABwLPPECAAAAAABQRHgBAAAAAAAoIrwAAAAAAAAUEV4AAAAAAACKCC8AAAAAAABFhBcAAAAAAIAiwgsAAAAAAEAR4QUAAAAAAKCI8AIAAAAAAFBEeAEAAAAAACgivAAAAAAAABQRXgAAAAAAAIoILwAAAAAAAEWEFwAAAAAAgCLCCwAAAAAAQBHhBQAAAAAAoIjwAgAAAAAAUER4AQAAAAAAKCK8AAAAAAAAFBFeAAAAAAAAiggvAAAAAAAARYQXAAAAAACAIsILAAAAAABAEeEFAAAAAACgiPACAAAAAABQRHgBAAAAAAAo8v88/rfNbGNjXQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 458, "width": 815 } }, "output_type": "display_data" } ], "source": [ "from statsmodels.graphics.mosaicplot import mosaic\n", "\n", "gender_colors = lambda key: {'color': 'lightcoral' if 'f' in key else 'lightblue'}\n", "mosaic(cdc, ['gender', 'smoke100'], title='Mosaic plot of smoke100 and gender', \n", " properties = gender_colors, gap = 0.02)\n", "plt.show();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "

Exercise 3

\n", "What does the mosaic plot reveal about smoking habits and gender?\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Interlude: How Python thinks about data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "DataFrames are like a type of spreadsheet. Each row is a different observation (a different respondent) and each column is a different variable (the first is `genhlth`, the second `exerany` and so on). We can see the size of the DataFrame by typing" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(20000, 9)" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which will return the number of rows and columns. Now, if we want to access a subset of the full DataFrame, we can use row-and-column notation. For example, to see the sixth variable of the 567th respondent, use the format" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "190" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc.iloc[566, 5] # This is the equivalent of cdc[567,6] in R." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which gives us the weight of the 567th person (or observation). Remember that, in Python indexing starts at 0, so the first element of a list or DataFrame is selected by the 0-th index.\n", "\n", "To see the weights for the first 10 respondents we can type" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 175\n", "1 115\n", "2 105\n", "3 124\n", "4 130\n", "5 114\n", "6 185\n", "7 160\n", "8 130\n", "9 170\n", "Name: wtdesire, dtype: int64" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc.iloc[0:10, 5] # Keep in mind that the ending index is excluded in Python." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, if we want all of the data for the first 10 respondents, type" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
exeranyhlthplansmoke100heightweightwtdesireagegendergenhlth
00107017517577mgood
10116412511533fgood
21116010510549fgood
31106613212442fgood
40106115013055fvery good
51106411411455fvery good
61107119418531mvery good
70106717016045mvery good
80116515013027fgood
91107018017044mgood
\n", "
" ], "text/plain": [ " exerany hlthplan smoke100 height weight wtdesire age gender \\\n", "0 0 1 0 70 175 175 77 m \n", "1 0 1 1 64 125 115 33 f \n", "2 1 1 1 60 105 105 49 f \n", "3 1 1 0 66 132 124 42 f \n", "4 0 1 0 61 150 130 55 f \n", "5 1 1 0 64 114 114 55 f \n", "6 1 1 0 71 194 185 31 m \n", "7 0 1 0 67 170 160 45 m \n", "8 0 1 1 65 150 130 27 f \n", "9 1 1 0 70 180 170 44 m \n", "\n", " genhlth \n", "0 good \n", "1 good \n", "2 good \n", "3 good \n", "4 very good \n", "5 very good \n", "6 very good \n", "7 very good \n", "8 good \n", "9 good " ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc.iloc[0:10,]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By leaving out an index or a range (we didn't type anything between the comma and the square bracket), we get all the columns. As a rule, we omit the column number to see all columns in a DataFrame. To access all the observations, just leave a colon inside of the bracket. Try the following to see the weights for all 20,000 respondents fly by on your screen" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 175\n", "1 115\n", "2 105\n", "3 124\n", "4 130\n", " ... \n", "19995 140\n", "19996 185\n", "19997 150\n", "19998 165\n", "19999 165\n", "Name: wtdesire, Length: 20000, dtype: int64" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc.iloc[:, 5]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Recall that the sixth column represents respondents' weight, so the command above reported all of the weights in the data set. An alternative method to access the weight data is by referring to the name. Previously, we typed `cdc` to see all the variables contained in the cdc data set. We can use any of the variable names to select items in our data set." ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 175\n", "1 125\n", "2 105\n", "3 132\n", "4 150\n", " ... \n", "19995 215\n", "19996 200\n", "19997 216\n", "19998 165\n", "19999 170\n", "Name: weight, Length: 20000, dtype: int64" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc['weight']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This tells Python to look in DataFrame `cdc` for the column called `weight`. Since that's a single vector, we can subset it by just adding another single index inside square brackets. We see the weight for the 567th respondent by typing" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "160" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc['weight'][566]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Similarly, for just the first 10 respondents" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 175\n", "1 125\n", "2 105\n", "3 132\n", "4 150\n", "5 114\n", "6 194\n", "7 170\n", "8 150\n", "9 180\n", "Name: weight, dtype: int64" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc['weight'][0:10]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The command above returns the same result as the `cdc.iloc[0:10, 5]` command." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A little more on subsetting" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It's often useful to extract all individuals (cases) in a data set that have specific characteristics. We accomplish this through conditioning commands. First, consider expressions like" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 True\n", "1 False\n", "2 False\n", "3 False\n", "4 False\n", " ... \n", "19995 False\n", "19996 True\n", "19997 False\n", "19998 False\n", "19999 True\n", "Name: gender, Length: 20000, dtype: bool" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc['gender'] == 'm'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "or" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 True\n", "1 True\n", "2 True\n", "3 True\n", "4 True\n", " ... \n", "19995 False\n", "19996 True\n", "19997 True\n", "19998 True\n", "19999 True\n", "Name: age, Length: 20000, dtype: bool" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc['age'] > 30" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These commands produce a series of `TRUE` and `FALSE` values. There is one value for each respondent, where `TRUE` indicates that the person was male (via the first command) or older than 30 (second command).\n", "\n", "Suppose we want to extract just the data for the men in the sample, or just for those over 30. For example, the command" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "mdata = cdc[cdc['gender'] == 'm']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "will create a new data set called `mdata` that contains only the men from the `cdc` data set. In addition to finding it in your workspace alongside its dimensions, you can take a peek at the first several rows as usual" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
exeranyhlthplansmoke100heightweightwtdesireagegendergenhlth
00107017517577mgood
61107119418531mvery good
70106717016045mvery good
91107018017044mgood
101116918617546mexcellent
\n", "
" ], "text/plain": [ " exerany hlthplan smoke100 height weight wtdesire age gender \\\n", "0 0 1 0 70 175 175 77 m \n", "6 1 1 0 71 194 185 31 m \n", "7 0 1 0 67 170 160 45 m \n", "9 1 1 0 70 180 170 44 m \n", "10 1 1 1 69 186 175 46 m \n", "\n", " genhlth \n", "0 good \n", "6 very good \n", "7 very good \n", "9 good \n", "10 excellent " ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mdata.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can carve up the data based on values of one or more variables. As an aside, we can use several of these conditions together with `&` and `|`. The `&` is read \"and\" so that" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
exeranyhlthplansmoke100heightweightwtdesireagegendergenhlth
00107017517577mgood
61107119418531mvery good
70106717016045mvery good
91107018017044mgood
101116918617546mexcellent
\n", "
" ], "text/plain": [ " exerany hlthplan smoke100 height weight wtdesire age gender \\\n", "0 0 1 0 70 175 175 77 m \n", "6 1 1 0 71 194 185 31 m \n", "7 0 1 0 67 170 160 45 m \n", "9 1 1 0 70 180 170 44 m \n", "10 1 1 1 69 186 175 46 m \n", "\n", " genhlth \n", "0 good \n", "6 very good \n", "7 very good \n", "9 good \n", "10 excellent " ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m_and_over30 = cdc[(cdc['gender'] == 'm') & (cdc['age'] > 30)]\n", "m_and_over30.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "will give you the data for men over the age of 30. The `|` character is read \"or\" so that" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
exeranyhlthplansmoke100heightweightwtdesireagegendergenhlth
00107017517577mgood
10116412511533fgood
21116010510549fgood
31106613212442fgood
40106115013055fvery good
\n", "
" ], "text/plain": [ " exerany hlthplan smoke100 height weight wtdesire age gender \\\n", "0 0 1 0 70 175 175 77 m \n", "1 0 1 1 64 125 115 33 f \n", "2 1 1 1 60 105 105 49 f \n", "3 1 1 0 66 132 124 42 f \n", "4 0 1 0 61 150 130 55 f \n", "\n", " genhlth \n", "0 good \n", "1 good \n", "2 good \n", "3 good \n", "4 very good " ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m_or_over30 = cdc[(cdc['gender'] == 'm') | (cdc['age'] > 30)]\n", "m_or_over30.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "will take people who are men or over the age of 30 (why that's an interesting group is hard to say, but right now the mechanics of this are the important thing). In principle, you may use as many \"and\" and \"or\" clauses as you like when forming a subset." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "

Exercise 4

\n", "Create a new object called under23_and_smoke that contains all observations of respondents under the age of 23 that have smoked 100 cigarettes in their lifetime. Write the command you used to create the new object as the answer to this exercise.
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Quantitative data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With our subsetting tools in hand, we'll now return to the task of the day: making basic summaries of the BRFSS questionnaire. We've already looked at categorical data such as `smoke100` and `gender` so now let's turn our attention to quantitative data. Two common ways to visualize quantitative data are with box plots and histograms. We can construct a box plot for a single variable with the following command." ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABnMAAAOUCAYAAAB5X8YCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AACRTklEQVR4nOzde5iVZb0//s8cGIYzOByGk4gIIgfJUwoeQM3AtK+JhcdSszIx7bvbO6vttrRMs7QdmWhaXzXTULem7gp1awkKiGYpICCo4AGY4XwchoGZ9fvDH2uzmBnmwAzrcXi9rovL57nXfd/P55nFcDnzXs9956RSqVQAAAAAAACQSLnZLgAAAAAAAIDaCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAg7aCDDoqcnJz0n+uvvz7bJVEPa9asiVtvvTXOPPPM6NevX3Ts2DHjfczJyYknnniiya63+9z33Xdfk82dRB+n74ulS5dWe39eeOGFbJcFAMBeys92AQAAADTeHXfcEddcc02UlZVluxQAAKCZCHMAAGiQF154IU4++eQGjWnTpk107NgxunbtGsOHD4+jjjoqzjnnnOjfv38zVQn7h5/97GdxzTXXZLsMAACgmQlzAABodlu3bo2tW7dGaWlpvPnmmzFlypS45pprYsyYMXHbbbfFEUccke0S+Zi577774tJLL81oS6VSWaomOxYtWhTXXntttfa+ffvGkCFDon379hntvXv33lelsZ+65JJL4v7770+fjx492hJvAABNRJgDAEBWpFKp+Nvf/hbHHHNM3HzzzfHtb3872yXBx8pdd90V27dvT5+3atUqfv/738eECROyWBUAANAchDkAAOy1ww47LIYMGVLja6lUKjZt2hQlJSWxcOHCjF8+R0RUVlbGNddcE7m5ufGv//qv+6JcaBH++7//O+P8a1/7miCnmSxdujTbJQAAsJ8T5gAAsNcmTJgQ119/fZ39ysrK4o9//GN8//vfj3fffTfjtWuvvTY++9nPxqBBg5qpSmg5NmzYEO+8805G22c+85ksVQMAADS33GwXAADA/qNt27Zx4YUXxuuvvx7HHHNMxmvbtm2L22+/PUuVwcfLsmXLqu0RdNBBB2WnGAAAoNkJcwAA2Oc6dOgQ9913X7X2J598ct8XAx9DGzdurNbWtm3bLFQCAADsC8IcAACyYsiQITFixIiMtg8++CAqKiqyVBF8fJSXl2e7BAAAYB+yZw4AAFkzcODAeOONNzLaVq9eHb169Wr0nO+++27MmTMnVq5cGWvWrIn27dtH9+7d4+CDD46jjjoqcnNbzueZ5s2bF//85z+jpKQkKisro1evXtG/f/8YOXJk5Ocn43/196f3Y3dr166N2bNnR0lJSaxatSry8/OjW7du0bt37xg5cmS0adMm2yU2q4qKinj55Zdj/vz5sXbt2mjTpk1069YtPvGJT8SwYcOa5ZpvvvlmLFq0KP33rUOHDtGtW7c49NBD4xOf+ETk5OQ0y3UbYsWKFfHyyy/HihUrYt26ddG+ffsYMGBAHHvssdGtW7d9VseWLVti1qxZ8dZbb8X69evT35uf/OQnY8CAAfusDgAA6ikFAAAN8Le//S0VERl/fvCDHzRqrs9//vPV5lq3bl2D51m3bl3q2muvTQ0cOLDafLv+KSoqSn3xi19MzZ8/v17zXnzxxdXmuPnmmxtc3wMPPFBtntNPPz1VVVVVY/8f/OAHGX379euXfm379u2pX/7yl6n+/fvXep9du3ZNXXXVVak1a9Y0uNZ+/frt9XvbXO/H7l+Xhv7Z9evYXHbs2JH69a9/nTr22GNTubm5tdZSWFiYGjt2bGrq1Kn1mvfee+/dq3v/29/+1qT3ufv89957b/q10tLS1NVXX53q2LFjrfX06dMndfvtt6e2b9++17UsWrQo9dWvfjXVu3fvPX4NunXrlvrqV7+aWrp0aYOv0RTfF3/5y19SJ554Yq1/L3Jzc1Njx45NzZgxIz2mpn9vlyxZssfrLFmyZI/v/zvvvJO65JJLUoWFhbV+rQ499NDUgw8+WOu/UbsaPXr0Xv3dvPjiixv8tQQA2B+13I/BAQCQeG+//XbGeZcuXaJTp04NmuM3v/lNDBgwIH784x/H4sWL99h3zZo18cADD8Tw4cPjyiuvjG3btu2x/+TJk2Po0KEZbdddd13MmDGj3vUtWLAgvv71r2e09enTJ373u981+CmBFStWxMiRI+Pqq6+OJUuW1Npv9erVcfvtt8dhhx0Wf/rTnxp0jb3VnO9H0s2cOTOGDRsWl19+ecyePTuqqqpq7VteXh7PPPNMnH766fGpT30qPvjgg31YafN5+umn47DDDotf/vKXNe7rs9OHH34YV111VZx00kmxbt26Rl1r06ZNcfnll8eQIUPinnvuiWXLlu2x/6pVq+Kee+6JQYMGxfXXXx+pVKpR122oLVu2xLnnnhuf+cxn4sUXX6z170VVVVU888wzccIJJ8S1117bLPXdd999MXz48Ljvvvv2uFTfW2+9FRdeeGGcffbZH/vvSwCAlkKYAwBAVixcuLDaEmsnnnhivQOOVCoV3/nOd+KrX/1qrF27tkHXrqysjMmTJ8fYsWNj/fr1tfZr27ZtPProo9GuXbt0244dO+K8886L1atX13mdrVu3xoQJE2LLli3ptvz8/PjDH/4QXbt2bVDNa9asiZNOOin+/ve/13vMypUr4+yzz47HH3+8QddqjH3xfiTZ448/HqeeemosXLiwwWOff/75GDlyZMybN68ZKtt3HnvssTjzzDMb9P7PmjUrxo4dGzt27GjQtT788MM44YQT4u67727w2IqKirjhhhvivPPOa/Y9urZs2RJnnHFGPPLII/Uek0ql4qabbopvfetbTVrLL37xi7j00kujrKys3mOefPLJOO+885q0DgAAGicZC2kDALBf2bx5c1x66aXVPnl++eWX13uOH//4x/HTn/60Wnv//v3jwgsvjFGjRkX37t1j/fr1sWDBgpgyZUq1J2qmTZsWZ511Vvztb3+rde+Www47LCZPnhwXX3xxuu3DDz+ML33pS/HnP/95j+HTlVdeWe0X9D/60Y/ihBNOqPd97nTJJZekn2TKycmJz3zmM3HOOefEgAEDok2bNrFs2bJ45plnYsqUKRmByM7wacaMGXHMMcc0+Lr1tS/ejyFDhsQ555wTERHvvfdetWBr52u16d69e0Nvq16mTZsWX/jCF6o9cdGpU6c499xzY+zYsdG7d+/Yvn17LF26NJ588sl44oknMkKIZcuWxcknnxxz586N4uLiatc46KCDMu5v1apVMX369Iw+p59+erRt27bGGpt7L5bXX3897rrrrqisrIyIiEGDBsWECRNi5MiR0b1799i2bVssWrQopkyZEs8++2zG2FdffTVuueWWuPbaa+t1rVWrVsWoUaOqPc3UoUOH+PznPx8nnHBCHHzwwdGpU6fYvHlzvPvuu/Hss8/Go48+Gtu3b0/3f+SRR6J79+5x++237+Xd1+7SSy+NadOmVWsfNWpUnHvuuTF06NDo0qVLrFq1Kv7xj3/EH/7wh5g7d25EfBS+7Px67q2//OUvceutt6bPjzzyyDjnnHPi6KOPjq5du8bmzZtj3rx58bvf/S5mz56dMfaJJ56IBx98MC688MIa5x49enQ6nP773/8e7733Xvq1rl27xujRo/dYW3P+uwQA0KJkc403AAA+fvZmz5yysrLUH/7whxr3Ujn33HPrXcPLL7+cys/PrzbHd7/73VR5eXmt4x5++OEa9/H48Y9/XOc1v/zlL1cbt6f9c+6///5q/fe0T86udt8bJicnJ33cq1ev1AsvvFDr2BUrVqQ+/elPV7v28OHDUxUVFXVeuzF7g2Tj/ahpD5lsWLduXapv377VavnMZz6TWrFiRa3j/vnPf6YOO+ywauPGjh1br78jjdlLpSntfu2df0fz8/NTkyZNSu3YsaPWsffff38qLy8vY/wBBxywx78rO1VWVqZOO+20anvNfOtb30pt2rRpj2OXLl2aGjVqVLXan3zyyTqv25jvi0cffbTatdq1a5eaMmXKHu9v0qRJ6a9PTfvrNGbPnJ3vT7t27VIPPfRQrWOrqqpSN910U7XxQ4cOrfN+U6nq+4yNHj26XuMAAKibMAcAgAap6ZfIhx12WOqcc86p8c/48eNTY8eOTR1++OGpgoKCWjfA3rZtW71rOO644xoVAKRSqdT06dOrbfxdUFCQKikp2eO4srKy1PDhwzPG5efnp1566aVqfd98881Uu3btMvr26dMntWrVqnrVuHuYs/NPly5dUm+++Wad48vLy2vclPz222+vc2xjfmmdjfcjKWHOd7/73RqDnPoEZytWrEgNGDCg2vg//vGPdY5NWpizMzB4/PHH6zX+3//936uNf/jhh+scd+edd1YLch544IF6111eXp46/vjjM+Y4/PDD6xzX0O+LysrK1EEHHVTt34vnn3++XnXed999NX6NGxvmRESqdevWqZdffrle17/ggguqjZ89e3ad44Q5AADNx545AADstQULFsRjjz1W45/HH388nnnmmZgzZ07G/hR9+vSJSy65JGbMmBH33XdfFBQU1Otar7zySrz88ssZbaNHj45///d/r9f4E088sdpyThUVFXHnnXfucVybNm3i0Ucfjfbt26fbato/p6ysLL7whS9k7JOTl5fXqH1ydnfLLbfEkCFD6uzXunXruP/++6NNmzYZ7XXdY2Nk6/1Igq1bt8Y999yT0VZUVBT3339/tGrVqs7xxcXFce+991Zbqu8Xv/hFU5a5z0ycODHOPvvsevW95pprorCwMKNt92XjdldZWRk/+9nPMtquvvrquOiii+pdY+vWreP3v/99xr83c+bMqbb0296aOnVqLF26NKPt6quvjlNOOaVe4y+++OJ6fy3r68Ybb4xjjz22Xn2///3vV2ur6/0BAKB5CXMAAMiKdevWxdq1a2PdunUNGvfb3/62Wtvuv+CtyzXXXBM9evTIaPvNb35T57hDDz007rrrroy2nfvnpP7//X8mTpwY8+fPz+jT2H1ydjVgwIC47LLL6t2/X79+8fWvfz2jbf78+dWCl72Vzfcj25544olYs2ZNRtt3vvOdBoV2J554Ypx11lkZbdOmTUvvj/Rx0apVq/je975X7/6dOnWqFmy89tprexzzxBNPxLvvvps+b9OmTVx//fUNqjPio/2Hdg9K/vKXvzR4nj154IEHMs4LCgrqvSfQTjfccEOT1VNUVBRXXnllvfsfeuih1YLjut4fAACalzAHAICs2LJlSzz11FNx5plnxgknnBBLliyp17jdPx0+dOjQBm+gXVBQUO3T/MuWLatXDRdeeGF89atfzWibOnVq3HLLLXHvvffG/fffn/HauHHj4rvf/W6D6qvturm5Dfvf94svvrhaW1N/uj7b70c27X7veXl58cUvfrHB89QU0r344ouNrisbRo0aFb17927QmBEjRmScf/jhh3vs//TTT2ecn3HGGdGpU6cGXXOn3YOkpv6+mDFjRsb56aefHgcccECD5hg+fHgcfvjhTVLPmWeeWe1Jvbo09P0BAKB5CXMAANhrP/jBDyL10X6MNf6pqKiIVatWxcyZM+PWW2+NYcOGZYyfMWNGfPKTn4w333xzj9dZt25dvPXWWxltp512WqNqHjt2bLW2WbNm1WvsL3/5y2q/6LzuuuuqffK9d+/e8cADD1RbRqsxTj311AaPGTFiRBQVFWW0zZ49e69r2Skp70e27F7f8OHDo7i4uMHznHrqqZGXl7fHuZPuuOOOa/CY3Z/G2rBhwx77T5s2LeP86KOPbvA1d+rTp0/G+YIFCxo91+6WL19eLfho7JN5e/tE30774v0BAKB5CXMAAGh2rVq1iq5du8bIkSPjX//1X2POnDlx2223ZYQcq1evjtNPPz02btxY6zxvv/12ejmznY488shG1VTTuEWLFtVrbGFhYTzyyCPRoUOHdNuOHTti69at6fO8vLyYMmXKXu+Ts9Pu4VF9feITn8g4X7hwYRNU85GkvB/Zsnjx4ozzxt57mzZt4rDDDstoS/q9765nz54NHrPr909ExObNm2vtu3nz5mpf7+9+97uRk5PTqD9nnHFGxlzl5eVRVlbW4HuoSU1PlDX2CZumejKnud8fAACanzAHAIB9LicnJ771rW9V2xPigw8+iB/84Ae1jqtpf53dP2FfX0VFRdU2YG/I/j2DBg2Ku+++u9bXm2KfnJ3atm3b6OWkevXqlXHe0D2K9iRJ78e+VlFRUe2X/42995rGJvnea9KxY8cGj9l92cDdg8FdrV69usHzN1RTfc3Xr19fra1bt26NmqupwuCmeH+qqqqapBYAABpHmAMAQNZ8+9vfrnHj+02bNtXYv6Zftjbml5Q77R6QrF27tkHjJ0yYEIcccki19iOOOKJJ9snZqSnvsbnDnGy+H/vS/nzvNWmKpQT3ZM2aNc06f0TE9u3bm2SemsKc3Z9yqa+9+Tu1q+Z+fwAAaH752S4AAID9V2FhYXz605+OBx54IN22efPmmDZtWpx55plZrKx+brjhhnj77bertc+ZMyemTZsWY8aM2fdFQQtUUVFRre2oo46Kgw46qMmu0a5duyaZp3Xr1tXaaqq/Pho7DgCAlkeYAwBAVg0bNqxa22uvvVZjmNOlS5dqbXvaY6cuu2/ofcABB9R77PPPPx833nhjja9VVlbGBRdcEK+//np079690fXt1JT3WNPXsLGS9H7sa/vzvWdDTV+PL33pS3H11VdnoZo969y5c7W2xv7d2Ju/UwAAtCyWWQMAIKtq+qX4qlWr6t132bJljbrumjVrory8vM75a1JSUhIXXnhhxh4Su+/3smLFivjiF7/YJPtMlJWVVftlf30tX74847y5w5xsvB/ZUFBQEG3bts1oa+y91zQ2yfeeDTXtHbMv9tFpjJpqfffddxs11zvvvLO35QAA0EIIcwAAyKotW7ZUa6ttI/RDDjmk2t4P//jHPxp13ZrGDRo0qM5xVVVVceGFF0ZpaWlG+4MPPhhf+cpXMtqeffbZuOmmmxpV3+7eeOONRo17/fXXM84HDx7cBNV8JAnvRzYNHDgw47yx915eXh4LFizIaEv6ve9rBxxwQLWQpLFf7+Z22GGHRUFBQUZbY2v95z//2RQlAQDQAghzAADIqqVLl1Zr69GjR419u3TpUi2MeO655xp13f/5n/+p1jZq1Kg6x/3oRz+Kv/71rxltV111VYwfPz5++ctfxvDhwzNeu/7662P69OmNqnFXu1+zPubMmVNt4/hjjz12r2vZKZvvR25u9R9lagsBm8vu9c2dOzdWrlzZ4Hn++te/xo4dO/Y49/4uJycnTj311Iy2l156KbZt25alimrXunXrOOKIIzLannrqqQbPU1ZWVuP3RZLt/n25r78nAQBaMmEOAABZVdMv/wcMGFBr/5NOOinjfO7cufHaa6816Jrbt2+PBx54IKOtb9++dW6m/re//S1++MMfZrQdddRRceutt0ZERJs2beKRRx7J2Ei9srIyzj///FqXjquvBx98sMG/GP3d735XrW33r9/eytb7sfsSZxERW7dubdB199bu975jx45q91Efv/3tb6u1nXjiiY2uq6UaO3ZsxvmGDRvi3nvvzVI1e3b66adnnC9evLjBgexDDz0UmzZtasqymt3u35f7+nsSAKAlE+YAAJA1f/7zn+PNN9/MaMvLy6v2S9td7b6UWUTENddc06Dr3nrrrVFSUlLnvLsqLS2NCy64IGMPnI4dO8YjjzySsaTS4MGD46677soYu3z58vjiF7+4V59Sf/vttxv0i+sPPvgg7rzzzoy2IUOGxHHHHdfoGmqSrfejU6dO1dp23x+ouX3uc5+rtvTXT37yk1i7dm2955g5c2b88Y9/zGg7+eST9xho7q/OO++86NmzZ0bbD3/4w1ixYkWWKqrdV77ylcjLy8to++Y3vxkVFRX1Gr9u3bq49tprm6O0ZrX79+W+/p4EAGjJhDkAAGTF/Pnz45JLLqnWfsYZZ9S4gfhORx99dLUlqP7617/Gz372s3pdd8aMGfGjH/0oo61169bx9a9/vdYxO/fJ2T1w+M1vfhMHH3xwtf4XXXRRfPnLX85oe+aZZ+Lmm2+uV421ueaaa+Ktt96qs9+2bdvikksuibKysoz2K664Yq+uX5NsvB8RNe8p89JLL9Xrmk2lsLAwvva1r2W0rV69Oi699NJqy6bVZOXKlXHJJZdUC/n+7//9v01ZZovRpk2b+N73vpfRtmLFijjrrLMa/eRbZWVlTJkyJdavX98EFf6v3r17x/nnn5/RNm/evDj//PPr/LuxefPmOOOMMxq1ZF+27f59uWzZshqX0gQAoOGEOQAA7FPvvfdefP/734+jjz46Vq9enfFaQUFB3HbbbXXO8Ytf/CJatWqV0XbNNdfE97///T1+8v2xxx6LM844o9rSP9dff31079691nE33nhjPP/88xltEydOjC984Qu1jrn99ttj6NChGW3f//7348UXX6x1TG1ycnIiImLNmjXxqU99ao+hRWlpaXzuc5+rtqTTsGHD4vLLL2/wtetjX78fERH9+vWrtrfSD3/4w2pPejW3a665Jvr165fR9tRTT8U555yzx1/Gz5kzJ0455ZRYvHhxRvu4cePis5/9bLPU2hJcccUVccopp2S0vfrqq3HkkUfGH//4x3o//fbuu+/GLbfcEoccckicf/75sXnz5iav9ec//3m1YPrxxx+Po48+Op577rmMp/wiIioqKuKxxx6L4cOHx6xZsyIi4pBDDmnyuppTTXtyTZw4sdreXQAANFx+tgsAAODj75FHHol58+bV+vr27dtj48aNsXjx4li2bFmNffLy8uJ3v/tdvX55ecwxx8QNN9wQ//7v/57R/qMf/SgeeuihuPDCC+O4446LHj16xIYNG2L+/Pnx8MMP1xikjBkzZo/Lgr3wwgvV9sk54ogj4uc///kea2zbtm08+uijccwxx8SWLVsi4n/3z3n99df3+PTR7g488MAYNmxY/PnPf44PP/wwTjrppDjzzDNj/Pjxccghh0Tr1q1j+fLl8eyzz8ZDDz1U7SmDVq1axf/7f/+vWuDSVPbl+7Griy66KCP8W7JkSQwbNiwOPfTQ6N+/f7Rt2zYdhEVEdO/ePSZPntzIu6xZp06d4oEHHoiTTz45Kisr0+1PPfVUTJ8+Pc4///w47bTTonfv3rF9+/ZYunRpPPnkk/HEE0/E9u3bM+bq3r173HfffRk1kyk/Pz8effTROPbYY+Ptt99Ot3/44Ycxfvz4GDhwYHzmM5+JkSNHRnFxcXTq1CnKyspi/fr18d5778U///nPmD17dsyZM6fZa+3WrVvcd999cfbZZ2e812+88Uacdtpp0a1btxg8eHB07tw5Vq9eHW+++WZs3Lgx3a9v375x8803VwuNk/z3Y/DgwXHUUUdl7Js1derU6NmzZwwfPjx69eoVrVu3zhhz8sknx5VXXrmvSwUA+NgR5gAAsNcWLFgQCxYsaPT4oqKiuPvuu2P8+PH1HvO9730vNm7cGD/5yU8y2t95551q4UttxowZE0888UTk5tb8wPrKlSvjggsuyPgl/c59cnb/hWRNDjvssLjjjjsylpNbtmxZfOlLX4o///nPDfql7L333hsjR46Md955J1KpVPz3f/93/Pd//3ed4/Lz82PKlClxzDHH1PtajbEv3o/dffvb344HH3yw2vJ3b731Vo3L0e3+BE1TOfHEE+O//uu/4vzzz4/y8vJ0+/r16+POO++stndRTfr06RNPP/10taeNqO6AAw6Il156Kc4999yYNm1axmuLFy+OSZMmxaRJk7JUXaYzzjgjHn744Tj33HOrhXerVq2qdXm4Hj16xJ///OcaX2/btm2z1NpUfvazn8Vpp52W8e/m9u3b4x//+Ef84x//qNa/ffv2+7I8AICPLcusAQCQNe3bt4/LL788FixY0KAgZ6ebb745fvOb38QBBxzQoHF5eXkxceLEePrpp6tt2L1TVVVVXHTRRdU2V7/nnnsatPTRxRdfXG1voKlTp8Ytt9zSoJq7desWL7zwQhxxxBENGvP444836mvbGM35ftSkR48e8eyzz1Zbzi4bPve5z8Xzzz8fhx12WIPHfupTn4pZs2Yl4j4+Lnr06BHPPfdc/OAHP4iOHTs2ep5WrVrFZz/72Qb9vWuos88+O1599dU47rjj6tV/7Nix8corr8Tw4cNjw4YN1V5vzlqbwsknnxwPP/xwg/8dAABgz4Q5AAA0u9zc3OjcuXP069cvTjjhhLj66qvjoYceipKSkrjrrruiW7dujZ77sssui3feeSeuvfbaGDhw4B77FhUVxRe/+MWYN29e3HHHHXt8uuamm26K//mf/8lo+/rXvx4TJkxocI133HFHDBkyJKPtuuuuixkzZjRonj59+sTs2bPj5z//eRx44IG19uvatWtcddVVsXDhwn2+/0pzvR+1GT58eLzxxhvxl7/8JS6//PI47rjjori4ONq1a7fPl6MaNWpUzJ07N+6+++449thj9/iEUWFhYYwdOzamTp0a//M//xN9+vTZh5W2DPn5+XH99dfHe++9FzfeeGMcddRR9Xqqq0uXLjF+/Pi46667YtmyZfHUU09Fhw4dmrXWESNGxMyZM+O5556Lyy+/PA4//PDo2rVr5OXlRadOneLII4+Mb3zjGzFz5sx4+umn09/fu+8r1qZNmygoKGjWWpvCOeecE0uXLo177703LrjggvT9NuZ7HACAj+Sk6rtDJAAAfAy888478cYbb8SqVatizZo10b59++jWrVsMGDAgjj766Hov4ZVN119/fdxwww3p8379+sXSpUur9ZszZ068/vrrUVJSElVVVVFcXBz9+/eP448/PvLzk7Gickt4PxprzZo18fLLL0dpaWmsWrUq8vPzo1u3btG7d+8YOXJk4pfL+jjasGFDvPLKK1FaWhpr1qyJTZs2Rbt27aJDhw7Rt2/fOOyww6Jv376J3ndmV1dccUXcdddd6fPhw4fvk/1+AABInmT8hAcAAE1kwIABMWDAgGyXsU8cfvjhcfjhh2e7jD3an96P3RUVFcUZZ5yR7TL2K506dYrTTjst22U0mb/+9a8Z58299xUAAMnVcj8GBwAAAB9Tzz77bCxatCijrb777gAA0PIIcwAAACBBNm/eHFdddVVGW9u2beMLX/hClioCACDbhDkAAADQDJYtWxYPP/xwVFZW1nvMmjVr4rOf/Wy1p3LOO++86Ny5cxNXCADAx4UwBwAAAJrBunXr4rzzzouBAwfGddddF6+//nqtwc6KFSvi1ltvjWHDhsULL7yQ8VpRUVH86Ec/2gcVAwCQVPnZLgAAAABasiVLlsSNN94YN954Y7Rt2zYOO+ywKCoqijZt2sT69evjgw8+iHfffbfGsbm5ufGb3/wmevXqtY+rBgAgSYQ5AAAAsI+UlZXFa6+9Vq++7du3j4ceeig++9nPNnNVAAAknWXWAAAAoBkccMABceSRRzZ4XF5eXlx44YXxj3/8Q5ADAEBEeDIHAAAAmkWvXr3itddei/feey/++te/xssvvxwLFy6M999/P9auXRtlZWWRn58fXbp0iaKiohg+fHiMHj06xo0bF/369ct2+QAAJEhOKpVKZbsIAAAAAAAAamaZNQAAAAAAgAQT5gAAAAAAACSYMAcAAAAAACDBhDkAAAAAAAAJJswBAAAAAABIMGEOAAAAAABAgglzAAAAAAAAEiw/2wW0JKlUKqqqqrJdBgAAkCV5eXkREVFZWZnlSgAAgGzKzc2NnJycJptPmNOEqqqqorS0NNtlAAAAWZCbmxvFxcUREbFq1Sof9AIAgP1Yjx490h/2agqWWQMAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJFh+tgsAAABoCTZt2hRr166NzZs3x9atW6O4uDg6dOiQ7bIAAIAWQJgDAADQSKlUKmbOnBn33XdfPPPMM1FZWZl+LS8vL8aNGxcXX3xxjBo1KnJycrJYKQAA8HGWk0qlUtkuoqWorKyM0tLSbJcBAADsA3Pnzo1vfvOb8dZbb9XZ99BDD41JkybF8OHD90FlAABAtvXo0SPy8vKabD5hThMS5gAAwP5h+vTpcdlll0VZWVm6rVu3bjFu3Ljo1KlTlJSUxLRp02LVqlXp19u2bRu//e1v46STTspGyQAAwD4kzEkwYQ4AALR8c+fOjfHjx6eDnGHDhsWVV14Zn/nMZ+LAAw+MiIiSkpIoLy+PqVOnxuTJk2PevHkR8VGg8/jjj3tCBwAAWjhhToIJcwAAoGVLpVJx6qmnppdWGzduXNxxxx1RWFgYubm5UVxcHBEfhTlVVVUREVFeXh4TJ06MZ555JiIiBg8eHM8995w9dAAAoAVr6jAnt8lmAgAAaOFmzpyZDnKGDRuWDnL2pLCwMCZPnhzDhg2LiIiFCxfGrFmzmr1WAACg5RDmAAAA1NP999+fPp44cWKdQc5OhYWFMXHixBrnAQAAqIswBwAAoB42bdoUTz/9dEREdOvWLU4//fQGjT/99NOja9euERExderU2LRpU5PXCAAAtEzCHAAAgHpYsWJFVFZWRkTESSedFAUFBQ0aX1BQEKNHj46Ij/bbLCkpafIaAQCAlkmYAwAAUA9btmxJH3fs2LFRc3To0CF9vHnz5r2uCQAA2D8IcwAAAOqhXbt26eONGzc2ao5dl1Zr3779XtcEAADsH4Q5AAAA9dCzZ8/Iy8uLiIjp06dHRUVFg8ZXVFTEtGnTIiIiPz8/iouLm7xGAACgZRLmAAAA1EOHDh1i3LhxERGxatWqmDp1aoPGT506NVavXh0REePGjctYcg0AAGBPhDkAAAD1dPHFF6ePJ0+eHOXl5fUat3Xr1pg8eXKN8wAAANRFmAMAAFBPo0aNikMPPTQiIubNmxcTJ06sM9ApLy+PK6+8MubNmxcREYMHD46RI0c2e60AAEDLIcwBAACop5ycnJg0aVK0bds2IiKeeeaZOOuss+LJJ5+stodORUVFPPnkk3HWWWfFM888ExERbdu2jV/84heRk5Ozz2sHAAA+vnJSqVQq20W0FJWVlVFaWprtMgAAgGY2ffr0uOyyy6KsrCzd1q1btxg3blx07NgxSktL44UXXkjvkRPxUZDz29/+Nk466aRslAwAAOxDPXr0iLy8vCabT5jThIQ5AACw/5g7d25885vfjLfeeqvOvoMHD45f/OIXMXz48H1QGQAAkG3CnAQT5gAAwP4llUrFrFmz4r777ounn346Kisr06/l5+fHuHHj4uKLL46RI0daWg0AAPYjwpwEE+YAAMD+a8uWLbFjx47YtGlTlJeXR48ePaJDhw7ZLgsAAMiCpg5z8ptsJgAAgP1Yhw4dori4OCIiSkpKoqqqKssVAQAALUVutgsAAAAAAACgdsIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEiw/H11ofnz58f06dNj4cKFsW7dutixY0d06dIlDjzwwBg1alSMHDky8vLyGjTn3LlzY9q0abF48eJYu3Zt5OfnR1FRUYwYMSJOOeWU6N27dzPdDQAAAAAAwL6Rk0qlUs15gU2bNsWvfvWr+Oc//7nHfgcffHBcddVV9QpgysrK4u67746ZM2fW2icvLy8mTJgQZ599doNrbqzKysooLS3dZ9cDAACSIzc3N4qLiyMioqSkJKqqqrJcEQAAkC09evRo8AMse9KsYc7mzZvj2muvjRUrVqTbevToEQMHDoyCgoIoLS2NhQsXRmVlZUREdOrUKX784x9H9+7da51zx44dcdNNN8W8efPSbX379o3+/fvH9u3b00/+7DRhwoT4/Oc/3wx3V50wBwAA9l/CHAAAYKemDnOadZm1u+66Kx3ktGrVKi6//PI46aSTMvqUlJTEpEmT4p133okNGzbEbbfdFj/5yU8iJyenxjkfe+yxdJDTqlWrmDhxYhx//PHp13fs2BFTpkyJp556KiIiHn300RgyZEgMGTKkOW4RAAAAAACgWeU218TvvvtuvPLKK+nzK664olqQExFRXFwc//Ef/xFdu3aNiIglS5bESy+9VOOcGzZsiD/96U/p80suuSQjyImIyM/Pj4suuihGjRoVERGpVCoeeuihvb4fAAAAAACAbGi2MGfWrFnp4379+sUJJ5xQa9927dpl7G3zl7/8pcZ+06ZNi23btkVERM+ePeNTn/pUrXNedNFF6ad7Fi1aFEuWLGlQ/QAAAAAAAEnQbGHO22+/nT4+4ogj6ux/5JFHpo/feeedWL16dbU+r776avp4zJgxtS7FFhHRtWvXGDZsWPp816eEAAAAAAAAPi6aLcxZv359+njnEmp7csABB0Ru7v+Ws3NfnJ0qKipi0aJF6fOhQ4fWOeeufXafDwAAAAAA4OOg2cKchsrJycl40uaDDz7IeH358uWRSqXSfQ866KA65zz44IPTx8uWLWuaQgEAAAAAAPahZgtzOnbsmD6uacm03a1duzYqKyvT57uHL8uXL8+Yu6CgoM45d30iaPPmzbFx48Y6xwAAAAAAACRJfnNN3L9//1iwYEFERLzxxhtxwQUX7LH/P/7xj4zzzZs313reuXPnetWwe7/NmzdnhEz1sWbNmnpdJy8vLyIiY6k4AABg/7HrzwJ+LgAAAJpSs4U5xxxzTPzlL3+JiIglS5bEyy+/HMcdd1yNfbdu3RpPPvlktbZdlZeXp4/r81ROTf12naO+rrjiijr73HnnnVFUVBR5eXlRXFzc4GsAAAAtS/fu3bNdAgAA0II028fFhg4dGoceemj6/I477ogZM2ZU67dy5cq46aaborS0NKO9oqKi1vP8/PplULv3231OAAAAAACApGu2J3MiIq666qr43ve+F5s2bYpt27bFpEmT4uGHH46BAwdGq1atorS0NBYuXBiVlZXRunXrGDx4cLzxxhsREdGmTZuMuXZ9ymbHjh31uv7u/er7RM+u7rzzzjr77FzOrbKyMlatWtXgawAAAB9/ubm56SdyVq5cGVVVVVmuCAAAyJZu3bqlt2dpCs0a5nTv3j1uvPHGuO222+L999+PiIiSkpIoKSnJ6NepU6e4+uqr49VXX02HOe3atcvoU1hYmD6u7xM2u/fbdY76KioqalB/P7ABAABVVVV+NgAAAJpMs4Y5ERE9e/aMn/70pzFr1qx4+eWX4+23346NGzdGq1atokePHvHJT34yTjvttOjYsWP89a9/TY/bPURp3759+nj9+vX1uvbu/XadAwAAAAAA4OOg2cOciI+WGzj++OPj+OOP32O/Dz/8MH08YMCAjNd69eqVPt64cWNUVFTUuWza6tWr08ft27ePjh07NqRsAAAAAACArMvNdgE7bdmyJSPMOfTQQzNe79WrV+Tk5ERERCqViqVLl9Y557vvvps+7t27d9MUCgAAAAAAsA8lJsyZPXt2VFZWRkREnz594uCDD854vaCgIAYNGpQ+nz9/fp1zLliwIH08bNiwJqoUAAAAAABg30lEmLN9+/b44x//mD4/7bTTaux3zDHHpI9feOGFPc65evXqmDt3bo1jAQAAAAAAPi6yHuakUqm45557orS0NCIi+vbtW2uYM3r06GjdunVERCxfvjyef/75Wud98MEHo6qqKiIiBg0aVO1JHwAAAAAAgI+DZg1z3njjjXjkkUfSQc3uSkpK4pZbbkk/ZVNQUBBXXHFF5Ofn19i/U6dOceaZZ6bP77333pg5c2ZGnx07dsSDDz4YM2bMSLddcMEFe3knAAAAAAAA2ZGTSqVSzTX5jBkzYtKkSRER0bNnzzjwwAOjQ4cOsXXr1li+fHksWbIk3bdVq1bxne98Jw4//PA9zrljx4646aabYt68eem2Aw88MPr37x/bt2+PBQsWxLp169KvTZgwIT7/+c838Z3VrLKystbgCgAAaNlyc3OjuLg4Ij764NrOlQIAAID9T48ePSIvL6/J5qv5EZhmsGLFilixYkWNrw0YMCC++tWv1msptPz8/Pi3f/u3+PWvfx2zZs2KiIj3338/3n///Yx+eXl58YUvfCHGjx+/98UDAAAAAABkSbM+mVNeXh5z5syJefPmxeLFi2P9+vWxcePGKCgoiM6dO8chhxwSI0eOjE984hORm9vwFd/mzJkT06ZNi0WLFsX69esjLy8vioqKYsSIEXHKKadEnz59muGuaufJHAAA2H95MgcAANipqZ/MadYwZ38jzAEAgP2XMAcAANipqcOchj8OAwAAAAAAwD4jzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABMvPdgEAAAAtwaZNm2Lt2rWxefPm2Lp1axQXF0eHDh2yXRYAANACCHMAAAAaKZVKxcyZM+O+++6LZ555JiorK9Ov5eXlxbhx4+Liiy+OUaNGRU5OThYrBQAAPs5yUqlUKttFtBSVlZVRWlqa7TIAAIB9YO7cufHNb34z3nrrrTr7HnrooTFp0qQYPnz4PqgMAADIth49ekReXl6TzSfMaULCHAAA2D9Mnz49LrvssigrK0u3devWLcaNGxedOnWKkpKSmDZtWqxatSr9etu2beO3v/1tnHTSSdkoGQAA2IeEOQkmzAEAgJZv7ty5MX78+HSQM2zYsLjyyivjM5/5TBx44IEREVFSUhLl5eUxderUmDx5csybNy8iPgp0Hn/8cU/oAABACyfMSTBhDgAAtGypVCpOPfXU9NJq48aNizvuuCMKCwsjNzc3iouLI+KjMKeqqioiIsrLy2PixInxzDPPRETE4MGD47nnnrOHDgAAtGBNHebkNtlMAAAALdzMmTPTQc6wYcPSQc6eFBYWxuTJk2PYsGEREbFw4cKYNWtWs9cKAAC0HMIcAACAerr//vvTxxMnTqwzyNmpsLAwJk6cWOM8AAAAdRHmAAAA1MOmTZvi6aefjoiIbt26xemnn96g8aeffnp07do1IiKmTp0amzZtavIaAQCAlkmYAwAAUA8rVqyIysrKiIg46aSToqCgoEHjCwoKYvTo0RHx0X6bJSUlTV4jAADQMglzAAAA6mHLli3p444dOzZqjg4dOqSPN2/evNc1AQAA+wdhDgAAQD20a9cufbxx48ZGzbHr0mrt27ff65oAAID9gzAHAACgHnr27Bl5eXkRETF9+vSoqKho0PiKioqYNm1aRETk5+dHcXFxk9cIAAC0TMIcAACAeujQoUOMGzcuIiJWrVoVU6dObdD4qVOnxurVqyMiYty4cRlLrgEAAOyJMAcAAKCeLr744vTx5MmTo7y8vF7jtm7dGpMnT65xHgAAgLoIcwAAAOpp1KhRceihh0ZExLx582LixInpQGfTpk0xf/78eOWVV+Ktt95K749TXl4eV155ZcybNy8iIgYPHhwjR47Mzg0AAAAfSzmpVCqV7SJaisrKyigtLc12GQAAQDOaO3dujB8/PsrKyiIion///tGpU6eYM2dOVFVVpfvl5ubGiBEjYv369bFkyZKIiGjbtm08/vjjMXz48KzUDgAA7Bs9evRI77nZFIQ5TUiYAwAA+4fp06fHpZdeWu9l1iIiCgsL4957742TTjqpGSsDAACSoKnDHMusAQAAAAAAJJgwBwAAoAHmzp0bl112WfqpnIMOOiiOPPLIap+6y8/PjyOPPDIOOuigiPho75zLLrss5s6du69LBgAAPuYss9aELLMGAAAtWyqVilNPPTXeeuutiIgYN25c3HHHHVFYWBhbtmyJHTt2xKZNm6K8vDx69OgRHTp0iPLy8pg4cWI888wzERExePDgeO655yInJyebtwIAADQje+YkmDAHAABathkzZsSECRMiImLYsGHx5JNPRmFhYURE5ObmRnFxcURElJSURFVVVXpceXl5nHXWWTFv3ryIiHj00Udj1KhR+7h6AABgX7FnDgAAQJbcf//96eOJEyemg5y6FBYWxsSJE2ucBwAAoC7CHAAAgHrYtGlTPP300xER0a1btzj99NMbNP7000+Prl27RkTE1KlTY9OmTU1eIwAA0DIJcwAAAOphxYoVUVlZGRERJ510UhQUFDRofEFBQYwePToiPlqiuaSkpMlrBAAAWiZhDgAAQD1s2bIlfdyxY8dGzdGhQ4f08ebNm/e6JgAAYP8gzAEAAKiHdu3apY83btzYqDl2XVqtffv2e10TAACwfxDmAAAA1EPPnj0jLy8vIiKmT58eFRUVDRpfUVER06ZNi4iI/Pz8KC4ubvIaAQCAlkmYAwAAUA8dOnSIcePGRUTEqlWrYurUqQ0aP3Xq1Fi9enVERIwbNy5jyTUAAIA9EeYAAADU08UXX5w+njx5cpSXl9dr3NatW2Py5Mk1zgMAAFAXYQ4AAEA9jRo1Kg499NCIiJg3b15MnDixzkCnvLw8rrzyypg3b15ERAwePDhGjhzZ7LUCAAAtR04qlUplu4iWorKyMkpLS7NdBgAA0Izmzp0b48ePj7KysoiIGDZsWEycODGOPPLIKC0tjTVr1kRubm4MGjQoXn/99Zg8eXI6yGnbtm08/vjjMXz48GzeAgAA0Mx69OiR3nOzKQhzmpAwBwAA9g/Tp0+Pyy67LB3o1Efbtm3jt7/9bZx00knNWBkAAJAETR3mWGYNAACggU466aT4xje+ETk5OfXqn5OTE9/4xjcEOQAAQKMIcwAAABroV7/6Vfz0pz+N+i50kEql4qc//Wn86le/aubKAACAlkiYAwAA0ACPP/543HzzzenzwsLC+MpXvhL//Oc/Y/78+TF79uyYNm1avPbaa/HlL385CgsL031vvvnmePzxx7NRNgAA8DFmz5wmZM8cAABo2aqqqmLAgAFRUVERERHdu3ePF154ITp16hS5ublRXFwcERElJSVRVVUVEREbNmyIMWPGxMqVKyMionXr1vH2229Hbq7P1gEAQEtlzxwAAIAsueeee9JBTmFhYTrI2ZNOnTrFCy+8kH5CZ9u2bfHb3/622WsFAABaDmEOAABAPd19993p4wsuuKDOIGenTp06xQUXXJA+//Wvf93ktQEAAC2XMAcAAKAeVqxYESUlJRERkZOTE9/5zncaNP473/lO5OTkpOdasWJFk9cIAAC0TMIcAACAepg7d276uG/fvtG+ffsGjW/fvn307ds3ff7mm282WW0AAEDLJswBAACoh7Vr16aP27Vr16g52rZtmz5evXr1XtcEAADsH4Q5AAAA9XDAAQekj7ds2dKoOcrKytLHXbt23euaAACA/YMwBwAAoB6GDx+ePv7ggw9i8+bNDRq/efPm+OCDD9LnQ4cObbLaAACAlk2YAwAAUA89e/aM4uLiiIhIpVJxyy23NGj8LbfcEqlUKj1Xz549m7xGAACgZRLmAAAA1NPXvva19PFDDz0UGzZsqNe4devWxUMPPZQ+v/zyy5u8NgAAoOXKSe38aBh7rbKyMkpLS7NdBgAA0EyqqqpiwIABUVFRERER3bt3jxdeeCE6deoU77zzTrzxxhtRWloabdq0ieOPPz4GDhwYGzZsiDFjxsTKlSsjIqJ169bx9ttvR26uz9YBAEBL1aNHj8jLy2uy+fKbbCYAAIAWLjc3N2677ba46qqrIiJi5cqVMWzYsIj4KOjZXV5eXqRSqYzXbr31VkEOAADQIH6CAAAAaIDx48fH9773vfR5VVVVjUFOxEdP7+/62ve+970YP358s9cIAAC0LMIcAACABlqyZMk+HQcAAOzfhDkAAAANMGnSpJgyZUpGW0FBQY19d2+fMmVKTJo0qdlqAwAAWqacVCqVynYRLUVlZWWUlpZmuwwAAKCZVFZWRr9+/WLnj1EFBQUxe/bs6N69e5SWlsayZcti1apVkZeXF0OHDo2ePXvGypUr49hjj42KioqIiMjJyYn33nuvSTdDBQAAkqVHjx5N+v/8+U02EwAAQAt37bXXpoOcnJycdJATEdGzZ8844ogjIiKipKQkvVdO9+7dY/bs2XHkkUdGKpWKVCoV1113Xdx0003ZuQkAAOBjxzJrAAAA9fTII4+kj0ePHp0OcurSvXv3GD16dPr84YcfbvLaAACAlkuYAwAAUA+LFy+Obdu2pc9vv/32Bo3ftX95eXksXry4yWoDAABaNmEOAABAPbz00kvp47Zt28YBBxzQoPEHHHBAtG3bNn0+a9asJqsNAABo2YQ5AAAA9bBq1ar0cevWrRs1R0FBQfq4pKRkr2sCAAD2D8IcAACAeujWrVv6eNfl1hqioqIifVxcXLzXNQEAAPsHYQ4AAEA9nHDCCenjsrKyWLt2bYPGr127NsrKytLnI0eObLLaAACAlk2YAwAAUA8DBw7MWF7tqquuatD4XfsXFhbGwIEDm6w2AACgZcvfVxdatGhRTJ8+PRYvXhwrV66M8vLyKCgoiE6dOsVBBx0Un/zkJ+PYY4+NVq1a1Wu+VCoVr776arz44ouxdOnSWLt2bRQWFka3bt3iqKOOipNPPjm6du3azHcFAADsTyZMmBAPPPBARERMmzYtVq5cGd27d69z3IoVK2LatGnp83PPPbfZagQAAFqenFQqlWrOC2zatCnuvPPO+Pvf/15n3x49esSVV14ZgwcP3mO/tWvXxq9+9auYN29erX0KCwvjy1/+cowZM6ahJTdaZWVllJaW7rPrAQAA+1ZlZWX069cvdv4YVVBQELNnz47u3btHbm5ueh+ckpKSqKqqioiIlStXxrHHHpveLycnJyfee++9yMvLy85NAAAAza5Hjx5N+v/8zRrmVFRUxH/8x3/E0qVL020dO3aM/v37xwEHHBAbN26MDz/8MCMAad26dXz/+9+vdcmBsrKyuO666+KDDz5Itx1yyCHRp0+fKCsrizfffDO2bNmSfu3KK6+M0aNHN/3N1UCYAwAALd+kSZPipz/9afo8JycnRo8eHZ/85CfjqaeeirVr10aHDh1i/Pjx8eqrr8a0adNi1x+7rrnmmvjmN7+ZjdIBAIB95GMV5jzyyCPxX//1Xx9dKCcnzj333DjzzDOjoKAg3SeVSsXMmTPjnnvuSW8GeuCBB8att95a45y/+tWvYvr06RER0b59+/jWt74Vw4YNS79eXl4ed999d7z00ksREZGfnx8///nP05+Qa07CHAAA2D/867/+a0yZMqXB484777y47bbbmqEiAAAgSZo6zMltsplqsOua0KeffnqMHz8+I8iJ+CjkOf744+PrX/96uu3999+P999/v9p877//frz44ovp86uvvjojyIn4aHm1b3zjG3HooYdGRMSOHTvi4YcfbpL7AQAAiIi47bbbon379g0a0759e0EOAADQKM0W5pSVlcWqVavS58cff/we+x9zzDHRunXr9Pny5cur9Xn22WfTyxMcfvjh8YlPfKLGuXJzc+PCCy9Mn8+aNSs2btzYkPIBAABqNWDAgNi8eXODxmzevDkGDBjQTBUBAAAtWX5zTVxeXp5x3q5duz32z8vLizZt2sS2bdsiImL31d9SqVS89tpr6fMxY8bscb7BgwdHcXFxeuPRv//973HKKac04A4AAACqO+qoo6r9vJObmxu/+tWvIuKjD6a1a9cuOnToEFdffXVUVVWl+5WXl8dRRx2V8bMNAABAXZotzOnYsWO0atUqtm/fHhERH374YfTq1avW/hs3bowNGzakz/v165fx+ooVK2LNmjXp86FDh9ZZw9ChQ6OkpCQiIubNmyfMAQAA9kpZWVn6Z4ydfve738Wpp54aubm56b06d36o7Oyzz47nn38+vvSlL6X7l5SURFlZWbRt23af1g4AAHx8Ndsya/n5+XHEEUekzx977LH0Uzc1+f3vf59+Gmf48OHVgp9ly5aljzt37hxdunSps4b+/fvXOB4AAKAxRowYkXG+M8jZk1NPPTV+97vfZbTVtmQ0AABATZrtyZyIiPPPPz/mzJkT5eXlsWTJkvi3f/u3OOecc2Lw4MFxwAEHxMaNG+P999+PJ554IhYuXBgREX369Ikrrrii2ly77qHTrVu3el2/a9euNY4HAABojLKysvRxbm5unUHOTjuf3Nm55NqWLVuapT4AAKBlatYwp3fv3vGjH/0obrnllli9enWUlpbG5MmTa+zbrl27OPHEE+P888+PNm3aVHt906ZN6eNOnTrV6/qdO3dOH2/bti22b98erVq1atA97Lq0256uk5eXFxEf/UAHAAC0PL/+9a8zzv/4xz9m/P9/bce79j/rrLPS5/fcc09cfvnlzVApAADQ0jRrmBPx0d43kyZNiueffz4efPDBWpdaGzFiRJxwwgk1BjkRkbHBaEFBQb2uvXu/8vLyBoc5NT0ltLs777wzioqKIi8vL71GNgAA0LJMmTIl4/z//J//U2vf7t27V2vbvf8jjzwSP/jBD5qmOAAAoEVr9jBn48aN8fvf/z5efPHFqKysjM6dO8egQYOiY8eOsWXLlnj77bdj1apVMXPmzJg5c2Z86lOfiq985SvVPsm2ffv2/y06v35l7x7cVFRU7P0NAQAA+6W1a9c26XyrV69u0vkAAICWq1nDnBUrVsQPf/jDWLNmTbRq1SouvvjiOO2009JLkkVEpFKpmDFjRtxzzz2xdevWeO655yI3Nze+8pWvZMy1azCzY8eOel1/1wAoov5P9OzqzjvvrLPPzuXcKisrY9WqVQ2+BgAAkHwdOnSIlStXps9LSkoyXs/NzU0/kbNy5cr0/ji16dSpU7U5AACAlqFbt24ZWcjearYwp7KyMm699db0njNf/epXY8yYMdX65eTkxAknnBAdO3aMG2+8MSIinn322RgzZkwccsgh6X6FhYXp4/o+YbN7v13nqK+ioqIG9a/rBzYAAODj6aKLLoobbrghfT579uw45phjauxbVVVV7WeDV199NeP8ggsu8PMDAABQL9V35Wwis2fPjg8++CAiInr16hWjR4/eY//DDz88hg8fnj7/29/+lvF6hw4d0scbNmyoVw3r169PH7du3brB++UAAADs9LWvfS3jfPz48Q0av3v/3ecDAACoTbOFOa+//nr6eOjQoZGTk1PnmGHDhqWP33333YzXevXqlT6u71Jmu65Bvet4AACAxmjbtm36uKqqKp5//vl6jZs6dWrGUzjt2rVr8toAAICWq9nCnF03B931qZo92bVfWVlZxmu9e/dOH69fvz7jqZvaLFmypMbxAAAAjfHGG29knH/pS1+qM9B5/vnnq+0JuuuH3wAAAOrSbGFOQUFB+njz5s31GrNrv10/8RYR0bNnz4z9a958880655s/f376eNenfgAAABqjbdu2UVxcnNH2pS99Kfr27RuvvPJKRvurr74affv2jS996UsZ7cXFxdV+3gEAANiTZgtzunbtmj6uT/ASETFv3rz08e4/IOXk5MRRRx2VPn/hhRf2ONeiRYtixYoVERGRm5sbRx99dL1qAAAA2JPXXnstCgsLM9qqqqrirLPOipycnMjJyYmePXvG5z73uYyl1SIiCgsL47XXXtuX5QIAAC1As4U5w4cPTx8vW7Yspk+fvsf+8+bNizlz5qTPR4wYUa3Ppz/96fTeO2+88UZG/11VVVXF73//+/T5cccdFx07dmxQ/QAAALV55513qn0ArS7FxcXxzjvvNFNFAABAS9ZsYc6RRx4ZPXv2TJ//+te/jmeffbbaJ9NSqVTMnDkzbr311nRbUVFRHH/88dXmPPDAA+PEE09Mn0+aNKnaUz/l5eUxefLkWLhwYURE5Ofnx3nnndck9wQAALDTa6+9FosXL4527drtsV+7du1i8eLFnsgBAAAaLSeVSqWaa/LFixfHD3/4w9i2bVu6rUuXLjFo0KDo0KFDlJWVxeLFi2PVqlXp11u1ahXXXXddDB48uMY5y8rK4rrrrosPPvgg3TZw4MDo3bt3bN26NebNmxdbtmxJvzZx4sQYM2ZM099cDSorK6O0tHSfXAsAAEiWe+65Jx555JFYvXp1dOrUKS644IL42te+lu2yAACALOjRo0fk5eU12XzNGuZERLz99ttx++23p/ev2ZPu3bvHN77xjVqDnJ3Wrl0bv/rVrzL22NldYWFhXHrppXHyySc3uObGEuYAAMD+Kzc3N730WklJSbVVCQAAgP3Hxy7Mifgo5Pj73/8er776arzzzjuxbt26KC8vj9atW0fnzp2jf//+cfTRR8dxxx0X+fn59ZozlUrFK6+8Ei+++GIsWbIk1q9fH4WFhdG1a9c46qij4pRTTomuXbs2851lEuYAAMD+S5gDAADs9LEMc/YXwhwAANh/CXMAAICdmjrMqd9jMAAAAHuh8sZvRWxYl+0ymlVlTsQHGzdEpKoicnIiOnTOdknNr1OXyPuPn2e7CgAAaPGEOQAAQPPbsC5i/ZpsV7Fv7W/3CwAANBthDgAA0Pw6dcl2Bc0vJz4KraqqInJy94973h/uEQAAEsCeOU3InjkAALD/ys3NjaprvhyVa1ZGdCmKvJ/em+2SAACALGnqPXNym2wmAAAAAAAAmpwwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECC5Tfn5G+++WbccMMNjR4/ceLEGDNmzB77zJ07N6ZNmxaLFy+OtWvXRn5+fhQVFcWIESPilFNOid69ezf6+gAAAAAAANnWrGHO3urcuXOtr5WVlcXdd98dM2fOzGjftm1bbNmyJd5///34y1/+EhMmTIizzz67mSsFAAAAAABoHs0a5hxwwAExduzYevefM2dOrFixIiIiOnXqFMOHD6+x344dO+LWW2+NefPmpdv69u0b/fv3j+3bt8fChQtj3bp1UVlZGX/4wx+isrIyPv/5z+/dzQAAAAAAAGRBs4Y5PXv2jMsuu6xefauqquLrX/96+vzEE0+MvLy8Gvs+9thj6SCnVatWMXHixDj++OPTr+/YsSOmTJkSTz31VEREPProozFkyJAYMmRIY28FAAAAAAAgK3KzXcBOr7/+eqxfvz59Pnr06Br7bdiwIf70pz+lzy+55JKMICciIj8/Py666KIYNWpURESkUql46KGHmr5oAAAAAACAZpaYMGfatGnp4/79+0e/fv1q7bdt27aI+OjJn0996lO1znnRRRdFTk5OREQsWrQolixZ0oQVAwAAAAAANL9EhDlbtmyJv//97+nz2p7KiYh49dVX08djxoxJhzU16dq1awwbNix9/sorr+xlpQAAAAAAAPtWIsKcWbNmxfbt2yMiIi8vL0444YQa+1VUVMSiRYvS50OHDq1z7l377NxnBwAAAAAA4OMiEWHOrkusHXHEEdGxY8ca+y1fvjxSqVREROTk5MRBBx1U59wHH3xw+njZsmV7VygAAAAAAMA+lvUwZ8WKFfHWW2+lz8eMGVNr3+XLl6ePO3bsGAUFBXXO37Vr1/Tx5s2bY+PGjY0rFAAAAAAAIAvys13Ark/ldOjQIY488sha+27evDl93Llz53rNv3u/zZs31/rkT03WrFlTr2vk5eVFRERubtbzMQAAIAtyc3OjardzAACAppDVMCeVSsWLL76YPj/++OMjP7/2ksrLy9PH9Xkqp6Z+u85RH1dccUWdfe68884oKiqKvLy8KC4ubtD8AADs38pefC42/P6uSG0ty3Yp7KWqiKhct/qjkw3rouqaL2e1HppGTpu20emLX4+2J3wq26UAALAfy2qYM3/+/Fi1alX6fE9LrEVEVFRUpI/3FPrsavd+u84BAADZtuH3d8WOD5dmuwyaWlVVVK5Zme0qaCIbHrhLmAMAQFZlNczZdYm1vn37xsEHH7zH/rs+ZbNjx456XWP3fvV9omenO++8s84+O5dyq6yszAinAACgLju2bProICc3onOX7BbD3tu4ISJVFZGTE9Gxc7arYW+tXxeRqoodWzZFSUlJtqsBAOBjpFu3buntWZpC1sKcbdu2xezZs9Pno0ePrnNMYWFh+ri+T9js3m/XOeqjqKioQf2rqqrq7gQAADul/v//duoSeT+9N6ulsHdyc3PTyy6XlJT42aAFqPz2pRHr10Sk/KwHAEB2ZW1HztmzZ8fWrVs/KiI3N0488cQ6x7Rv3z59vH79+npdZ/d+u84BAAAAAACQdFkLc3ZdYm3EiBHRpUvdS0r06tUrfbxx48Z6PZ2zevXq9HH79u2jY8eODawUAAAAAAAge7IS5qxZsybmzZuXPq/PEmsRH4U5OTk5ERGRSqVi6dKldY55991308e9e/duWKEAAAAAAABZlpUw58UXX4xU6qPFwdu1axdHH310vcYVFBTEoEGD0ufz58+vc8yCBQvSx8OGDWtgpQAAAAAAANmVlTBn1yXWRo4cGQUFBfUee8wxx6SPX3jhhT32Xb16dcydO7fGsQAAAAAAAB8H+zzMefvtt2PZsmXp8zFjxjRo/OjRo6N169YREbF8+fJ4/vnna+374IMPRlVVVUREDBo0KA4++OCGFwwAAAAAAJBF+zzM2fVpmp49e2Ysm1YfnTp1ijPPPDN9fu+998bMmTMz+uzYsSMefPDBmDFjRrrtggsuaFzBAAAAAAAAWZS/Ly+2Y8eOjOBl9OjRjZrnnHPOibfeeivmzZsXFRUV8Ytf/CIef/zx6N+/f2zfvj0WLFgQ69atS/efMGFCDBkyZK/rBwAAAAAA2Nf2aZjz2muvxebNmyMiIicnp9FhTn5+fvzbv/1b/PrXv45Zs2ZFRMT7778f77//fka/vLy8+MIXvhDjx4/fu8IBAAAAAACyZJ+GOdOmTUsfDxs2LIqKiho9V9u2beNf/uVf4tRTT41p06bFokWLYv369ZGXlxdFRUUxYsSIOOWUU6JPnz5NUToAAAAAAEBW7NMw55prrmnyOQ8//PA4/PDDm3xeAAAAAACAJMjNdgEAAAAAAADUTpgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECC5We7AAAA2N+9e+C4WHrQZyKe2pDtUthLeXkbIyKisrIyy5XQJA7/QRy09C9x8MZXs10JAAD7OWEOAABk2Y78NlFe0DliayrbpbDXdmS7AJpSQefYkd8m21UAAIAwBwAAsi1/x9YorFgf0alLtkthL+Xl5UWEJ3NajA3rIn/H1mxXAQAAwhwAAMi2g99/Og7e+Grk/ezebJfCXsjNzY3i4uKIiCgpKYmqqqosV8Teqvz2/41Yvyaic1G2SwEAYD+Xm+0CAAAAAAAAqJ0wBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAkmzAEAAAAAAEgwYQ4AAAAAAECCCXMAAAAAAAASTJgDAAAAAACQYMIcAAAAAACABBPmAAAAAAAAJJgwBwAAAAAAIMGEOQAAAAAAAAmWn+0CAABgv7Z+Tfq/ld++NLu1sFcqcyI+2LghIlUVkZMT0aFztktib21Yl+0KAAAgIoQ5AACQHDuDHVoG72fLUdgm2xUAALCfE+YAAEBSdC7KdgXsjZz46EmOqqqInNyITl2yXRFNobBN5H7uwmxXAQDAfi4nlUqlsl1ES1FZWRmlpaXZLgMAAMiC3NzcqLrmy1G5ZmVEl6LI++m92S4JAADIkh49ekReXl6TzZfbZDMBAAAAAADQ5IQ5AAAAAAAACSbMAQAAAAAASDBhDgAAAAAAQIIJcwAAAAAAABJMmAMAAAAAAJBgwhwAAAAAAIAEE+YAAAAAAAAkmDAHAAAAAAAgwYQ5AAAAAAAACSbMAQAAAAAASDBhDgAAAAAAQIIJcwAAAAAAABJMmAMAAAAAAJBgwhwAAAAAAIAEE+YAAAAAAAAkmDAHAAAAAAAgwYQ5AAAAAAAACSbMAQAAAAAASDBhDgAAAAAAQIIJcwAAAAAAABJMmAMAAAAAAJBgwhwAAAAAAIAEE+YAAAAAAAAkmDAHAAAAAAAgwYQ5AAAAAAAACSbMAQAAAAAASDBhDgAAAAAAQIIJcwAAAAAAABJMmAMAAAAAAJBgwhwAAAAAAIAEE+YAAAAAAAAkmDAHAAAAAAAgwYQ5AAAAAAAACSbMAQAAAAAASDBhDgAAAAAAQIIJcwAAAAAAABJMmAMAAAAAAJBgwhwAAAAAAIAEE+YAAAAAAAAkmDAHAAAAAAAgwYQ5AAAAAAAACSbMAQAAAAAASDBhDgAAAAAAQIIJcwAAAAAAABJMmAMAAAAAAJBgwhwAAAAAAIAEy9/XF3z33Xdj1qxZMXfu3Fi7dm1s3rw5OnToEJ07d45+/frFsGHD4vDDD4/OnTvXOdfcuXNj2rRpsXjx4li7dm3k5+dHUVFRjBgxIk455ZTo3bt3898QAAAAAABAM8pJpVKpfXGhDRs2xP333x8vvfRSnX3Hjh0bl112Wa2vl5WVxd133x0zZ86stU9eXl5MmDAhzj777EbV2xiVlZVRWlq6z64HAAAkR25ublRd8+WoXLMyoktR5P303myXBAAAZEmPHj0iLy+vyebbJ0/mrF69Oq6//vpYuXJluq1Xr15x4IEHRvv27aOioiJKS0tj6dKlsW3btj3OtWPHjrj11ltj3rx56ba+fftG//79Y/v27bFw4cJYt25dVFZWxh/+8IeorKyMz3/+8812bwAAAAAAAM2p2cOcsrKyuOGGG9JBztChQ+OSSy6Jfv36Veu7Y8eOmDdvXmzdurXW+R577LF0kNOqVauYOHFiHH/88RlzTJkyJZ566qmIiHj00UdjyJAhMWTIkKa8LQAAAAAAgH0it7kv8Lvf/S699NioUaPiuuuuqzHIiYjIz8+PT3ziEzFy5MgaX9+wYUP86U9/Sp9fcsklGUHOzjkuuuiiGDVqVEREpFKpeOihh5riVgAAAAAAAPa5Zg1zli5dGn/9618jIqKoqCguv/zyyM1t/CWnTZuWXoatZ8+e8alPfarWvhdddFHk5ORERMSiRYtiyZIljb4uAAAAAABAtjRrmPPss8+mj8eOHRtt2rTZq/leffXV9PGYMWPSYU1NunbtGsOGDUufv/LKK3t1bQAAAAAAgGxotjCnqqoqZsyYkT4/7rjj9mq+ioqKWLRoUfp86NChdY7Ztc/OfXYAAAAAAAA+TvKba+L3338/tm7dGhERbdu2jR49ekRlZWVMnz49Xnzxxfjggw9iy5Yt0aFDh+jXr18cffTRcfLJJ0erVq1qnG/58uWRSqUiIiInJycOOuigOms4+OCD08fLli3b+5sCAAAAAADYx5otzHnnnXfSx0VFRbFmzZr4+c9/Hm+//XZGv3Xr1sW6devi9ddfjyeeeCK+9a1vxSGHHFJtvuXLl6ePO3bsGAUFBXXW0LVr1/Tx5s2bY+PGjdGxY8fG3A4AAAAAAEBWNFuYs2bNmozzm2++OT744IOIiOjdu3cMGDAgcnNz47333oslS5ZERMTq1avjhhtuiBtuuCHjqZqIj8KYnTp37lyvGnbvt3nz5gaHObvfR23XycvLi4iI3Nxm3YYIAABIqNzc3Kja7RwAAKApNFuYs2XLlvTxzhCndevWMXHixBg5cmRG33nz5sV//ud/xqZNm2Lbtm3xn//5n/Gf//mfkZ//v+WVl5enj+vzVE5N/Xado76uuOKKOvvceeedUVRUFHl5eVFcXNzgawAAAC3DzvUE8nL9bAAAADSdZvuo2LZt26q1XXXVVdWCnIiIYcOGxXe+853IycmJiIjS0tJ48cUXM/pUVFSkj3cNefZk9367zgEAAAAAAPBx0GxP5rRq1SrjfNCgQfHJT36y1v6DBg2KY489Nl5++eWIiJg5c2acfPLJ6dd3fcpmx44d9aph9371faJnV3feeWedfXYu51ZZWRmrVq1q8DUAAICPv12XVausqoySkpIsVgMAAGRTt27d0tuzNIVmC3MKCwszzvcU5OzaZ2eYs2jRolrnq+8TNrv3272m+igqKmpQ/6qqqro7AQAALZ6fDQAAgKbSbMusdejQIeO8T58+dY7p3bt3+njr1q2xdevW9Hn79u3Tx+vXr69XDbv323UOAAAAAACAj4NmC3N69eqVcV6fp2LatGmTcb5rmLPrfBs3bqzX0zmrV69OH7dv3z46duxY5xgAAAAAAIAkabYw58ADD8w4Ly8vr3PMruFNRETbtm3Tx7169YqcnJyIiEilUrF06dI653v33XfTx7s+9QMAAAAAAPBx0WxhTvfu3aN79+7p8w8//LDOMcuWLUsft2/fPuNpnoKCghg0aFD6fP78+XXOt2DBgvTxsGHD6uwPAAAAAACQNM0W5kREfPKTn0wfv/rqq3X2f+WVV9LHhx12WLXXjznmmPTxCy+8sMe5Vq9eHXPnzq1xLAAAAAAAwMdFs4Y5n/70pyMvLy8iIt566634+9//Xmvft99+OyPMGTNmTLU+o0ePjtatW0dExPLly+P555+vdb4HH3wwqqqqIiJi0KBBcfDBBzfmFgAAAAAAALKqWcOc4uLiGDt2bPp80qRJMXv27Gr95s+fHz/5yU/S4cvAgQPj6KOPrtavU6dOceaZZ6bP77333pg5c2ZGnx07dsSDDz4YM2bMSLddcMEFe30vAAAAAAAA2ZDf3Be48MILY8mSJbFgwYLYtm1b3HbbbdG7d+8YMGBA5Obmxvvvvx/vvvtuun+XLl3iX/7lXyInJ6fG+c4555x46623Yt68eVFRURG/+MUv4vHHH4/+/fvH9u3bY8GCBbFu3bp0/wkTJsSQIUOa+zYBAAAAAACaRU4qlUo190XKysrinnvuyXhapiYDBw6Mf/mXf4muXbvWOd+vf/3rmDVrVq198vLy4gtf+EKMHz++UTU3RmVlZZSWlu6z6wEAAMmRm5sbVdd8OSrXrIzoUhR5P7032yUBAABZ0qNHj/Q2NE1hn4Q5O82fPz+mT58eCxcujLVr10ZVVVV06tQpBg4cGKNGjYpjjjmm1idyajJnzpyYNm1aLFq0KNavXx95eXlRVFQUI0aMiFNOOSX69OnTjHdTnTAHAAD2X8IcAABgp6YOc5p9mbVdDRkypEmXPDv88MPj8MMPb7L5AAAAAAAAkiY32wUAAAAAAABQO2EOAAAAAABAgglzAAAAAAAAEkyYAwAAAAAAkGDCHAAAAAAAgAQT5gAAAAAAACSYMAcAAAAAACDBhDkAAAAAAAAJJswBAAAAAABIMGEOAAAAAABAgglzAAAAAAAAEkyYAwAAAAAAkGDCHAAAAAAAgAQT5gAAAAAAACSYMAcAAAAAACDBhDkAAAAAAAAJJswBAAAAAABIMGEOAAAAAABAgglzAAAAAAAAEkyYAwAAAAAAkGDCHAAAAAAAgAQT5gAAAAAAACSYMAcAAAAAACDBhDkAAAAAAPx/7d1rkJXVnT7se3eT7qYBWwWhGwMeUHQEVEg5iZoA0VTKlKacsQxJqFQyCR4i4iQZk2JMxqkchz+Ovo4JYjxNyjgx5jDUONE4GpOAYzSaeIiABjUOhAjdnI9N09K93w+Wu0BQdkM3vW2u69N69rPWen67+cKu+1lrARVMmAMAAAAAAFDBhDkAAAAAAAAVTJgDAAAAAABQwYQ5AAAAAAAAFUyYAwAAAAAAUMGEOQAAAAAAABVMmAMAAAAAAFDBhDkAAAAAAAAVTJgDAAAAAABQwYQ5AAAAAAAAFUyYAwAAAAAAUMGEOQAAAAAAABVMmAMAAAAAAFDBhDkAAAAAAAAVTJgDAAAAAABQwYQ5AAAAAAAAFUyYAwAAAAAAUMGEOQAAAAAAABVMmAMAAAAAAFDBhDkAAAAAAAAVTJgDAAAAAABQwYQ5AAAAAAAAFUyYAwAAAAAAUMGEOQAAAAAAABVMmAMAAAAAAFDBhDkAAAAAAAAVTJgDAAAAAABQwYQ5AAAAAAAAFUyYAwAAAAAAUMGEOQAAAAAAABVMmAMAAAAAAFDBhDkAAAAAAAAVTJgDAAAAAABQwYQ5AAAAAAAAFUyYAwAAAAAAUMGEOQAAAAAAABVMmAMAAAAAAFDBhDkAAAAAAAAVTJgDAAAAAABQwQrFYrHY20X0FR0dHWlpaentMgAAoOJ0fPMfko3re7uMnlXIa9+xszMpVCUNh/V2RT2v4bBU/9P/19tVAABAxRk2bFiqq6u7bb5+3TYTAADAm9m4PtmwtrerOHCKnQfX9wUAAHqUMAcAAOh5B8MqlUKSTRtfC3IKhWTQob1dUc87GP5dAQCgAthmrRvZZg0AAA5eVVVVaWxsTJI0Nzens7OzlysCAAB6S3dvs1bVbTMBAAAAAADQ7YQ5AAAAAAAAFcyZOQAAAN3gxRdfzE9/+tO0tLSkf//+OfPMM3P88cf3dlkAAEAfIMwBAADYRx0dHfnKV76SH//4x9m+fftu92trazNlypR861vf6tb9sgEAgIOLbdYAAAD2wQ033JCjjjoqd9555x6DnCTZvn177rzzzhx11FG54YYbDnCFAABAX1EoFovF3i6ir+jo6EhLS0tvlwEAAPSwK6+8Mnffffdunw8cODC1tbXZtm1bWltbd7v/sY99LNddd92BKBEAAOhFw4YN69bV+VbmAAAAdMENN9ywS5BTKBRy1llnZfHixdm8eXPWrFmTP/3pT1m4cGEmT56cQqFQ6nv33XdboQMAAHSZlTndyMocAADo2zo6OnLUUUfl9Z9RNTU1efzxxzN06NBUVVWlsbExSdLc3JzOzs4kyapVq/Lud7877e3tSV4Lf5YtW+YMHQAA6MOszAEAAOglX/nKV0pBTqFQKAU5b2Xo0KF5/PHHSyt0isVirr766h6vFQAA6DuEOQAAAGX68Y9/XGpPmjRpr0HO64YOHZpJkyaVrn/0ox91e20AAEDfJcwBAAAow4svvpjt27eXrr/zne90afzO/dva2vLiiy92W20AAEDfJswBAAAowyOPPFJq19fX5/DDD+/S+MMPPzz19fWl68cee6zbagMAAPo2YQ4AAEAZVq9eXWrX1tbu0xw1NTWldnNz837XBAAAHByEOQAAAGU44ogjSu2dt1vrivb29lK7sbFxv2sCAAAODsIcAACAMrz3ve8ttVtbW7Nu3boujV+3bl1aW1tL16effnq31QYAAPRtwhwAAIAyHH/88btsr3bFFVd0afzO/evq6nL88cd3W20AAEDfJswBAAAo05QpU0rtBQsWZNWqVWWNW7lyZRYsWFC6/uhHP9rttQEAAH1XoVgsFnu7iL6io6MjLS0tvV0GAADQQzo6OnLUUUfl9Z9RNTU1efzxxzN06NBUVVWVzsFpbm5OZ2dnkmTVqlV597vfXTovp1AoZNmyZamuru6dLwEAAPS4YcOGdev/+ft120wAAAB9XHV1db70pS/lmmuuSZK0t7dnwoQJmTRpUs4777w8+OCDaW5uzmGHHZbzzjsv9913XxYsWJCd36H70pe+JMgBAAC6xMqcbmRlDgAAHByuvPLK3H333V0e97GPfSzXXXddD1QEAABUku5emSPM6UbCHAAAOHi8613vSnNzc9n9Gxsb8+STT/ZgRQAAQKXo7jCnqttmAgAAOEh0NchJXjtH513velcPVQQAAPRlzswBAADognPPPXe3IGfAgAGZO3dutm7dmhUrVmTAgAFpbGzMjBkzsnXr1lK/5ubmnHvuubnvvvsOdNkAAMDbmG3WupFt1gAAoG/bvn17jj322F0+u/feezN+/PhUVVWlsbExyWuhTWdnZ5Lk6aefznnnnbfLmJdffjm1tbUHpmgAAOCAs80aAABAL5k4ceIu168HOW9l/Pjxuffee3f5bNKkSd1eGwAA0HcJcwAAAMr0l7/8pdQeMGDAXoOc140fPz4DBgwoXS9fvrzbawMAAPouYQ4AAEAZfvazn+1y/cbVNnvzxv5vnA8AAODNCHMAAADK8MMf/nCX69GjR3dp/Bv7/+hHP9rvmgAAgIODMAcAAKAMq1at6tb5mpubu3U+AACg7xLmAAAAlGHo0KHdOl9jY2O3zgcAAPRdwhwAAIAyfPzjH9/l+oUXXujS+Df2/+hHP7rfNQEAAAeHQrFYLPZ2EX1FR0dHWlpaersMAACghxx55JGl9oABA3YJaKqqqkqrbZqbm9PZ2bnL2NGjR2fr1q2l61deeaWHqwUAAHrLsGHDUl1d3W3zWZkDAABQpne+852l9tatW/P000+XNe6JJ57YJcgZMWJEt9cGAAD0XVbmdCMrcwAAoG/bvn17jj322F0+u/feezN+/Pi0tLRk+fLlWbt2baqqqjJ27Ng0NTXl6aefznnnnbfLmJdffjm1tbUHsnQAAOAA6u6VOf26bSYAAIA+rra2NqeeemqeeeaZ0mdvDGr25tRTTxXkAAAAXWKbNQAAgC647777SmfjdFVjY2Puu+++bq4IAADo64Q5AAAAXfTpT3/6gI4DAAAObsIcAACALpg3b15mzZq1T2NnzZqVefPmdXNFAABAX1coFovF3i6ir+jo6EhLS0tvlwEAAPSQzs7OjBo1Ku3t7UmSoUOHZv78+WloaMi9996b//qv/8orr7ySwYMH56Mf/Wg+/OEPZ+PGjZk8eXJWrVqV5LVzd1566aVUVXm3DgAA+qphw4alurq62+YT5nQjYQ4AAPRtN998c77+9a8nSerq6vLUU0+loaEhSVJVVVU6S6e5uTmdnZ2lcRs3bsyECRPS1taWJPnqV7+aiy+++ABXDwAAHCjdHeZ4FQwAAKBMt9xyS6k9derUUpCzNw0NDZk6dWrp+uabb+722gAAgL5LmAMAAFCGlStXprm5OUlSKBQyc+bMLo2fOXNmCoVCaa6VK1d2e40AAEDfJMwBAAAow8KFC0vtESNGZODAgV0aP3DgwIwYMaJ0vXjx4m6rDQAA6NuEOQAAAGVYt25dqT1gwIB9mqO+vr7UXrNmzX7XBAAAHByEOQAAAGU4/PDDS+2tW7fu0xytra2l9pAhQ/a7JgAA4OAgzAEAACjDuHHjSu3ly5dny5YtXRq/ZcuWLF++vHQ9ZsyYbqsNAADo24Q5AAAAZWhqakpjY2OSpFgsZvbs2V0aP3v27BSLxdJcTU1N3V4jAADQNwlzAAAAynTJJZeU2nfddVc2btxY1rj169fnrrvuKl1feuml3V4bAADQdwlzAAAAynTxxRenpqYmSdLW1pbJkyfvNdDZuHFjzjrrrLS1tSVJamtrM23atB6vFQAA6DsKxdfX+bPfOjo60tLS0ttlAAAAPWjevHm54oorStd1dXWZOnVqPv3pT2fdunVZu3Ztqqqqcswxx+SOO+7IXXfdVQpykuQ73/lOLrjggt4oHQAAOECGDRuW6urqbptPmNONhDkAAHBwmDNnTmbNmtXlcVdddVVmzJjRAxUBAACVpLvDHNusAQAAdNGMGTPyyU9+sktjPvnJTwpyAACAfSLMAQAA6KI5c+bk+9//fpfGfP/738+cOXN6qCIAAKAv69fbBQAAALydzJs3b5ct1urq6vKJT3win/rUp7Jhw4asXr061dXVOfroo3c7M2fWrFkZPny4M3MAAIAucWZON3JmDgAA9G2dnZ0ZNWpU2tvbkyRDhw7N/Pnz09DQkKqqqjQ2NiZJmpub09nZmSTZuHFjJk+enFWrViVJamtr89JLL6WqykYJAADQVzkzBwAAoJfceuutpSCnrq6uFOS8lYaGhsyfPz91dXVJku3bt+f222/v8VoBAIC+Q5gDAABQpltuuaXUnjp16l6DnNc1NDRk6tSppeubb76522sDAAD6LmEOAABAGVauXJnm5uYkSaFQyMyZM7s0fubMmSkUCqW5Vq5c2e01AgAAfZMwBwAAoAwLFy4stUeMGJGBAwd2afzAgQMzYsSI0vXixYu7rTYAAKBvE+YAAACUYd26daX2gAED9mmO+vr6UnvNmjX7XRMAAHBwEOYAAACU4fDDDy+1t27duk9ztLa2ltpDhgzZ75oAAICDgzAHAACgDOPGjSu1ly9fni1btnRp/JYtW7J8+fLS9ZgxY7qtNgAAoG8T5gAAAJShqakpjY2NSZJisZjZs2d3afzs2bNTLBZLczU1NXV7jQAAQN/Ur6cfMH/+/MydO7dLY84666x89rOfLavvwoULs2DBgrz44otZt25d+vXrl8GDB+eUU07JWWedlSOPPHJfygYAANjNJZdckq9//etJkrvuuitf/OIX09DQsNdx69evz1133VW6vvTSS3usRgAAoO8pFF9/NayH9FSY09ramltuuSWPPvrom/aprq7OlClT8rd/+7ddev6+6ujoSEtLywF5FgAAcOB1dnZm1KhRaW9vT5IMHTo08+fPT0NDQ7Zu3ZpXX301W7ZsybZt29LY2JhBgwZl48aNmTx5clatWpUkqa2tzUsvvZSqKhslAABAXzVs2LBUV1d323w9vjJnZ0ceeWTGjh27134nnHDCW97fsWNHrr322ixatKj02YgRI3LMMcfk1VdfzR//+MesX78+HR0d+eEPf5iOjo5ceOGF+10/AABwcKuqqsp1112XK664IkmyatWqnHrqqRk+fHj+/Oc/p7Ozc5e+I0eOzIoVK0rhT5Jce+21ghwAAKBLDmiYc9xxx2XatGn7Pc9//ud/loKcd7zjHZk+fXrOPPPM0v0dO3bk7rvvzn//938nSX7yk5/kpJNOykknnbTfzwYAAA5uF1xwQVasWJFZs2YlSdrb27N06dLd+nV2du72+VVXXZULLrjgAFQJAAD0JW+718E2btyYe++9t3T9d3/3d7sEOUnSr1+/fOITn8gZZ5yR5LXDSXfenxoAAGB/nHzyyampqenSmJqampx88sk9VBEAANCXve3CnAULFmT79u1JkqampnzgAx94076f+MQnUigUkiQvvPBC/u///u+A1AgAAPRdCxcuzLRp00pbpzU2NubQQw/dY99DDz00jY2NSV5bwTNt2rQsXLjwQJUKAAD0EQd0m7Xu8Lvf/a7Unjx5cims2ZMhQ4Zk7NixpR9LTzzxRI455pgerxEAAOibisViPve5z6W1tTVJcs455+TGG29MXV1dWlpa8sorr2T16tWprq7OmDFj0tTUlLa2tkyfPj0PPPBAWltb8/nPfz4PPfTQW/6WAQAA2NnbamVOe3t7XnjhhdL1mDFj9jpm5z6vn7MDAACwLx599NEsWbIkSTJ27NhSkJO8tnPAeeedl09/+tP54Ac/mKampiRJXV1d5s6dm7FjxyZJ/vjHP+axxx7rnS8AAAC8LR3QlTlbt27NY489luXLl6e1tTX19fU57LDDMnr06IwcOXKvb6atWLEixWIxSVIoFHL00Ufv9ZnHHntsqf3KK6/sV/0AAMDB7Y477ii1p0+fXgpy9qauri7Tp0/P9OnTS/O8fsYnAADA3hzQMOf3v/99fv/73+/xXlNTU84///y8//3vf9NQZ8WKFaX2IYccUtaBo0OGDCm1t2zZkk2bNuWQQw4pu+a1a9futc+hhx6a6urqJElV1dtqsRMAAFCmzZs353/+53+SJEcccUTOPffcXf7//2bt15177rkZMmRI1qxZk/vvvz9bt27NoEGDer5wAADgba9izsxZuXJlvvvd7+aJJ57I5z//+T2+4bZly5ZS+80OGH2jN/bbsmVLl8Kcyy67bK99brrppgwePDjV1dWlw00BAIC+Zd26deno6Ejy2lk5I0eOfNO+Q4cO3ePnH/rQh3LnnXemo6MjO3bs8PsBAAAoywEJc4YMGZL3vOc9GTduXEaOHJlDDjkknZ2dWbt2bRYtWpT777+/tAXaU089lW9/+9v54he/uNvbbG1tbaV2Oaty9tRv5zkAAADKtfPLZQ0NDfs0x84vlm3evHm/awIAAA4OPR7mnHbaaZk4ceIetxkYPnx4hg8fnrPOOiu33HJL5s+fn+S17dgeeeSRTJw4cZf+7e3tpXa/fuWV/sZ+O89RjptuummvfV5f/dPR0ZHVq1d3aX4AAODtYdu2baV2c3Nzmpubd7lfVVVVWpGzatWqdHZ27jZHS0tLqd3W1rbbHAAAQN9wxBFHlI5n6Q49HuYMGDBg70X065fPfvazaWlpyfPPP58kueeee3YLc3ZeZbNjx46ynv/GfuWu6Hnd4MGDu9R/Tz/YAACAt7/GxsZUV1eno6MjCxYsSFtb25v+vujs7Nztt0F7e3vpBbZ+/fpl2LBhfj8AAABl2X25TC+pqqrKhRdeWLpevnx51q5du0ufnc/RKXeFzRv77eksHgAAgL0ZNGhQzjnnnCTJ6tWrc//993dp/P333581a9Ykee3MnUGDBnV7jQAAQN9UMWFOkvzVX/3VLsuOXj9H53UDBw4stTds2FDWnG/st/McAAAAXfGpT32q1J47d27ZZ3Ju27Ytc+fO3eM8AAAAe1NRYU6/fv12ORB006ZNu9wfPnz4LvfKWZ3z+ptvyWtBzs7zAwAAdMUZZ5yRE044IUmyaNGiTJ8+fa+BTltbWy6//PIsWrQoSXLiiSfm9NNP7/FaAQCAvqOiwpwku/wQeuOWaMOHD0+hUEiSFIvFLF26dK/zvfzyy6X2kUce2T1FAgAAB6VCoZAbbrgh9fX1SZIHHngg559/fu65556sXbs2zz33XJ544oksWbIka9euzT333JPzzz8/DzzwQJKkvr4+//Zv/1b6XQMAAFCOfr1dwM5aWlqybdu20vVhhx22y/2ampqMHj06S5YsSZI899xzGT169FvO+fzzz5faY8eO7cZqAQCAg9G4ceNy++23Z9q0aWltbS2t0Nmb+vr63H777Rk3btwBqBIAAOhLKmplzq9//etSu76+PkcfffRufU477bRSe/78+W8535o1a7Jw4cI9jgUAANhXEydOzOzZs1NTU1NW/5qamsyePTsTJ07s4coAAIC+qEfDnHIPA02SJUuW5Gc/+1np+owzzkh1dfVu/SZNmpTa2tokyYoVK/LLX/7yTef8wQ9+kM7OziTJ6NGjc+yxx5ZdDwAAwJt5+OGHM3PmzLLO8UyS9vb2zJw5Mw8//HAPVwYAAPRFPRrm/Pa3v81VV12VBQsWpLW1dY992tvb8/Of/zzf+MY38uqrryZJBgwYkI985CN77N/Q0JDzzjuvdP29730vjz766C59duzYkR/84Af5zW9+U/ps6tSp+/t1AAAAsnDhwtIWa8lr2znfdNNNWbRoUZ577rk8/vjjWbBgQZ599tnMnTu3tN1za2trpk2btsvuAQAAAOUoFIvFYk9NPn/+/MydOzdJUl1dneHDh+fII4/MgAED0tnZmXXr1uWFF17Y5ZycmpqafPnLX85JJ530pvPu2LEj//Iv/5JFixaVPhs5cmSOOeaYvPrqq3n++eezfv360r0pU6bkwgsv7IFvuKuOjo60tLT0+HMAAIDeUSwWc/bZZ5fO8TznnHNy4403pq6uLlVVVWlsbEySNDc3l3YJaGtry/Tp0/PAAw8kSU488cQ89NBDKRQKvfMlAACAHjds2LA97j62rw5YmFOO4447LtOnT8873/nOvfZtbW3NzTffnMcee+xN+1RXV+cjH/lILrjggrJr2B/CHAAA6Nt+85vfZMqUKUleW5Fzzz33pK6uLkneNMxJXgt0zj///NILaT/5yU9yxhlnHODqAQCAA6W7w5x+3TbTHpx55plpamrKkiVL8uKLL6alpSWbN2/O5s2bUywWU19fn6FDh+b444/Pe97znpx44ollz11fX58vfOELOfvss7NgwYK88MIL2bBhQ6qrqzN48OCccsopOeuss8oKhgAAAMpxxx13lNrTp08vBTl7U1dXl+nTp2f69OmleYQ5AABAuXp0Zc7BxsocAADouzZv3pwxY8ako6MjRxxxRJ544onU1NSU7r/VypzktfNCTzvttKxZsybV1dVZvHhxBg0adEC/AwAAcGB098qcqm6bCQAAoA9buXJlOjo6kiQTJ07cJcgpR01NTSZNmpTktRfBmpubu71GAACgbxLmAAAAlGHr1q2l9iGHHLJPc+y8EmfLli37XRMAAHBwEOYAAACUYcCAAaX2pk2b9mmOzZs3l9oDBw7c75oAAICDgzAHAACgDE1NTaU9rx9++OG0t7d3aXx7e3sWLFiQJOnXr1/pfB0AAIC9EeYAAACUYdCgQTnnnHOSJKtXr87999/fpfH3339/1qxZkyQ555xzdtlyDQAA4K0IcwAAAMr0qU99qtSeO3du2trayhq3bdu2zJ07d4/zAAAA7I0wBwAAoExnnHFGTjjhhCTJokWLMn369L0GOm1tbbn88suzaNGiJMmJJ56Y008/vcdrBQAA+o5CsVgs9nYRfUVHR0daWlp6uwwAAKAHLVy4MBdccEFaW1uTJGPHjs306dMzYcKEtLS0ZO3atamqqsro0aPzzDPPZO7cuaUgp76+PvPmzcu4ceN68ysAAAA9bNiwYaUzN7uDMKcbCXMAAODg8PDDD2fatGmlQKcc9fX1uf322zNx4sQerAwAAKgE3R3m2GYNAACgiyZOnJgZM2akUCiU1b9QKGTGjBmCHAAAYJ8IcwAAALpozpw5ueaaa1LuRgfFYjHXXHNN5syZ08OVAQAAfZEwBwAAoAvmzZuXWbNmla7r6upy0UUX5emnn85zzz2Xxx9/PAsWLMiTTz6Zz3zmM6mrqyv1nTVrVubNm9cbZQMAAG9jzszpRs7MAQCAvq2zszOjRo1Ke3t7kmTo0KGZP39+GhoaUlVVlcbGxiRJc3NzOjs7kyQbN27M5MmTs2rVqiRJbW1tXnrppVRVebcOAAD6KmfmAAAA9JJbb721FOTU1dWVgpy30tDQkPnz55dW6Gzfvj233357j9cKAAD0HcIcAACAMt1yyy2l9tSpU/ca5LyuoaEhU6dOLV3ffPPN3V4bAADQdwlzAAAAyrBy5co0NzcnSQqFQmbOnNml8TNnzkyhUCjNtXLlym6vEQAA6JuEOQAAAGVYuHBhqT1ixIgMHDiwS+MHDhyYESNGlK4XL17cbbUBAAB9mzAHAACgDOvWrSu1BwwYsE9z1NfXl9pr1qzZ75oAAICDgzAHAACgDIcffnipvXXr1n2ao7W1tdQeMmTIftcEAAAcHIQ5AAAAZRg3blypvXz58mzZsqVL47ds2ZLly5eXrseMGdNttQEAAH2bMAcAAKAMTU1NaWxsTJIUi8XMnj27S+Nnz56dYrFYmqupqanbawQAAPomYQ4AAECZLrnkklL7rrvuysaNG8sat379+tx1112l60svvbTbawMAAPouYQ4AAECZLr744tTU1CRJ2traMnny5L0GOhs3bsxZZ52Vtra2JEltbW2mTZvW47UCAAB9hzAHAACgTFVVVbnuuutK16tWrcqECRNy9dVX73aGzpYtW3L11VdnwoQJWbVqVenza6+9NlVVfooBAADlKxRf37SZ/dbR0ZGWlpbeLgMAAOhhc+bMyaxZs3b5rFAo5JhjjsmAAQOycePGLF++PG/8uXXVVVdlxowZB7JUAACgFwwbNizV1dXdNp8wpxsJcwAA4OAxb968XHnllWlvb99r39ra2lx77bW54IILDkBlAABAbxPmVDBhDgAAHFw6Oztz++2357vf/W6am5t3u9/U1JRLL70006ZNs7UaAAAcRIQ5FUyYAwAAB6+Wlpa88sorWb16daqrqzNmzJg0NTX1dlkAAEAv6O4wp1+3zQQAAHAQa2pqyvjx45Mkzc3N6ezs7OWKAACAvsI6fwAAAAAAgAomzAEAAAAAAKhgwhwAAAAAAIAKJswBAAAAAACoYMIcAAAAAACACibMAQAAAAAAqGDCHAAAAAAAgAomzAEAAAAAAKhgwhwAAAAAAIAKJswBAAAAAACoYMIcAAAAAACACibMAQAAAAAAqGDCHAAAAAAAgAomzAEAAAAAAKhgwhwAAAAAAIAKJswBAAAAAACoYMIcAAAAAACACibMAQAAAAAAqGDCHAAAAAAAgAomzAEAAAAAAKhgwhwAAAAAAIAKJswBAAAAAACoYIVisVjs7SL6imKxmM7Ozt4uAwAA6CXV1dVJko6Ojl6uBAAA6E1VVVUpFArdNp8wBwAAAAAAoIL16+0CAAAA+oKOjo5s2LAhSXLooYeWVukAAADsL2fmAAAAdIMNGzbksssuy2WXXVYKdQAAALqDMAcAAAAAAKCCCXMAAAAAAAAqmDAHAAAAAACggglzAAAAAAAAKpgwBwAAAAAAoIIJcwAAAAAAACqYMAcAAAAAAKCCFYrFYrG3iwAAAAAAAGDPrMwBAAAAAACoYMIcAAAAAACACibMAQAAAAAAqGDCHAAAAAAAgAomzAEAAAAAAKhgwhwAAAAAAIAKJswBAAAAAACoYMIcAAAAAACACtavtwsAAABIkilTppTaP/7xj3uxkje3ePHifO1rX0uSnHTSSfnqV796wJ59+eWXZ/Xq1UmSOXPmZOjQoQfs2QAAQO+yMgcAAAAAAKCCWZkDAABwkLrxxhuzYMGCJMn06dMzefLk3i0IAADYIytzAAAAAAAAKpiVOQAAAGUaM2ZMxZ7nAwAA9F1W5gAAAAAAAFQwYQ4AAAAAAEAFs80aAABQsVasWJEHH3wwf/jDH7JmzZpUVVVl6NChGT9+fM4777wccsghZc/V1taWhx9+OE899VT+/Oc/Z9OmTamqqsqhhx6aE088MRMnTszYsWPfco7Fixfna1/7WpLkpJNOyle/+tW37N/e3p4HH3wwjz/+eFasWJG2trYcfvjhGTVqVM4+++yMGzcuSXL55Zdn9erVSZI5c+Zk6NChZX2ntWvX5he/+EWefPLJrF69Oh0dHRk8eHBOPvnkfPjDH84RRxyxx3E7P+91c+fOzdy5c3fre+GFF2bKlCll1QMAAPQMYQ4AAFCRHnzwwdxxxx159dVXd/l82bJlWbZsWX75y1/my1/+ckaNGrXXuR577LF873vfy4YNG3a719zcnObm5syfPz8TJkzI3//936e+vn6/6//zn/+cf/3Xf01LS8sun7e0tKSlpSWPPvpoPvCBD+Qzn/nMPs3/xBNPZO7cuWltbd3l8xUrVmTFihX51a9+lX/4h3/IhAkT9vk7AAAAlUGYAwAAVJz58+fntttuS5IMHz48xx57bGpqarJixYosWbIkxWIxmzdvzjXXXJPrr7/+LcOXe++9N3feeWeKxWKSpH///hk9enQGDx6czs7OLF++PC+//HKKxWKeeuqpfPWrX803vvGN1NbW7nP9zc3N+frXv55NmzaVPhs5cmSOPvroFAqFLF26NMuWLctDDz2U/v37d3n+hQsX5tZbb01nZ2eGDBmS0aNHp3///lm1alWee+65dHR0pL29Pddff32uu+663Vb6TJo0KZs3b86iRYvyyiuvJEnGjRuX4cOH7/as4447rsv1AQAA3UuYAwAAVJxbb701hxxySGbMmJFTTz11l3vPPfdcZs+enW3btmX9+vX5+c9/ngsvvHCP8yxcuLAU5PTr1y9TpkzJhz70od2CmqVLl+bb3/52/vKXv2Tp0qW58847c9FFF+1T7cViMTfddFMpyBk0aFCuuOKK3b7HokWLcsMNN+Tee+9NdXV1l57x7//+73nHO96Riy++OO973/tSKBRK95YvX55vfetbWbduXbZv356f/vSnmT59+i7jX9827cYbbyyFOe973/syefLkLn5bAADgQKjq7QIAAAD25Oqrr94tAEleO6vm4x//eOn6N7/5zR7Hd3Z25rbbbiutyPn85z+fv/mbv9njipujjz46//zP/5yGhoYkyS9/+cusXbt2n+r+wx/+kOeffz5JUigU8qUvfWmP32Ps2LH5x3/8xxQKhezYsaNLz9ixY0euvPLKTJw4cZcgJ0lGjBiRSy65pHT929/+Nh0dHV3/IgAAQMUQ5gAAABXn7LPPzlFHHfWm9ydNmlRazbJixYrdzo1JkieffDIrV65Mkpx22mn567/+67d85qGHHppzzz03SdLR0ZHHHntsn2r/1a9+VWqfeeaZOfHEE9+076hRozJx4sQuP2PChAl7DIheN378+Bx66KFJkra2ttLqGwAA4O1JmAMAAFSc008//S3v9+/fP8OGDUvy2rZma9as2a3P008/XWq/973vLeu5Y8eOLbX/+Mc/ljXmjZ577rlS+33ve99e++9LmLO3v0+hUNglDFu1alWXnwEAAFQOZ+YAAAAVZ+TIkXvtM2jQoFJ7TytzXnjhhVL78ccf3yVkeTM7z7Mv26ytW7eudFZOkhx//PF7HTNq1KgUCoXSdnDl6OrfZ9u2bWXPDQAAVB5hDgAAUHHq6+v32uf1bdaS7PFMmPXr15fajz76aJdr2LJlS5fH7Bzk1NbWZuDAgXsd079//9TX12fr1q1lP6c7/j4AAMDbh23WAACAilMoFPZ7jj2t1umKzs7OLo9pa2srtWtqasoeV1dX1+VnAQAABw8rcwAAgD6ptra2FOjMnj07xxxzTI8/c+dQpr29vexxO4dAAAAAb2RlDgAA0Cc1NDSU2hs2bDggz9z5nJrt27eXtVVbW1vbfq8iAgAA+jZhDgAA0Ccdf/zxpfaSJUsOyDMHDx68S6Dz0ksv7XXMn/70pxSLxZ4s6011x3Z2AABAzxPmAAAAfdKECRNK7V//+tdd2vZsf5x00kml9v/+7//utX85fXrKO97xjlJ7x44dvVYHAADw1oQ5AABAn/Se97wnjY2NSZL169fntttuK3sFTFtb2z6fY/P+97+/1H7kkUfywgsvvGnfl19+OQsWLNin53SHnVcRrVu3rtfqAAAA3powBwAA6JOqqqpy0UUXparqtZ898+fPz//7f/8vf/nLX950zNKlS/Mf//Efueyyy7Jq1ap9eu748eNz4oknJkmKxWJmz56dZ599drd+ixcvzqxZs9LZ2Zl+/frt07P214gRI0rt3//+91bnAABAheqdXwwAAAAHwMknn5yLLroot912Wzo7O/P000/nmWeeyTvf+c6MHDky/fv3T3t7e9avX59ly5Zl06ZN+/3MQqGQyy67LP/0T/+UzZs3Z/PmzfnmN7+Zo446KkcffXSSZNmyZVm6dGmS5MMf/nB++9vfZvXq1UlSCp8OhPHjx6empibt7e1ZunRpvvCFL+Skk07KgAEDSn1OOeWUnHLKKQesJgAAYHfCHAAAoE/7wAc+kMbGxtx6661ZuXJlisVili9fnuXLl7/pmBEjRmTgwIH7/MympqZcffXVufbaa0srfJYtW5Zly5btVtvHP/7xPPLII6XP+vfvv8/P7ar6+vp88pOfzO23355isZiWlpa0tLTs0qeurk6YAwAAvUyYAwAA9Hljx47N9ddfnyeeeCJPPfVUXnzxxWzYsCHbtm1LbW1tGhoaMnz48JxwwgkZP358aQXN/jj66KNz3XXX5Re/+EUee+yxrFy5Mtu3b89hhx2W4447LmeffXbGjRuXJNm6dWuS11b1HMgwJ0k++MEPZuTIkXnooYfy4osvZt26dWlvby/7fCEAAKDnFYr+hw4AANBrVq5cmc997nNJkiOPPDLXX399L1cEAABUmgO3GTMAAAC7efTRR0vtUaNG9WIlAABApRLmAAAA9JJVq1blZz/7Wen6ve99by9WAwAAVCphDgAAQA/45je/mWeeeSYdHR17vP/UU0/l6quvTmtra5LXztg5+eSTD2SJAADA20S/3i4AAACgL3r22Wfz7LPPZsCAATn22GMzePDg9OvXL5s2bcqf/vSnrF27ttS3f//+mTFjRqqqvG8HAADsTpgDAADQg7Zu3ZqFCxe+6f2mpqZ84QtfyMiRIw9gVQAAwNtJoVgsFnu7CAAAgL5m+fLl+d3vfpclS5ZkzZo12bRpU7Zs2ZKampoccsghGTVqVN71rnflzDPPtCIHAAB4S8IcAAAAAACACub1LwAAAAAAgAomzAEAAAAAAKhgwhwAAAAAAIAKJswBAAAAAACoYMIcAAAAAACACibMAQAAAAAAqGDCHAAAAAAAgAomzAEAAAAAAKhgwhwAAAAAAIAKJswBAAAAAACoYMIcAAAAAACACibMAQAAAAAAqGDCHAAAAAAAgAomzAEAAAAAAKhgwhwAAAAAAIAKJswBAAAAAACoYMIcAAAAAACACibMAQAAAAAAqGDCHAAAAAAAgAr2/wPxgHzRHDg3xgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 458, "width": 825 } }, "output_type": "display_data" } ], "source": [ "cdc['height'].plot(kind = 'box', title = 'Boxplot of height')\n", "plt.show(); " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can compare the locations of the components of the box by examining the summary statistics." ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 20000.000000\n", "mean 67.182900\n", "std 4.125954\n", "min 48.000000\n", "25% 64.000000\n", "50% 67.000000\n", "75% 70.000000\n", "max 93.000000\n", "Name: height, dtype: float64" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cdc['height'].describe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Confirm that the median and upper and lower quartiles reported in the numerical summary match those in the graph. The purpose of a boxplot is to provide a thumbnail sketch of a variable for the purpose of comparing across several categories. So we can, for example, compare the heights of men and women with" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABqUAAAOzCAYAAAAx+QyCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AADMOklEQVR4nOzdd3hUZd7/8c/MpBEICYQUmjTpiSgISC/qAoqL4ooIKljQFVfdtbs+rG1dFsV9ZF1RYRGVBQFXBBvCihCQZltKQHo1pEEIkIS0yfn9wS/nyWRSZpI5mSS8X9fF5Tln7vs+35NpznzmnNtmGIYhAAAAAAAAAAAAwEJ2fxcAAAAAAAAAAACA+o9QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAABQY9q2bSubzWb+e/755/1dEjxw6tQpzZw5U6NHj1abNm3UuHFjl/vRZrNp+fLlPttf6bHfe+89n41dG9Wl58WRI0fc7p9169b5u6waNXnyZJfjHzp0qL9LAqqNxzUAAKgpAf4uAAAAAEDt9eabb+rJJ59UTk6Ov0sBAAAAANRxhFIAAKBWWbdunYYNG+ZVnwYNGqhx48Zq1qyZ4uPj1atXL918881q166dRVUCF4dXX31VTz75pL/LAAAAAADUE4RSAACgzjt//rzOnz+v1NRU7dq1S4sXL9aTTz6poUOH6rXXXtMVV1zh7xJRx7z33nu66667XLYZhuGnavxj3759evbZZ922t27dWt26dVOjRo1ctrds2bKmSsNFavLkyXr//ffN9SFDhlx0lw4EAAAA6jpCKQAAUC8ZhqG1a9eqd+/emj59up544gl/lwTUKW+//bYKCgrM9cDAQP3rX//SuHHj/FgVAAAAAKAuI5QCAAC1XteuXdWtW7cybzMMQ+fOnVNKSor27Nnj8iW6JDmdTj355JOy2+167LHHaqJcoF747LPPXNbvu+8+AimLHDlyxN8lAAAAAECNIJQCAAC13rhx4/T8889X2i4nJ0effPKJ/vSnP+nQoUMutz377LO64YYb1KlTJ4uqBOqPM2fO6ODBgy7brrvuOj9VAwAAAACoL+z+LgAAAMBXQkNDNXHiRG3btk29e/d2uS0vL09vvPGGnyoD6pakpCS3ObTatm3rn2IAAAAAAPUGoRQAAKh3wsLC9N5777ltX7FiRc0XA9RBZ8+eddsWGhrqh0oAAAAAAPUJoRQAAKiXunXrph49erhsO378uPLz8/1UEVB35Obm+rsEAAAAAEA9xJxSAACg3urYsaO2b9/usu3kyZNq0aJFlcc8dOiQduzYobS0NJ06dUqNGjVSdHS02rdvr169eslurz+/+UlMTNR///tfpaSkyOl0qkWLFmrXrp369eungIDa8b+RF9P9UVpGRoa2bt2qlJQUpaenKyAgQFFRUWrZsqX69eunBg0a+LtES+Xn52vLli3avXu3MjIy1KBBA0VFRenyyy9XXFycJfvctWuX9u3bZz7ewsLCFBUVpc6dO+vyyy+XzWazZL/eSE5O1pYtW5ScnKzTp0+rUaNG6tChg/r27auoqKgaqyM7O1ubN2/W3r17lZmZaT43+/Tpow4dOtRYHf5SVFSkn376STt37lRaWprsdrtatGihjh07qnfv3rXiseIvp0+f1saNG5WUlKSTJ08qNDRUbdq0UZ8+fdSqVSvL93/u3DmX1878/HxFRUUpNjZWV111lZo2bWrp/o8ePaqtW7fq+PHjysvLU2RkpFq3bq1BgwYpLCzMp/vavn27fv75ZyUlJamgoECRkZHq3r27+vTpUyPv4/58zczLy9N3332nvXv36tSpUyosLFTTpk01atQoLkcLAIC/GQAAALXI2rVrDUku/5577rkqjfWb3/zGbazTp097Pc7p06eNZ5991ujYsaPbeCX/RUZGGnfccYexe/duj8adNGmS2xjTp0/3ur4FCxa4jTNq1CijqKiozPbPPfecS9s2bdqYtxUUFBh///vfjXbt2pV7nM2aNTMeeugh49SpU17X2qZNm2rft1bdH6X/Lt7+K/l3tEphYaHxzjvvGH379jXsdnu5tYSEhBgjRowwVq5c6dG48+fPr9axr1271qfHWXr8+fPnm7elpqYaDz/8sNG4ceNy62nVqpXxxhtvGAUFBdWuZd++fcaUKVOMli1bVvg3iIqKMqZMmWIcOXLE63344nnx5ZdfGoMGDSr3cWG3240RI0YYGzduNPuU9Xp7+PDhCvdz+PDhCu//gwcPGpMnTzZCQkLK/Vt17tzZWLhwYbmvUSUNGTKkWo/NSZMmef23rEzp1+4hQ4aYt2VnZxsvvPCCERMTU+Hjc9q0aUZ2dnal+yosLDRatWrl0n/8+PHVqv/DDz90q2nDhg3VGtMTW7ZsMUaOHGkEBgaW+7fp37+/8cUXX5h9Knu8eaqgoMCYO3euMXjw4Ar3b7fbjb59+xoLFiwwnE6nV/uo6L3VMAxj+fLlRp8+fcrdd2BgoDFmzBiP37MqOtaZM2dW+B4ZERFhPP7440ZGRobZr6LHtTdq4jWzoveIvXv3GnfeeacRGhpa5n5LtgUAAP5BKAUAAGoVX4ZSl19+ucs4TZo08ehL0JLmzp1rNG3a1KsvQR0OhzF16lQjNze3wrGzs7ON7t27u/QNCAgwvv32W4/r2717t9GwYUO3LzzT09PL7VPeF2cnTpwwrrzySo+PMzo62vjss888rtUwqv/lu5X3R20PpTZu3Gh06dLF67quvvpq49ixYxWOXVdCqZUrV3p1//fr18/lS1dvnD171rjvvvuMgIAAr/4WQUFBxnPPPefVa011nhdZWVnGuHHjPK7PZrMZf/zjH42ioiKfh1Lz588v94vgsv6NGTOm0udlXQqldu/ebVx66aUe19a+fXtj8+bNle7vxRdfdHuMpaWlVbn+oUOHuowXFxdX5bE8UVhYaDz00EMVBuml/02ePNnIz8/3SSi1cuVKo1OnTl4/duLj470KiMp7b83KyjJuueUWj/cbEBBgfPDBB14dY7Gff/7Z7f99KvoXGxtrBtXVDaVq8jWz9BjF7xF///vfjaCgoAr3RygFAID/1d/rmQAAgIvanj173C7dN2jQII8vFWMYhp566ilNmTJFGRkZXu3b6XRq9uzZGjFihDIzM8ttFxoaqo8++kgNGzY0txUWFmr8+PE6efJkpfs5f/68xo0bp+zsbHNbQECAPvzwQzVr1syrmk+dOqXBgwfrhx9+8LhPWlqabrrpJi1btsyrfVVFTdwftdmyZct09dVXa8+ePV73XbNmjfr166fExEQLKqs5H3/8sUaPHu3V/b9582aNGDFChYWFXu3rl19+0cCBAzVnzhyv++bn5+uFF17Q+PHjLZ/DLjs7W9dff72WLl3qcR/DMPSXv/xFjz76qE9ref3113XXXXcpJyfH4z4rVqzQ+PHjfVqHvxw8eFCDBw/WgQMHPO5z6NAhXXvttdq0aVOF7aZMmaLAwEBzPT8/X++9916V6ty7d6/WrVvnsu3++++v0liecDqdmjhxot544w0VFRV53O+9997T+PHjZRhGtfb/+uuv6/rrr9e+ffu87rtz507179/f7e/ljZycHP3qV7/SRx995HGfwsJCTZo0SZ988olX+9q7d6+GDRumbdu2edwnJSVF11xzjb777juv9lVabXjNnD59uh5++GHmDgUAoA6oHZMBAAAA+FBWVpbuuusuty+zvPni7eWXX9Yrr7zitr1du3aaOHGi+vfvr+joaGVmZurnn3/W4sWLtXHjRpe2CQkJGjNmjNauXVvu3EZdu3bV7NmzNWnSJHPbL7/8ojvvvFNffPFFhSHagw8+6BY0vPTSSxo4cKDHx1ls8uTJ5pepNptN1113nW6++WZ16NBBDRo0UFJSklatWqXFixe7BDvFIdrGjRvVu3dvr/frqZq4P7p166abb75Z0oU5P0oHdMW3lSc6Otrbw/JIQkKCbrnlFrcvdMPDw3XrrbdqxIgRatmypQoKCnTkyBGtWLFCy5cvd/liMCkpScOGDdPOnTsVGxvrto+2bdu6HF96errWr1/v0mbUqFEKDQ0ts0ar5yratm2b3n77bTmdTklSp06dNG7cOPXr10/R0dHKy8vTvn37tHjxYq1evdql7/fff68ZM2bo2Wef9Whf6enp6t+/v44fP+6yPSwsTL/5zW80cOBAtW/fXuHh4crKytKhQ4e0evVqffTRRyooKDDbL126VNHR0XrjjTeqefTlu+uuu5SQkOC2vX///rr11lvVvXt3NWnSROnp6frpp5/04YcfaufOnZIufFlf/Pesri+//FIzZ84013v27Kmbb75ZV155pZo1a6asrCwlJibqgw8+0NatW136Ll++XAsXLtTEiRPLHHvIkCFmyP7DDz/o6NGj5m3NmjXTkCFDKqzNytelYoWFhbrlllvMHxMEBgZq7Nix+vWvf602bdooICBAR48e1eeff65///vfOn/+vNk3KytLo0aN0s6dO3XJJZeUOX5sbKxuuukml/Bxzpw5evzxx72ek2fOnDku66Ghobrjjju8GsMbzzzzjJYsWeK2/bLLLtNtt92mnj17qlmzZsrIyNCuXbu0ZMkSbd68WdKFML5ly5ZV3vdf//pXPfPMM27be/furdGjR6tnz56KiopSQECA0tPTtXXrVi1evNgl/M/MzNSNN96on376Se3bt/e6hrvuussMHYsfFyNHjlS7du0UFhamtLQ0rV+/XnPmzNGpU6fMfoZh6IEHHtDQoUPVpEmTSvdz9uxZXXvttUpJSXHZXtZj8dixY/r888/10Ucf6fz58zp//rz5fK2K2vCa+fXXX2vRokXmevv27TVu3DgNGDBAMTExysvL0/Hjx/XZZ5/V+/kWAQCoE/x5mhYAAEBp1bl8X05OjvHhhx+WOY/Crbfe6nENW7ZsKfPyM08//XSFl5pasmRJmfPcvPzyy5Xu8+6773brV9H8Uu+//75b+4rmkSqp9CWGbDabudyiRQtj3bp15fZNTk42fvWrX5V5maP8/PxK912Vy5T54/4o63J2/nD69GmjdevWbrVcd911RnJycrn9/vvf/xpdu3Z16zdixAiPHiNVuaybL5Xed/FjNCAgwJg1a5ZRWFhYbt/333/fcDgcLv2bNm1a6WXiDMMwnE6nce2117r0tdvtxqOPPmqcO3euwr5Hjhwx+vfv71b7ihUrKt1vVZ4XH330kdu+GjZsaCxevLjC45s1a5b59ynrcmpVuXxf8f3TsGFDY9GiReX2LSoqMv7yl7+49e/evXulx2sYvpvzprpK11HyNbRr167G9u3by+27d+9eo2fPnm5/g5EjR1a4z3Xr1rn1+c9//uNV3efPnzciIyNdxrj77ru9GsMbW7dudXsuOhwO4+9//3uF8zV9+OGH5mUgy3qMenL5vrVr17rtu1OnTkZCQkKF/ZxOp/Hmm28awcHBLn179epV6RxTFb239u3b19i3b1+5fU+dOmVcddVVbsf6yiuvVHqshmEYU6ZMcetb2WPxwIEDLnNclazX0+eXv14zS/cpeQx//vOfPfr/EQAA4D+EUgAAoFYp68vwrl27GjfffHOZ/8aOHWuMGDHCuOyyy8qdR2DSpElGXl6exzWU9cWQJ0GGYRjG+vXrjZCQEJe+QUFBRkpKSoX9cnJyjPj4eJd+5c0vtWvXLq/nkSqpvLmTmjRpYuzatavS/rm5uWXO8/LGG29U2rcqX7774/6oLaHU008/7VbHdddd59EXbsnJyUaHDh3c+n/yySeV9q1toVTxl43Lli3zqP8f//hHt/5LliyptN9bb73l9uXqggULPK47NzfXGDBggMsYl112WaX9vH1eOJ1Oo23btm6vF2vWrPGozvfee6/cL3WrEkpJMoKDg40tW7Z4tP8JEya49d+6dWul/WprKFX8r23btsaJEycq7X/q1KkyQ+PK5ugrPQfhb37zG6/qXrBgQZX+7lU1aNAgt/29//77HvX9+uuvy52bqLJQKi8vzy3M7927t5GZmelx7Z9++qlbIPbxxx9X2Ke899b+/fsb2dnZle4zNTXViIiIcOnbtWvXSvtt27bNLVDy9LGYmZlpXHbZZWXW7cnzy1+vmeW9fr399tse7xsAAPgPoRQAAKhVyvoyvCr/WrVqZUyePNmcwNtTW7durdIXMyW99NJLbmN4Er7s2bPHaNSokdtxlAybsrOzjW7durm0cTgcxoYNGzyur7wvzubMmePxGEeOHDEaNGjg0r9bt26V9vP2y3d/3R+1IZTKyclxO6shMjLS4/DRMC6EclX59XttDKUefPBBj/tnZma6hZGV9S8sLDTat2/v0uf3v/+917UfPnzYLSBftWpVhX28fV58/vnnbn+fRx991Ks6b7rppjL/zlUNpV599VWP971nz54q9a/todTq1as9HmPLli1uz81Ro0ZV2Ocf//iHS/vAwMBKA/aSBg4c6NK/Z8+eHvf1VmJiotvfZ+zYsV6N8Yc//KHMv3NlodS7777r0j4sLMw4fvy418dQ+uyjfv36Vdi+rPfW0NBQ4+jRox7v85lnnnEbo7LX/N/+9rfVeixu27bN7awyT55f/nzNLOtx8etf/9rrfQMAAP8oe3IDAACAOu706dPKyMjQ6dOnveo3b948t22vvvqqV2M8+eSTiomJcdn2z3/+s9J+nTt31ttvv+2yrXh+KeP/z481depU7d6926VNVeeRKqlDhw665557PG7fpk0b/fa3v3XZtnv3bm3ZsqVadZTmz/vD35YvX+4yx4gkPfXUU+b8Op4YNGiQxowZ47ItISHBnD+srggMDCxzbpjyhIeHa/jw4S7bfvzxxwr7LF++XIcOHTLXGzRooOeff96rOqUL83PddNNNLtu+/PJLr8epyIIFC1zWg4KCPJ4zq9gLL7zgs3oiIyP14IMPety+c+fO6tatm8u2yu6f2m7o0KG69tprPW7ft29f3XjjjS7bVq1apaSkpHL73HnnnWrUqJG5XlBQoHfffdej/e3evVvffvutyzZv5ln0VunHqOT9Y+7ZZ59VYGCg1/v+29/+5rL+0EMPqVWrVl6P8+ijj7qsb9myxev/p5g0aVK5c4WVpfRrh1TxcyM/P18LFy502ebtY7FHjx4aP368x+2L1bbXTG9fAwEAgP8QSgEAgHopOztbn376qUaPHq2BAwfq8OHDHvVbv369y3r37t3Vu3dvr/YdFBSk22+/3WVbUlKSRzVMnDhRU6ZMcdm2cuVKzZgxQ/Pnz9f777/vctvIkSP19NNPe1Vfefu12737X8NJkya5bSv996suf98f/lT62B0Oh+644w6vxykrbNywYUOV6/KH/v37q2XLll716dGjh8v6L7/8UmH7r776ymX9+uuvV3h4uFf7LFY6EPP182Ljxo0u66NGjVLTpk29GiM+Pl6XXXaZT+oZPXq0GjRo4FUfb++f2u7OO+/0uk/p19CioiK3+7aksLAwt9eAuXPnqqioqNJ9lf7BQ1hYmCZMmOBFtd4pfRw9evRQXFycV2NERkZq1KhRXvVJSkpSYmKiy7aqHmeXLl3UvHlzc90wDK9fO8eNG+dV+7i4OLf34oqeG//973917tw5l21VeSxOnjzZ6z616TWzY8eO6tOnT5X2DQAAah6hFAAAqPWee+45GRcuO1zmv/z8fKWnp2vTpk2aOXOm2xdfGzduVJ8+fbRr164K93P69Gnt3bvXZZs3vzYuacSIEW7bNm/e7FHfv//9725f2E6bNs3tTISWLVtqwYIFstlsVaqxpKuvvtrrPj169FBkZKTLtq1bt1a7lmK15f7wl9L1xcfHKzY21utxrr76ajkcjgrHru2uuuoqr/uUPjvuzJkzFbZPSEhwWb/yyiu93mex0mdl/Pzzz1Ueq7QTJ064fUld1TMlq3uGZbGauH9qu6q8hg4bNszt9buy19CpU6e6rB8+fFirV6+usM/58+fdzlyaOHGiy1lXvlRYWOh2dk9NPUZLP48bNmyorl27VmnfUvWeyzabTX379vVqfw0aNFDjxo1dtlX03Cjr7OSqPBYHDx7s9Vlptek109u/MwAA8C9CKQAAUOcFBgaqWbNm6tevnx577DHt2LFDr732msuXfSdPntSoUaN09uzZcsc5cOCAeZm8Yj179qxSTWX127dvn0d9Q0JCtHTpUoWFhZnbCgsLdf78eXPd4XBo8eLFXl3KrSKlQzBPXX755S7re/bs8UE1F9SW+8Nf9u/f77Je1WNv0KCB25eytf3YSyt5toKnSj5/JCkrK6vctllZWW5/76efflo2m61K/66//nqXsXJzc5WTk+P1MZSlrDP8qnrGk6/OlLL6/qntmjRp4tUl2oo1btxY7du3d9lW2WtoXFycBg0a5LLtnXfeqbDPkiVLlJmZ6bLNykv3paamurxfSTX3GP3pp59c1rOzs+VwOKr8XP7+++9dxit9SdWKhIeHe30GoeTdc6P046Wqj8WgoCC3S2pWpLa9Znbp0sXjtgAAwP8IpQAAQL1js9n06KOPus1fcfz4cT333HPl9itrroiqzEMhXbjsUEhISKXjl6dTp06aM2dOubf7Yh6pYqGhoVW+5E6LFi1c1r2db6Miten+qGn5+fluX8hV9djL6lubj70spc8c8ETpS2CVDjhLOnnypNfje8tXf/PS4YIkRUVFVWksX4Xavrh/PLkEXW1VlVCuWFVeQ0ufLfX555/rxIkT5bYvHVr17dvX7QcFvuTPx6jVz2VvnsdVeV5I3j03Stfjy8diRWrba2ZERIR1hQAAAJ8jlAIAAPXWE0884XaJqH/+859u8y8UK+sLkKp+qSTJLejJyMjwqv+4ceN06aWXum2/4oorfDKPVDFfHqPVoZQ/74+adDEfe1l8cYnKinhz9kNVFRQU+GScsr7wL31mhaeq85gqyer7p7ar6dfQm2++2eW9rbCwUPPmzSuz7Y4dO9wu8WblWVKSfx+jVj+XvXke18TzovTf2pePxYrUttfMhg0bWlgJAADwtQB/FwAAAGCVkJAQ/epXv3KZSyMrK0sJCQkaPXq0HyvzzAsvvKADBw64bd+xY4cSEhI0dOjQmi8KqIfy8/PdtvXq1Utt27b12T589aVpcHCw27ay6vdEVfvBvwIDA3Xvvffq5ZdfNrf985//1LPPPut2ls3bb7/tsh4REaHx48dbWp8/H6Ol2zdo0EDXXXddlfZdlt69e/tsrLqsLr1mAgCA2odQCgAA1GtxcXFu23788ccyQ6kmTZq4batoDqrKlJ6cvGnTph73XbNmjf785z+XeZvT6dSECRO0bds2RUdHV7m+Yr48xrL+hlVVm+6PmnYxH7s/lPX3uPPOO/Xwww/7oZqKlXWZqqo+NqrzmML/8cdr6P3336+//vWvcjqdkqRjx47pyy+/dHlvy87O1sKFC1363XnnnVWa58gb/nyMln4uh4SE6N///neV9l0XlP5b+/KxWJG69JoJAABqHy7fBwAA6rWyvuBLT0/3uG1SUlKV9nvq1Cnl5uZWOn5ZUlJSNHHiRJd5JErPh5ScnKw77rjDJ/Ow5OTkePVlVEml5zGxOpTyx/3hD0FBQQoNDXXZVtVjL6tvbT52fyhr3pqamDOlKsqq9dChQ1Ua6+DBg9UtB7rwelxVVX0Nbd26tduPK0rPHfXhhx+6hRRWX7pP8u9jtPS+MzMzzeCuPir9ePHlY7Eidek1EwAA1D6EUgAAoF7Lzs5222YYRpltL730Urc5IH766acq7besfp06daq0X1FRkSZOnKjU1FSX7QsXLtS9997rsm316tX6y1/+UqX6Stu+fXuV+m3bts1lvUuXLj6o5oLacH/4U8eOHV3Wq3rsubm5+vnnn1221fZjr2lNmzZ1+5K1qn9vq3Xt2lVBQUEu26pa63//+19flHTRO336tI4dO+Z1v3PnzrmFNd68hj744IMu6ytXrtTx48fN9dIh1aBBg9StWzev6/RWRESE2rRp47Ktph6jnTt3dlk3DKNeP85LP16q+ljMz8/X7t27PW5fl14zAQBA7UMoBQAA6rUjR464bSs5QXxJTZo0cfuC5+uvv67Sfv/zn/+4bevfv3+l/V566SV98803LtseeughjR07Vn//+98VHx/vctvzzz+v9evXV6nGkkrv0xM7duxwm+y8b9++1a6lmD/vj9Lzskjlh5lWKV3fzp07lZaW5vU433zzjQoLCysc+2Jns9l09dVXu2z79ttvlZeX56eKyhccHKwrrrjCZdunn37q9Tg5OTllPi9qs9LPy5p+TlakKq+ha9eudTsGb15Dr7nmGpeA2el0au7cuZIuBAQ//PCDS/uaOEuq2FVXXeWy/p///Efnz5/3epwVK1Z41f6aa65x21bV9426oKzHS1Ueixs2bFBBQYHH7evSayYAAKh9CKUAAEC9VtaXUR06dCi3/eDBg13Wd+7cqR9//NGrfRYUFGjBggUu21q3bl3pBOBr167Viy++6LKtV69emjlzpqQLE7YvXbrUZfJvp9Op2267rdxLEnpq4cKFXn/B+8EHH7htK/33qy5/3R+lL50nqUpfqFZH6WMvLCx0Ow5PzJs3z23boEGDqlxXfTVixAiX9TNnzmj+/Pl+qqZio0aNclnfv3+/119EL1q0SOfOnfNlWZYr/bys6edkRary3Cz9Gmq32zVgwACP+9tsNv32t7912TZv3jwVFhbq7bffdtkeGRmp3/zmN17XWFWlH6Nnz57Vhx9+6NUYX3/9tdeX7+vSpYvbWVqzZ8/2KnCpS3r27KmwsDCXbVV5LL7//vte96lLr5kAAKB2IZQCAAD11hdffKFdu3a5bHM4HG5fpJRU+hJ5kvTkk096td+ZM2cqJSWl0nFLSk1N1YQJE1zmiGrcuLGWLl3qcqmuLl26uH3ZeOLECd1xxx3VOmvgwIEDXn2ZdPz4cb311lsu27p16+b26/jq8tf9ER4e7rbNm/k2fOHGG290uzzSX//6V2VkZHg8xqZNm/TJJ5+4bBs2bFiFwezFavz48WrevLnLthdffLFac7RY5d5775XD4XDZ9sgjjyg/P9+j/qdPn9azzz5rRWmWKv28rOnnZEW++eYbr4LBH374we25OWLECLVs2dKr/d51111q0KCBuX7ixAktWrTILQCaPHmygoODvRq7OsaNG+c239Ef//hHnT592qP++fn5+v3vf1+lff/hD39wWT9+/LhefvnlKo1V2wUFBWnixIku27x9LO7cudPrwFCqW6+ZAACgdiGUAgAA9dLu3bs1efJkt+3XX399mRN0F7vyyivdLm32zTff6NVXX/Vovxs3btRLL73ksi04ONjt1+wlFc8jVTo4+ec//6n27du7tb/99tt19913u2xbtWqVpk+f7lGN5XnyySe1d+/eStvl5eVp8uTJysnJcdn+wAMPVGv/ZfHH/SGVPefSt99+69E+fSUkJET33Xefy7aTJ0/qrrvucrscX1nS0tI0efJkt7Cyql/01ncNGjTQM88847ItOTlZY8aMqfKZiE6nU4sXL1ZmZqYPKvw/LVu21G233eayLTExUbfddlulj42srCxdf/31VboUpL+Vfl4mJSWVeYlWf5kyZYrbfIBlyczM1F133eXyIwRJmjp1qtf7jIiIcHssPPjgg8rKyjLXbTZbjV66T7rwfCo951VqaqpGjx7tUltZCgsLddttt7n9qMRT999/v1q0aOGy7cUXX6zWWTyHDx/WF198UeX+Virr/czTx+LZs2d15513evSeUlpdes0EAAC1C6EUAACoV44ePao//elPuvLKK3Xy5EmX24KCgvTaa69VOsbrr7+uwMBAl21PPvmk/vSnP1V4JsLHH3+s66+/3u2SUs8//7yio6PL7ffnP/9Za9ascdk2depU3XLLLeX2eeONN9S9e3eXbX/605+0YcOGcvuUx2azSZJOnTqla665psLwJTU1VTfeeKPbr7Dj4uIs+9Kzpu8PSWrTpo3b3GMvvvhilb8kraonn3zS7VJUn376qW6++eYKQ4UdO3Zo+PDh2r9/v8v2kSNH6oYbbrCk1vrggQce0PDhw122ff/99+rZs6c++eQTj89GPHTokGbMmKFLL71Ut912W6VfwlfF3/72N7eAfdmyZbryyiv19ddfuwUe+fn5+vjjjxUfH6/NmzdLki699FKf12WlsubPmTp1qtvcdjWt+DX00KFDuvrqq5WYmFhu2wMHDujaa691azNixAiNHj26SvsvHWaVfrwNHz5cHTt2rNLY1fHss8+qc+fOLts2bdqkyy67TMuWLXN7/XY6nfr666915ZVXatmyZZKq9hgNCQnRe++953I2oWEYuvvuu3XvvfcqKSnJo3Hy8vL0+eef69Zbb1XHjh3dzmyrLXr06KEpU6a4bPPksXj48GGNGDFC27Ztk/R/j2Nv1KXXTAAAUHsE+LsAAACAyixdurTCL1YKCgp09uxZ7d+/v9wvmxwOhz744AOPvuDq3bu3XnjhBf3xj3902f7SSy9p0aJFmjhxoq666irFxMTozJkz2r17t5YsWVJmIDR06NAKLze3bt06t3mkrrjiCv3tb3+rsMbQ0FB99NFH6t27t7KzsyX93/xS27Ztq/BssNIuueQSxcXF6YsvvtAvv/yiwYMHa/To0Ro7dqwuvfRSBQcH68SJE1q9erUWLVrk9gvmwMBAvfvuu27Bka/U5P1R0u233+4SYh4+fFhxcXHq3Lmz2rVrp9DQUJcv8aKjozV79uwqHmXZwsPDtWDBAg0bNkxOp9Pc/umnn2r9+vW67bbbdO2116ply5YqKCjQkSNHtGLFCi1fvtxtDpXo6Gi99957Vfri8WIREBCgjz76SH379tWBAwfM7b/88ovGjh2rjh076rrrrlO/fv0UGxur8PBw5eTkKDMzU0ePHtV///tfbd26VTt27LC81qioKL333nu66aabXO7r7du369prr1VUVJS6dOmiiIgInTx5Urt27dLZs2fNdq1bt9b06dPdwu/a/Pjo0qWLevXq5TKv3MqVK9W8eXPFx8erRYsWbpeoGzZsmNsZO77Wr18/ZWdna/v27dq1a5d69eqlsWPHasyYMWrTpo3sdruOHz+uzz//XEuXLnULyhs3bqx33nmnyvvv1auX+vTpo++++67M22v6LKliISEhWrhwoYYNG+Yyf9nhw4d18803Kzw8XN27d1dkZKROnz6tPXv2uPyYpHHjxnrzzTfdLrnryWP02muv1f/+7//q4Ycfdtk+b948LViwQKNGjdLQoUPVpUsXNW3aVAEBAcrMzNSpU6eUmJion376SevXr3d5ztRmr776qr766isdP37c3FbRY/GLL77Q0qVLzTOeW7Zsqd69e2v58uVe7bcuvWYCAIBaxAAAAKhF1q5da0jy6b/IyEjj448/9rqWp59+ulr7HTp0qJGZmVnu+KmpqUbz5s1d+jRu3NjYv3+/xzW+9957bvsdNWqUUVRUVG6f5557zqV9mzZtjLS0NKNDhw5eH2NAQIBXf9s2bdq49H/uuec87mv1/VFaSkqKERsb6/H4bdq08Xhsb33yySdGSEhIlY+9VatWRmJiosf7K+t5ePjwYcuOr7TS+54/f77XY8yfP99tHE+lpKQYQ4YM8dlr0PHjxyvcX3WeF8uWLTMCAwO9qicmJsbYsWOHsWbNGrfb0tLSKtzf4cOH3fqsXbvW43qLlfU65IlvvvnGcDgcHh/rpEmTvK6tMpMmTXLZx5AhQ4x9+/YZkZGRXj82GjVqZGzcuLHaNZX1XlB8X+fn5/vgqKtu06ZNRuPGjb3+u6xZs8Y4ePCg223fffedx/ueP39+tV47S/675557KtxXVR/TpVX19WDPnj1evWcV/wsJCTE2bdpU5uPaUzX9mlm6fVXeIwAAgP9w+T4AAFBvNWrUSPfff79+/vlnjR071uv+06dP1z//+U81bdrUq34Oh0NTp07VV199pfDw8DLbFBUV6fbbb3ebEHzu3LleXa5o0qRJbnNnrVy5UjNmzPCq5qioKK1bt05XXHGFV32WLVtWpb9tVVh5f5QlJiZGq1evdrtMoj/ceOONWrNmjbp27ep132uuuUabN2+uFcdRV8TExOjrr7/Wc889p8aNG1d5nMDAQN1www1ePe68ddNNN+n777/XVVdd5VH7ESNG6LvvvlN8fLzOnDnjdruVtfrCsGHDtGTJEq9fB6zWsWNHrVu3Tm3btvW4T7t27bR69Wq3efOq4tZbb1VkZKTb9rvvvtuys1g91a9fP23btk3XXXedR+179+6tzZs3a/jw4dV+jE6ePFmbNm3SgAEDPO5TlrZt27pdpq626dy5s9auXasePXp43CcqKkqrVq1Sv379qrXvuvSaCQAA/I9QCgAA1Hl2u10RERFq06aNBg4cqIcffliLFi1SSkqK3n77bUVFRVV57HvuuUcHDx7Us88+W+mcHJGRkbrjjjuUmJioN9980+0yUiX95S9/0X/+8x+Xbb/97W81btw4r2t888031a1bN5dt06ZN08aNG70ap1WrVtq6dav+9re/6ZJLLim3XbNmzfTQQw9pz549NT4/kVX3R3ni4+O1fft2ffnll7r//vt11VVXKTY2Vg0bNqzxy5z1799fO3fu1Jw5c9S3b1/Z7eX/r3xISIhGjBihlStX6j//+Y9atWpVg5XWDwEBAXr++ed19OhR/fnPf1avXr0q/JsXa9KkicaOHau3335bSUlJ+vTTTxUWFmZprT169NCmTZv09ddf6/7779dll12mZs2ayeFwKDw8XD179tTvfvc7bdq0SV999ZX5/C49716DBg0UFBRkaa2+cPPNN+vIkSOaP3++JkyYYB5vVZ7jvhQXF6edO3dq2rRpFb7vtGrVSv/zP/+jxMTEaocBxUJCQnTTTTe5bLPb7brvvvt8Mn51tWvXTl988YW2bNmiRx99VD179lRMTIwCAgIUFhamuLg43XPPPVq1apW+++47xcXFSXJ/jEpSRESEV/u+4oor9O2332rdunUaN26cR/9PYLPZdPnll+vxxx/XunXrdOjQIU2YMMGr/fpDly5d9MMPP2jmzJkV/sAlPDxcv//977V7924NHjzYJ/uuS6+ZAADAv2yG4eHMkwAAANDBgwe1fft2paen69SpU2rUqJGioqLUoUMHXXnllR59AeNvzz//vF544QVzvU2bNjpy5Ihbux07dmjbtm1KSUlRUVGRYmNj1a5dOw0YMEABAbVjatL6cH9U1alTp7RlyxalpqYqPT1dAQEBioqKUsuWLdWvXz+Fhob6u8R658yZM/ruu++UmpqqU6dO6dy5c2rYsKHCwsLUunVrde3aVa1bt67V8zKV9MADD+jtt9821+Pj45nbxUeKior0448/aseOHUpPT5fdblfz5s3VqVMn9enTx+ePEcMw1KlTJ5d5fUaNGqUvv/zSp/upaTNmzNDTTz9troeHh+v06dPV+vsZhqFdu3Zp3759OnXqlE6dOiVJCgsLU2RkpDp16qTOnTurYcOG1a7f37Zt26bdu3crOTlZ+fn5ioyMVLdu3dS3b98aOYOuvr1mAgAA3yCUAgAAuMh4GkoBqN86d+6sffv2met333235s2b58eKUFVr1651u7zc8uXLNWbMGD9V5Bu/+tWvXM4qHj58uNasWePHigAAAFBd9fenowAAAACAMq1evdolkJLk8bxUqH1mz57tst6qVSuNHj3aT9X4xt69e/X111+7bOMxCgAAUPcRSgEAAADARSQrK0sPPfSQy7bQ0FDdcsstfqoI1XHgwAF98sknLtseeOABORwOP1VUfU6nU1OmTFHpC7vceeedfqoIAAAAvkIoBQAAAAB1UFJSkpYsWSKn0+lxn1OnTumGG25wO0tq/PjxioiI8HGFqAlPPPGEy2OgQYMGuu+++/xY0f/Jy8vTnDlzlJeX53Gf8+fPa+LEidqwYYPL9uHDh6tz586+LhEAAAA1jFAKAAAAAOqg06dPa/z48erYsaOmTZumbdu2lRtQJScna+bMmYqLi9O6detcbouMjNRLL71UAxXDl7Kzs/X4449r+fLlLtt/97vfqVmzZv4pqpSCggLdf//9atOmjR599FFt3rxZBQUFZbbNyMjQ3LlzFR8fryVLlrjcFhwcrP/93/+tiZIBAABgMZtR+nx4AAAA1GvPP/+8XnjhBXO9TZs2OnLkiP8KAlAliYmJio+Pd9kWGhqqrl27KjIyUg0aNFBmZqaOHz+uQ4cOlTmG3W7Xxx9/rBtvvLEGKkZ1PPfcc9q1a5ckKSUlRbt27VJmZqZLm6ioKP3888+KjIz0Q4XusrKyFBYW5rItKChIXbt2VVRUlBo2bKizZ88qOTlZe/fudbtcX7G///3vbpecBAAAQN0U4O8CAAAAAAC+kZOTox9//NGjto0aNdKiRYt0ww03WFwVfCEhIUEJCQnl3m6z2fTOO+/UmkCqPPn5+dq+fbtHbQMCAjR79mxNmTLF4qoAAABQU7h8HwAAAADUQU2bNlXPnj297udwODRx4kT99NNPBFL1RHBwsN555x3ddNNN/i7FRWBgoAYNGiS73fuvHkaPHq0tW7YQSAEAANQznCkFAAAAAHVQixYt9OOPP+ro0aP65ptvtGXLFu3Zs0fHjh1TRkaGcnJyFBAQoCZNmigyMlLx8fEaMmSIRo4cqTZt2vi7fFRTw4YN1b59e1199dWaOnWqOnbs6O+S3AQHB2v9+vVKTU3VmjVrtHnzZu3evVtHjx7VyZMnlZOTI5vNpiZNmqhp06bq0qWLhgwZol/96lfq2rWrv8sHAACABZhTCgAAAAAAAAAAAJbj8n0AAAAAAAAAAACwHKEUAAAAAAAAAAAALEcoBQAAAAAAAAAAAMsRSgEAAAAAAAAAAMByhFIAAAAAAAAAAACwHKEUAAAAAAAAAAAALBfg7wLqE8MwVFRU5O8yAAB1hMPhkCQ5nU4/VwIAAACgvuPzBwCgKux2u2w2m8/GI5TyoaKiIqWmpvq7DABAHWC32xUbGytJSk9P50cNAAAAACzD5w8AQFXFxMSYP2zwBS7fBwAAAAAAAAAAAMsRSgEAAAAAAAAAAMByhFIAAAAAAAAAAACwHKEUAAAAAAAAAAAALEcoBQAAAAAAAAAAAMsRSgEAAAAAAAAAAMByhFIAAAAAAAAAAACwHKEUAAAAAAAAAAAALEcoBQAAAAAAAAAAAMsRSgEAAAAAAAAAAMByhFIAAAAAAAAAAACwHKEUAAAAAAAAAAAALEcoBQAAAAAAAAAAAMsRSgEAAAAAAAAAAMByhFIAAAAAAAAAAACwHKEUAAAAAAAAAAAALEcoBQAAAAAAAAAAAMsRSgEAAAAAAAAAAMByhFIAAAAAAAAAAACwHKEUAAAAAAAAAAAALEcoBQAAAAAAAAAAAMsRSgEAAAAAAAAAAMByAf4uAAAAAAAAAIB1zp07p4yMDGVlZen8+fOKjY1VWFiYv8sCAFyECKUAAAAAAACAesYwDG3atEnvvfeeVq1aJafTad7mcDg0cuRITZo0Sf3795fNZvNjpQCAi4nNMAzD30XUF06nU6mpqf4uAwBQB9jtdsXGxkqSUlJSVFRU5OeKAAAAANQXO3fu1COPPKK9e/dW2rZz586aNWuW4uPja6AyAEBdExMTI4fD4bPxCKV8iFAKAOApQikAAAAAVli/fr3uuece5eTkmNuioqI0cuRIhYeHKyUlRQkJCUpPTzdvDw0N1bx58zR48GB/lAwAqMUIpWoxQikAgKcIpQAAAAD42s6dOzV27FgzkIqLi9ODDz6o6667TpdccomkC58/cnNztXLlSs2ePVuJiYmSLgRTy5Yt44wpAIALX4dSdp+NBAAAAAAAAMAvDMPQI488YgZSI0eO1IoVK/TrX/9aQUFBLm2DgoI0ZswYrVixQiNGjJAk5eTk6Pe//734/ToAwEqEUgAAAAAAAEAdt2nTJnMOqbi4OL355psKCQmpsE9ISIhmz56tuLg4SdKePXu0efNmy2sFAFy8CKUAAAAAAACAOu799983l6dOnVppIFUsJCREU6dOLXMcAAB8jVAKAAAAAAAAqMPOnTunr776SpIUFRWlUaNGedV/1KhRatasmSRp5cqVOnfunM9rBABAIpQCAAAAAAAA6rTk5GQ5nU5J0uDBg93mkKpMUFCQhgwZIklyOp1KSUnxeY0AAEiEUgAAAAAAAECdlp2dbS43bty4SmOEhYWZy1lZWdWuCQCAshBKAQAAAAAAAHVYw4YNzeWzZ89WaYySl+xr1KhRtWsCAKAshFIAAAAAAABAHda8eXM5HA5J0vr165Wfn+9V//z8fCUkJEiSAgICFBsb6/MaAQCQCKUAAAAAAACAOi0sLEwjR46UJKWnp2vlypVe9V+5cqVOnjwpSRo5cqTLpfwAAPAlQikAAAAAAACgjps0aZK5PHv2bOXm5nrU7/z585o9e3aZ4wAA4GuEUgAAAAAAAEAd179/f3Xu3FmSlJiYqKlTp1YaTOXm5urBBx9UYmKiJKlLly7q16+f5bUCAC5ehFIAAAAAAABAHWez2TRr1iyFhoZKklatWqUxY8ZoxYoVbnNM5efna8WKFRozZoxWrVolSQoNDdXrr78um81W47UDAC4eNsMwDH8XUV84nU6lpqb6uwwAQB1gt9vNyYNTUlJUVFTk54oAAAAA1Afr16/XPffco5ycHHNbVFSURo4cqcaNGys1NVXr1q0z55CSLgRS8+bN0+DBg/1RMgCgFouJiZHD4fDZeIRSPkQoBQDwFKEUAAAAAKvs3LlTjzzyiPbu3Vtp2y5duuj1119XfHx8DVQGAKhrfB1Kcfk+AAAAAAAAoB6Jj4/XmjVr9NFHH+n66693+zIxICBAo0eP1kcffaSvv/6aQAoAUGM4U8qHOFMKAOApzpQCAAAAUFOys7NVWFioc+fOKTc3VzExMQoLC/N3WQCAOsDXZ0oF+GwkAAAAAAAAALVOWFgYP4oDANQKXL4PAAAAAAAAAAAAliOUAgAAAAAAAAAAgOUIpQAAAAAAAAAAAGA5QikAAAAAAAAAAABYjlAKAAAAAAAAAAAAliOUAgAAAAAAAAAAgOUIpQAAAAAAAAAAAGA5QikAAAAAAAAAAABYjlAKAAAAAAAAAAAAliOUAgAAAAAAAAAAgOUIpQAAAAAAAAAAAGA5QikAAAAAAAAAAABYjlAKAAAAAAAAAAAAliOUAgAAAAAAAAAAgOUIpQAAAAAAAAAAAGA5QikAAAAAAAAAAABYjlAKAAAAAAAAAAAAliOUAgAAAAAAAAAAgOUIpQAAAAAAAAAAAGA5QikAAAAAAAAAAABYjlAKAAAAAAAAAAAAlguoqR3t3r1b69ev1549e3T69GkVFhaqSZMmuuSSS9S/f3/169dPDofDqzF37typhIQE7d+/XxkZGQoICFBkZKR69Oih4cOHq2XLlhYdDQAAAAAAAAAAALxhMwzDsHIH586d0z/+8Q/997//rbBd+/bt9dBDD3kUJOXk5GjOnDnatGlTuW0cDofGjRunm266yeuaq8rpdCo1NbXG9gcAqLvsdrtiY2MlSSkpKSoqKvJzRQAAAADqKz5/AACqKiYmxusTiipi6ZlSWVlZ+p//+R8lJyeb22JiYtSxY0cFBQUpNTVVe/bskdPp1KFDh/T888/r5ZdfVnR0dLljFhYWaubMmUpMTDS3tW7dWu3atVNBQYF5JpbT6dSHH34op9Op3/zmN1YeJgAAAAAAAAAAACphaSj19ttvm4FUYGCg7r//fg0ePNilTUpKimbNmqWDBw/qzJkzeu211/TXv/5VNputzDE//vhjM5AKDAzU1KlTNWDAAPP2wsJCLV68WJ9++qkk6aOPPlK3bt3UrVs3Kw4RAAAAAAAAAAAAHrBbNfChQ4f03XffmesPPPCAWyAlSbGxsfqf//kfNWvWTJJ0+PBhffvtt2WOeebMGX3++efm+uTJk10CKUkKCAjQ7bffrv79+0uSDMPQokWLqn08AAAAAAAAAAAAqDrLQqnNmzeby23atNHAgQPLbduwYUOXuZ++/PLLMtslJCQoLy9PktS8eXNdc8015Y55++23m2db7du3T4cPH/aqfgAAAAAAAAAAAPiOZaHUgQMHzOUrrrii0vY9e/Y0lw8ePKiTJ0+6tfn+++/N5aFDh5Z7iT9JatasmeLi4sz1kmdtAQAAAAAAAAAAoGZZFkplZmaay8WX5qtI06ZNZbf/XznF80YVy8/P1759+8z17t27VzpmyTalxwMAAAAAAAAAAEDNsSyU8pbNZnM58+n48eMut584cUKGYZht27ZtW+mY7du3N5eTkpJ8UygAAAAAAAAAAAC8Zlko1bhxY3O5rEvxlZaRkSGn02mulw6RTpw44TJ2UFBQpWOWPEMrKytLZ8+erbQPAAAAAAAAAAAAfC/AqoHbtWunn3/+WZK0fft2TZgwocL2P/30k8t6VlZWuesREREe1VC6XVZWlktY5olTp055tB+HwyFJLpcgBACgPCXfL3jvAAAAAGAlPn8AAGoLy0Kp3r1768svv5QkHT58WFu2bNFVV11VZtvz589rxYoVbttKys3NNZc9OUuqrHYlx/DUAw88UGmbt956S5GRkXI4HIqNjfV6HwCAi1t0dLS/SwAAAABwkeDzBwDAnyz7aUT37t3VuXNnc/3NN9/Uxo0b3dqlpaXpL3/5i1JTU1225+fnl7seEOBZlla6XekxAQAAAAAAAAAAUDMsO1NKkh566CE988wzOnfunPLy8jRr1iwtWbJEHTt2VGBgoFJTU7Vnzx45nU4FBwerS5cu2r59uySpQYMGLmOVPOupsLDQo/2XbufpGVYlvfXWW5W2Kb5MoNPpVHp6utf7AABcfOx2u/kLxbS0NBUVFfm5IgAAAAD1FZ8/AABVFRUVZU5f5AuWhlLR0dH685//rNdee03Hjh2TJKWkpCglJcWlXXh4uB5++GF9//33ZijVsGFDlzYhISHmsqdnPJVuV3IMT0VGRnrVnjd1AIC3ioqKeP8AAAAAUCP4/AEA8CdLQylJat68uV555RVt3rxZW7Zs0YEDB3T27FkFBgYqJiZGffr00bXXXqvGjRvrm2++MfuVDoMaNWpkLmdmZnq079LtSo4BAAAAAAAAAACAmmN5KCVdOEV4wIABGjBgQIXtfvnlF3O5Q4cOLre1aNHCXD579qzy8/MrvRzfyZMnzeVGjRqpcePG3pQNAAAAAAAAAAAAH7H7u4Bi2dnZLqFU586dXW5v0aKFbDabJMkwDB05cqTSMQ8dOmQut2zZ0jeFAgAAAAAAAAAAwGu1JpTaunWrnE6nJKlVq1Zq3769y+1BQUHq1KmTub579+5Kx/z555/N5bi4OB9VCgAAAAAAAAAAAG/VilCqoKBAn3zyibl+7bXXltmud+/e5vK6desqHPPkyZPauXNnmX0BAAAAAAAAAABQs/weShmGoblz5yo1NVWS1Lp163JDqSFDhig4OFiSdOLECa1Zs6bccRcuXKiioiJJUqdOndzOvAIAAAAAAAAAAEDNsTSU2r59u5YuXWoGTqWlpKRoxowZ5llPQUFBeuCBBxQQEFBm+/DwcI0ePdpcnz9/vjZt2uTSprCwUAsXLtTGjRvNbRMmTKjmkQAAAAAAAAAAAKA6yk5/fCQrK0v//ve/9e9//1vNmzfXJZdcorCwMJ0/f14nTpzQ4cOHzbaBgYF68skndemll1Y45s0336y9e/cqMTFR+fn5ev3117Vs2TK1a9dOBQUF+vnnn3X69Gmz/bhx49StWzfLjhEAAAAAAAAAAACVszSUKik5OVnJycll3tahQwdNmTLFo0vsBQQE6PHHH9c777yjzZs3S5KOHTumY8eOubRzOBy65ZZbNHbs2OoXDwAAAAAAAAAAgGqxGYZhWDV4bm6uduzYocTERO3fv1+ZmZk6e/asgoKCFBERoUsvvVT9+vXT5ZdfLrvd+ysJ7tixQwkJCdq3b58yMzPlcDgUGRmpHj16aPjw4WrVqpUFR1U+p9NZ7qUKAQAoyW63KzY2VtKFy9kWz4MIAAAAAL7G5w8AQFXFxMTI4XD4bDxLQ6mLDaEUAMBTfCgEAAAAUFP4/AEAqCpfh1Len54EAAAAAAAAAAAAeIlQCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlAvxdAAAAAAAAAADrnDt3ThkZGcrKytL58+cVGxursLAwf5cFALgIEUoBAAAAAAAA9YxhGNq0aZPee+89rVq1Sk6n07zN4XBo5MiRmjRpkvr37y+bzebHSgEAFxObYRiGv4uoL5xOp1JTU/1dBgCgDrDb7YqNjZUkpaSkqKioyM8VAQAAAKgvdu7cqUceeUR79+6ttG3nzp01a9YsxcfH10BlAIC6JiYmRg6Hw2fjEUr5EKEUAMBThFIAAAAArLB+/Xrdc889ysnJMbdFRUVp5MiRCg8PV0pKihISEpSenm7eHhoaqnnz5mnw4MH+KBkAUIsRStVihFIAAE8RSgEAAADwtZ07d2rs2LFmIBUXF6cHH3xQ1113nS655BJJFz5/5ObmauXKlZo9e7YSExMlXQimli1bxhlTAAAXvg6l7D4bCQAAAAAAAIBfGIahRx55xAykRo4cqRUrVujXv/61goKCXNoGBQVpzJgxWrFihUaMGCFJysnJ0e9//3vx+3UAgJUIpQAAAAAAAIA6btOmTeYcUnFxcXrzzTcVEhJSYZ+QkBDNnj1bcXFxkqQ9e/Zo8+bNltcKALh4EUoBAAAAAAAAddz7779vLk+dOrXSQKpYSEiIpk6dWuY4AAD4GqEUAAAAAAAAUIedO3dOX331lSQpKipKo0aN8qr/qFGj1KxZM0nSypUrde7cOZ/XCACARCgFAAAAAAAA1GnJyclyOp2SpMGDB7vNIVWZoKAgDRkyRJLkdDqVkpLi8xoBAJAIpQAAAAAAAIA6LTs721xu3LhxlcYICwszl7OysqpdEwAAZSGUAgAAAAAAAOqwhg0bmstnz56t0hglL9nXqFGjatcEAEBZCKUAAAAAAACAOqx58+ZyOBySpPXr1ys/P9+r/vn5+UpISJAkBQQEKDY21uc1AgAgEUoBAAAAAAAAdVpYWJhGjhwpSUpPT9fKlSu96r9y5UqdPHlSkjRy5EiXS/kBAOBLhFIAAAAAAABAHTdp0iRzefbs2crNzfWo3/nz5zV79uwyxwEAwNcIpQAAAAAAAIA6rn///urcubMkKTExUVOnTjWDqXPnzmn37t367rvvtHfvXnP+qNzcXD344INKTEyUJHXp0kX9+vXzzwEAAC4KNsMwDH8XUV84nU6lpqb6uwwAQB1gt9vN67SnpKSoqKjIzxUBAAAAqOt27typsWPHKicnR5LUrl07hYeHa8eOHS6fOex2u3r06KHMzEwdPnxYkhQaGqply5YpPj7eL7UDAGqnmJgYc95CXyCU8iFCKQCApwilAAAAAFhh/fr1uuuuuzy+fJ8khYSEaP78+Ro8eLCFlQEA6iJfh1Jcvg8AAAAAAAAAAACWI5QCAAAAAAAA6oGdO3fqnnvuMc+Satu2rXr27On2C/eAgAD17NlTbdu2lXRhbql77rlHO3furOmSAQAXmQB/FwAAAAAAAACgegzD0COPPGLOJzVy5Ei9+eabCgkJUXZ2tgoLC3Xu3Dnl5uYqJiZGYWFhys3N1dSpU7Vq1Srl5OTo97//vb7++mvZbDY/Hw0AoL7iTCkAAAAAAACgjtu0aZP27t0rSYqLizMDKUkKCwtT165d1adPH3Xq1ElhYWGSLswlNXv2bMXFxUmS9uzZo82bN/vnAAAAFwVCKQAAAAAAAKCOe//9983lqVOnmoFUZUJCQjR16tQyxwEAwNcIpQAAAAAAAIA67Ny5c/rqq68kSVFRURo1apRX/UeNGqVmzZpJklauXKlz5875vEYAACRCKQAAAAAAAKBOS05OltPplCQNHjxYQUFBXvUPCgrSkCFDJElOp1MpKSk+rxEAAIlQCgAAAAAAAKjTsrOzzeXGjRtXaYzieaYkKSsrq9o1AQBQFkIpAAAAAAAAoA5r2LChuXz27NkqjVHykn2NGjWqdk0AAJSFUAoAAAAAAACow5o3by6HwyFJWr9+vfLz873qn5+fr4SEBElSQECAYmNjfV4jAAASoRQAAAAAAABQp4WFhWnkyJGSpPT0dK1cudKr/itXrtTJkyclSSNHjnS5lB8AAL5EKAUAAAAAAADUcZMmTTKXZ8+erdzcXI/6nT9/XrNnzy5zHAAAfI1QCgAAAAAAAKjj+vfvr86dO0uSEhMTNXXqVDOYSk5O1qeffqr58+dr1apVSk5OliTl5ubqwQcfVGJioiSpS5cu6tevn38OAABwUbAZhmH4u4j6wul0KjU11d9lAADqALvdbl6nPSUlRUVFRX6uCAAAAEBdt3PnTo0dO1Y5OTmSpJiYGOXl5SkzM9OtbUREhIKDg83vskJDQ7Vs2TLFx8fXZMkAgFouJibGnLfQFzhTCgAAAAAAAKgH4uPjNW/ePAUFBUmSUlNTywykJCkzM9MMpIKCgjRv3jwCKQCA5QilAAAAAAAAgHpix44dys/P96pPfn6+duzYYVFFAAD8H0IpAAAAAAAAoB5YtmyZpk+fbq4HBQWpbdu2stlsLu3sdrvatm1rnlElSdOnT9eyZctqrFYAwMWJOaV8iDmlAACeYk4pAAAAAL5UVFSkDh06mGdJRUdHa926dQoPD1d2drYKCwt17tw55ebmKiYmRmFhYTpz5oyGDh2qtLQ0SVJwcLAOHDggu53fsQMALmBOKQAAAAAAAAAu5s6dawZSISEhZiAlSWFhYeratav69OmjTp06KSwsTJIUHh6udevWKSQkRJKUl5enefPm+ecAAAAXBUIpAAAAAAAAoI6bM2eOuTxhwgQzkKpMeHi4JkyYYK6/8847Pq8NAIBihFIAAAAAAABAHZacnKyUlBRJks1m01NPPeVV/6eeesqcdyo5OVnJyck+rxEAAIlQCgAAAAAAAKjTdu7caS63bt1ajRo18qp/o0aN1Lp1a3N9165dPqsNAICSCKUAAAAAAACAOiwjI8NcbtiwYZXGCA0NNZdPnjxZ7ZoAACgLoRQAAAAAAABQhzVt2tRczs7OrtIYOTk55nKzZs2qXRMAAGUhlAIAAAAAAADqsPj4eHP5+PHjysrK8qp/VlaWjh8/bq53797dZ7UBAFASoRQAAAAAAABQhzVv3lyxsbGSJMMwNGPGDK/6z5gxQ4ZhmGM1b97c5zUCACARSgEAAAAAAAB13n333WcuL1q0SGfOnPGo3+nTp7Vo0SJz/f777/d5bQAAFLMZxT+DQLU5nU6lpqb6uwwAQB1gt9vNXzKmpKSoqKjIzxUBAAAAqMuKiorUoUMH5efnS5Kio6O1bt06hYeH6+DBg9q+fbtSU1PVoEEDDRgwQB07dtSZM2c0dOhQpaWlSZKCg4N14MAB2e38jh0AcEFMTIwcDofPxgvw2UgAAAAAAAAA/MJut+u1117TQw89JElKS0tTXFycJJX5IziHwyHDMFxumzlzJoEUAMBSvMsAAAAAAAAA9cDYsWP1zDPPmOtFRUXlXpXB6XS63PbMM89o7NixltcIALi4EUoBAAAAAAAA9cThw4drtB8AAN4glAIAAAAAAADqgVmzZmnx4sUu24KCgspsW3r74sWLNWvWLMtqAwBAkmyGYRj+LqK+cDqdSk1N9XcZAIA6wG63KzY2VpKUkpJS7iU1AAAAAMATTqdTbdq0UfFXfUFBQdq6dauio6OVmpqqpKQkpaeny+FwqHv37mrevLnS0tLUt29f5efnS5JsNpuOHj3q0wntAQB1W0xMjE/fFwJ8NhIAAAAAAAAAv3j22WfNQMpms5mBlCQ1b95cV1xxhSTXH8VFR0dr69at6tmzpwzDkGEYmjZtmv7yl7/45yAAAPUel+8DAAAAAAAA6rilS5eay0OGDDEDqcpER0dryJAh5vqSJUt8XhsAAMUIpQAAAAAAAIA6bP/+/crLyzPX33jjDa/6l2yfm5ur/fv3+6w2AABKIpQCAAAAAAAA6rBvv/3WXA4NDVXTpk296t+0aVOFhoaa65s3b/ZZbQAAlEQoBQAAAAAAANRh6enp5nJwcHCVxggKCjKXU1JSql0TAABlIZQCAAAAAAAA6rCoqChzueRl/LyRn59vLsfGxla7JgAAykIoBQAAAAAAANRhAwcONJdzcnKUkZHhVf+MjAzl5OSY6/369fNZbQAAlEQoBQAAAAAAANRhHTt2dLls30MPPeRV/5LtQ0JC1LFjR5/VBgBASQE1taN9+/Zp/fr12r9/v9LS0pSbm6ugoCCFh4erbdu26tOnj/r27avAwECPxjMMQ99//702bNigI0eOKCMjQyEhIYqKilKvXr00bNgwNWvWzOKjAgAAAAAAAPxv3LhxWrBggSQpISFBaWlpio6OrrRfcnKyEhISzPVbb73VshoBALAZhmFYuYNz587prbfe0g8//FBp25iYGD344IPq0qVLhe0yMjL0j3/8Q4mJieW2CQkJ0d13362hQ4d6W3KVOZ1Opaam1tj+AAB1l91uN6/TnpKSoqKiIj9XBAAAAKAuczqdatOmjYq/6gsKCtLWrVsVHR1d7uePtLQ09e3b15xPymaz6ejRo3I4HP45CABArRMTE+PT9wVLz5TKz8/XSy+9pCNHjpjbGjdurHbt2qlp06Y6e/asfvnlFzPISU1N1csvv6w//elP5Z4mnJOTo5dfflnHjx83t1166aVq1aqVcnJytGvXLmVnZys3N1ezZ8+WzWbTkCFDrDxMAAAAAAAAwK8cDoeeeOIJvfLKK5IufC/Xs2dPDRkyRH369NGnn36qjIwMhYWFaezYsfr++++VkJCgkr9Xf+KJJwikAACWsvRMqaVLl+rf//73hR3ZbLr11ls1evRoBQUFmW0Mw9CmTZs0d+5cc0LFSy65RDNnzixzzH/84x9av369JKlRo0Z69NFHFRcXZ96em5urOXPm6Ntvv5UkBQQE6G9/+5v5axArcaYUAMBTnCkFAAAAwAqPPfaYFi9e7HW/8ePH67XXXrOgIgBAXebrM6XsPhupDCWvRztq1CiNHTvWJZCSLoRVAwYM0G9/+1tz27Fjx3Ts2DG38Y4dO6YNGzaY6w8//LBLICVduGzf7373O3Xu3FmSVFhYqCVLlvjkeAAAAAAAAIDa7LXXXlOjRo286tOoUSMCKQBAjbAslMrJyVF6erq5PmDAgArb9+7dW8HBweb6iRMn3NqsXr3aPKX4sssu0+WXX17mWHa7XRMnTjTXN2/erLNnz3pTPgAAAAAAAFDndOjQQVlZWV71ycrKUocOHSyqCACA/2PZnFK5ubku6w0bNqywvcPhUIMGDZSXlydJKn1VQcMw9OOPP5rrQ4cOrXC8Ll26KDY21rwk0g8//KDhw4d7cQQAAAAAAABA3dGrVy+37+Tsdrv+8Y9/SLrwI/CGDRsqLCxMDz/8sMtlxHNzc9WrVy+X798AAPA1y0Kpxo0bKzAwUAUFBZKkX375RS1atCi3/dmzZ3XmzBlzvU2bNi63Jycn69SpU+Z69+7dK62he/fuSklJkSQlJiYSSgEAAAAAAKBeysnJMb8HK/bBBx/o6quvLnNO25tuuklr1qzRnXfeabZPSUlRTk6OQkNDa7R2AMDFw7LL9wUEBOiKK64w1z/++GPzLKiy/Otf/zLPjoqPj3cLsJKSkszliIgINWnSpNIa2rVrV2Z/AAAAAAAAoD7p0aOHy3pxIFWRq6++Wh988IHLtvKmywAAwBcsO1NKkm677Tbt2LFDubm5Onz4sB5//HHdfPPN6tKli5o2baqzZ8/q2LFjWr58ufbs2SNJatWqlR544AG3sUrOMRUVFeXR/ps1a1ZmfwAAAAAAAKA+ycnJMZftdnulgVSx4jOpii/ll52dbUl9AABIFodSLVu21EsvvaQZM2bo5MmTSk1N1ezZs8ts27BhQw0aNEi33XabGjRo4Hb7uXPnzOXw8HCP9h8REWEu5+XlqaCgQIGBgV4dQ8lLBla0H4fDIenCmz4AAJUp+X7BewcAAACA6njnnXdc1j/55JNyP3OU9fnjk08+0ZgxY8z1uXPn6v7777egUgDAxc7SUEq6MDfUrFmztGbNGi1cuLDcS/j16NFDAwcOLDOQkuQySWNQUJBH+y7dLjc31+tQqqyztkp76623FBkZKYfDYV6fFwAAT0VHR/u7BAAAAAB12OLFi13Wf/3rX5fbtqzPH6XbL126VM8995xvigMAoATLQ6mzZ8/qX//6lzZs2CCn06mIiAh16tRJjRs3VnZ2tg4cOKD09HRt2rRJmzZt0jXXXKN7773X7VcbBQUF/1d0gGdllw6g8vPzq39AAAAAAAAAQC2SkZHh0/FOnjzp0/EAAChmaSiVnJysF198UadOnVJgYKAmTZqka6+91rzUnSQZhqGNGzdq7ty5On/+vL7++mvZ7Xbde++9LmOVDJgKCws92n/JIEvy/Ayrkt56661K2xRfJtDpdCo9Pd3rfQAALj52u938hWJaWpp5/XYAAAAA8FZYWJjS0tLM9ZSUFJfbvf38ER4e7jYGAODiFBUV5ZLpVJdloZTT6dTMmTPNOZmmTJmioUOHurWz2WwaOHCgGjdurD//+c+SpNWrV2vo0KG69NJLzXYhISHmsqdnPJVuV3IMT0VGRnrVni8VAQDeKioq4v0DAAAAQJXdfvvteuGFF8z1rVu3qnfv3mW2Levzx/fff++yPmHCBD6jAAAsYdnM6lu3btXx48clSS1atNCQIUMqbH/ZZZcpPj7eXF+7dq3L7WFhYebymTNnPKohMzPTXA4ODvZ6PikAAAAAAACgtrvvvvtc1seOHetV/9LtS48HAICvWBZKbdu2zVzu3r27bDZbpX3i4uLM5UOHDrnc1qJFC3PZ00vklbz+bcn+AAAAAAAAQH0SGhpqLhcVFWnNmjUe9Vu5cqXLWVENGzb0eW0AABSzLJQqOcFiybOcKlKyXU5OjsttLVu2NJczMzNdzoIqz+HDh8vsDwAAAAAAANQn27dvd1m/8847zWDqqaeeUkREhIKCgtSpUyc988wzkqQ1a9a4zete8ofmAAD4mmVzSgUFBZnLWVlZHvUp2a7krzskqXnz5oqMjDTnqNq1a5cGDBhQ4Xi7d+82l0uehQUAAAAAAADUJ6GhoYqNjVVKSoq57c4773RrV1BQoA8++EAffPCB222xsbFu38kBAOBLlp0p1axZM3N5165dHvVJTEw0l2NjY11us9ls6tWrl7m+bt26Csfat2+fkpOTJUl2u11XXnmlRzUAAAAAAAAAddGPP/6okJCQKvUNCQnRjz/+6OOKAABwZVkoFR8fby4nJSVp/fr1FbZPTEzUjh07zPUePXq4tfnVr35lzk21fft2l/YlFRUV6V//+pe5ftVVV6lx48Ze1Q8AAAAAAADUNbm5uTXaDwAAb1gWSvXs2VPNmzc319955x2tXr3aZeJESTIMQ5s2bdLMmTPNbZGRkWVemu+SSy7RoEGDzPVZs2a5nYWVm5ur2bNna8+ePZKkgIAAjR8/3ifHBAAAAAAAANRW7du392t/AAAqYzMMw7Bq8P379+vFF19UXl6eua1Jkybq1KmTwsLClJOTo/379ys9Pd28PTAwUNOmTVOXLl3KHDMnJ0fTpk3T8ePHzW0dO3ZUy5Ytdf78eSUmJio7O9u8berUqRo6dKjvD64MTqdTqampNbIvAEDdZrfbzUvVpqSkuP1oAwAAAAC8cebMGXXr1s1l21//+lfdcccdmjt3rpYuXaqTJ08qPDxcEyZM0H333acFCxbo6aefdumze/duhYeH12TpAIBaLCYmRg6Hw2fjWRpKSdKBAwf0xhtvmPM7VSQ6Olq/+93vyg2kimVkZOgf//iHyxxUpYWEhOiuu+7SsGHDvK65qgilAACeIpQCAAAA4EutWrVSya/5igMpqeLPH6WDKZvNpl9++aWGqgYA1HZ1LpSSLoQ1P/zwg77//nsdPHhQp0+fVm5uroKDgxUREaF27drpyiuv1FVXXaWAgACPxjQMQ9999502bNigw4cPKzMzUyEhIWrWrJl69eql4cOHq1mzZhYfmStCKQCApwilAAAAAPhSy5YtXdaTkpLM5co+f1TUFwBwcfN1KOVZAlRNDodDffv2Vd++fX02ps1m8/mYAAAAAAAAQF3zzDPPuKzPmTPHq/5z5szRfffd5zLe9OnTfVIbAAAl2f1dAAAAAAAAAICq++STT1zWr7/+eq/6l26/fPny6pYEAECZCKUAAAAAAACAOuz8+fM+HS8nJ8en4wEAUIxQCgAAAAAAAKjDGjRo4NPxQkNDfToeAADFCKUAAAAAAACAOuymm25yWf/iiy+86l+6/Y033ljdkgAAKJPNMAzD30XUF06nU6mpqf4uAwBQB9jtdsXGxkqSUlJSVFRU5OeKAAAAANRlLVu2dFlPSkoylyv7/FFRXwDAxS0mJkYOh8Nn43GmFAAAAAAAAFDH2Ww2l/UFCxZ41G/u3LkVjgMAgC8F+LsAAAAuRvv379e///1vpaamqkGDBhowYIA6duzo77IAAAAA1FG7du1St27dzPWnn35aknTHHXeU22fBggV6/vnn3cYBAMAqXL7Ph7h8HwCgIk6nU88++6yWLl2qvLw8t9uDg4M1btw4vfzyyz49LRoAAADAxaF9+/ZlftaYO3eu7r33XkkXLt/32Wef6b777nNrFxwcrEOHDlleJwCg7vD15fsIpXyIUAoAUJ5Zs2bp1VdflSdvuzabTU888YQeeeSRGqgMAAAAQH1Sen4obzCXFACgNOaUAgCgjnnsscf0yiuvuAVSjRo1UmRkpEJDQ122G4ahV155RY899lhNlgkAAACgHkhKSlJwcLBXfYKDgwmkAAA1glAKAAALzZo1S4sXLzbXbTabhg8frl27duncuXM6efKkDh48qJ07d2ro0KEukwovXrxYs2bN8kfZAAAAAOqwQ4cOaffu3S6fL8pis9m0e/duLtkHAKgxXL7Ph7h8HwCgJKfTqTZt2phnSAUFBWnr1q2Kjo6W3W5XbGyspAvXdC8qKpIkpaWlqW/fvsrPz5d04UPi0aNHmWMKAAAAQJU988wz+vTTT5Wdna0GDRroxhtv1PTp0/1dFgCgDuDyfQAA1BHPPvusGUjZbDYzkKpIdHS0tm7dav6i0TAMTZs2zfJaAQAAANRfM2bM0OnTp5Wfn6+9e/cSSAEA/IZQCgAAiyxdutRcHjJkSKWBVLHo6GgNGTLEXF+yZInPawMAAAAAAABqGqEUAAAW2L9/v/Ly8sz1N954w6v+Jdvn5uZq//79PqsNAAAAAAAA8IcAfxcAAEB99O2335rLoaGhatq0qVf9mzZtqtDQUOXk5EiSNm/erI4dO/q0RgAAAAA1b9SoUUpLS6vRfdpsNunsGRmGU7LZpbDwGt2/dOGKECtXrqzx/QIAahdCKQAALJCenm4uBwcHV2mMoKAgM5RKSUnxSV0AAAAA/CstLc3//3+ffd6/+wcAXLQIpQAAsEBUVJS5XPIyft7Iz883l2NjY6tdEwAAAAD/83SuWV+y2WwyzmRIRUUXzpQKb1LjNfjjuAEAtQ+hFAAAFhg4cKC5nJOTo4yMDK8u4ZeRkWGeJSVJ/fr182l9AAAAAPzDH5ews9vtKnrybjlPpUlNIuV4ZX6N1wAAgCTZ/V0AAAD1UceOHV0u2/fQQw951b9k+5CQEOaTAgAAAAAAQJ1HKAUAgEXGjRtnLickJHg8mXFycrISEhLM9VtvvdXntQEAAAAAAAA1zWYYhuHvIuoLp9Op1NRUf5cBAKglnE6n2rRpo+K32qCgIG3dulXR0dFKTU3V8ePHderUKdntdsXFxal58+ZKS0tT3759zfmkbDabjh49KofD4c9DAQAAAFCHcfk+AEBVxcTE+PR7KeaUAgDAIg6HQ0888YReeeUVSVJ+fr6uuOIKBQUFmaFTSWVtf+KJJwikAAAAAAAAUC9w+T4AACz0yCOPaPz48S7bygqkyto+fvx4PfLII5bVBgAAAAAAANQkQikAACzWrl27Gu0HAAAAAAAA1EaEUgAAWGjZsmWaPn26ue5wOGS3l/3263A4XC7VN336dC1btszyGgEAAAAAAICawJxSAABYpKioSI899pi5Hh0drXXr1ik8PFwHDx5UYmKiTpw4oYYNG6pfv37q2LGjzpw5o6FDhyotLU2S9Pjjj+vGG28sN8gCAAAAAAAA6gpCKQAALDJ37lxznqiQkBAzkJKkjh07atCgQZKklJQUFRUVSZLCw8O1bt069ezZU7m5ucrLy9O8efM0ZcoU/xwEAAAAAAAA4CP87BoAAIvMmTPHXJ4wYYIZSFUmPDxcEyZMMNffeecdn9cGAAAAAAAA1DRCKQAALJCcnKyUlBRJks1m01NPPeVV/6eeeko2m80cKzk52ec1AgAAAAAAADWJUAoAAAvs3LnTXG7durUaNWrkVf9GjRqpdevW5vquXbt8VhsAAAAAAADgD4RSAABYICMjw1xu2LBhlcYIDQ01l0+ePFntmgAAAAAAAAB/IpQCAMACTZs2NZezs7OrNEZOTo653KxZs2rXBAAAAAAAAPgToRQAABaIj483l48fP66srCyv+mdlZen48ePmevfu3X1WGwAAAAAAAOAPhFIAAFigefPmio2NlSQZhqEZM2Z41X/GjBkyDMMcq3nz5j6vEQAAAAAAAKhJhFIAAFjkvvvuM5cXLVqkM2fOeNTv9OnTWrRokbl+//33+7w2AAAAAAAAoKYRSgEAYJEpU6YoKChIkpSbm6uhQ4dWGkydOXNGw4cPV25uriQpODhY99xzj+W1AgAAAAAAAFYjlAIAwCJ2u12vvfaauZ6WlqaePXtq2rRpbnNMZWVladq0aerZs6fS0tLM7TNnzpTdzts1AAAAAAAA6r4AfxcAAEB9NnbsWJ04cULTp0+XdOGMqXfffVfz589Xu3bt1LBhQ505c0bHjx8355Aq9swzz2js2LH+KBsAAAAAAADwOUIpAAAs9rvf/U4tWrTQY489pvz8fEmSYRg6dOhQme2Dg4M1c+ZMAikAAAAAAADUK1wPCACAGjB27FgdPHhQzz//vGJjY8ts07x5cz3//PM6cOAAgRQAAAAAAADqHc6UAgCghtjtdk2ZMkVTpkxRamqqkpKSlJ6eLofDoe7du6t58+b+LhEAAAAAAACwDKEUAAB+0Lx5c11xxRWSpJSUFBUVFfm5IgAAAAAAAMBaXL4PAAAAAAAAAAAAliOUAgAAAAAAAAAAgOUIpQAAAAAAAAAAAGA5QikAAAAAAAAAAABYjlAKAAAAAAAAAAAAliOUAgAAAAAAAAAAgOUIpQAAAAAAAAAAAGA5QikAAAAAAAAAAABYjlAKAAAAAAAAAAAAliOUAgAAAAAAAAAAgOUIpQAAAAAAAAAAAGA5QikAAAAAAAAAAABYjlAKAAAAAAAAAAAAliOUAgAAAAAAAAAAgOUIpQAAAAAAAAAAAGA5QikAAAAAAAAAAABYjlAKAAAAAAAAAAAAliOUAgAAAAAAAAAAgOUIpQAAAAAAAAAAAGA5QikAAAAAAAAAAABYjlAKAAAAAAAAAAAAliOUAgAAAAAAAAAAgOUIpQAAAAAAAAAAAGA5QikAAPxgyZIlGjBggDp27KgbbrhBS5cu9XdJAAAAAAAAgKUC/F0AAAAXi9zcXPXt21cnT550u+2HH37QH/7wBzVr1kxbt25VSEiIHyoEAAAAAAAArMOZUgAA1IBhw4apQ4cOZQZSJZ08eVIdOnTQsGHDaqgyAAAAAAAAoGYQSgEAYLG4uDjt27fPqz779u1TXFycRRUBAAAAAAAANY9QCgAACw0bNkynT5922RYcHKz//Oc/MgxDhmEoOTlZq1evVnBwsEu706dPc8YUAAAAAAAA6g1CKQAALJKbm+t2htSyZct06NAht7OgunfvrkOHDmnZsmUu2/ft26fc3FzLawUAAAAAAACsRigFAIBF+vbt67K+bNkyt21l9SkdTF111VU+rw0AAAAAAACoaYRSAABY5OTJk+ZycHBwpYFUsb59+7pcyi89Pd3ntQEAAAAAAAA1jVAKAAALLF261GX9s88+86p/6falxwMAAAAAAADqGkIpAAAssHDhQpf17t27e9W/dPsPP/yw2jUBAAAAAAAA/kQoBQCABUpeus8X0tLSfDoeAAAAAAAAUNMIpQAAsECzZs18Ol50dLRPxwMAAAAAAABqGqEUAAAWmDhxosv6rl27vOpfuv1tt91W7ZoAAAAAAAAAfyKUAgDAAuPGjXNZv+GGG7zqX7p96fEAAAAAAACAuoZQCgAAi5S8hF9eXp62bt3qUb8NGzYoLy/PXI+KivJ5bQAAAAAAAEBNI5QCAMAipUOosWPHVhpMbd26VePHj3fZtmXLFp/XBgAAAAAAANS0AH8XAABAfRUSEqJOnTpp37595raxY8cqODhYQ4cO1caNG3X+/HkFBwdr4MCBSkhIcDlDSpI6deqkkJCQmi4dAAAAAAAA8DnOlAIAwEJr165VkyZNXLbl5eVp1apVysrKktPpVE5OjlavXu0WSDVp0kRr166tyXIBAAAAAAAAyxBKAQBgscTExBrtBwAAAAAAANRGhFIAAFisZcuWNdoPAAAAAAAAqI2YUwoAAAu1bdu2zO233367jh49quTkZDVt2lSdOnXSv/71rzL7HzlyxNoiAQAAAAAAgBpAKAUAgEUyMzNVUFDgsu2ll17S3XffLbvdrtjYWElSSkqKioqKNGPGDL377ruaNm2a2b6goECZmZmKiIioydIBAAAAAAAAn+PyfQAAWKR79+4u68WBVEXuvvtuvfTSSxWOAwAAAAAAANRFhFIAANSQygIpb9sBAAAAAAAAdQmhFAAAFnjsscdc1mfPnu1V/9LtS48HAAAAAAAA1DWEUgAAWODTTz91WR8zZoxX/Uu3/+yzz6pdEwAAAAAAAOBPhFIAAFggLy/Pp+Pl5ub6dDwAAAAAAACgphFKAQBggeDgYJ+OFxIS4tPxAAAAAAAAgJpGKAUAgAV+/etfu6yvWLHCq/6l299www3VrgkAAAAAAADwJ5thGIa/i6gvnE6nUlNT/V0GAKCWaNmypct6UlKSuWy32xUbGytJSklJUVFRkcd9AQAAAMAbdrtdRU/eLeepNKlJpByvzPd3SQCAOiImJkYOh8Nn43GmFAAANeTdd9/1qN3s2bMtrgQAAAAAAACoeYRSAABYZNeuXS7r06ZNqzSYevfdd/Xyyy9XOA4AAAAAAABQFxFKAQBgkYiICAUGBrpsmzZtmlq2bKnly5e7bF+xYoVatmypadOmuWwPDAxURESExZUCAAAAAAAA1mNOKR9iTikAQFlKzw/lDeaSAgAAAFBdzCkFAKgq5pQCAKCOSUpKcjtjqjKBgYEEUgAAAAAAAKhXCKUAAKgBR44c8XhuqF27dunIkSPWFgQAAAAAAADUMEIpAABqSEREhJKSkpSUlKTx48crLCxMDodDDRs21Pjx483bmEMKAAAAAAAA9VGAvwsAAOBi9L//+7/68MMPJUkpKSkqKiryc0UAAAAAAACAtThTCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlbIZhGP4uor5wOp1KTU31dxkAAC+NGjVKaWlpNbpPm80mnT0jw3BKNrsUFl6j+5ek6OhorVy5ssb3CwAAANQGxg/fqmjFIin3vL9LsZ5N0pnTUlHRhc8f4U38XVHNCGkg+40TZes1wN+VAECdFRMTI4fD4bPxmFMKAHDRS0tLU0pKin+LyL4IPggDAAAAtUjRikVSyi/+LqPmGUVS5il/V1FjipYvlINQCgBqDUIpAMBFLzo6usb3abPZZJzJ8OsvFf1x3AAAAECtUXyG1MVw5pBN0tkzFwIpm00Ki/B3RdY7c/rC8V4MZ8IBQB1CKAUAuOj54xJ2drtdRU/eLeepNKlJpByvzK/xGgAAAABICm8ix6v1+//H7Xa7YmNjJUkpKSkqKiryc0XWcz5x10V1RhgA1BV2fxcAAAAAAAAAAACA+o9QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlCKUAAAAAAAAAAABgOUIpAAAAAAAAAAAAWI5QCgAAAAAAAAAAAJYjlAIAAAAAAAAAAIDlAqwcfNeuXXrhhReq3H/q1KkaOnRohW127typhIQE7d+/XxkZGQoICFBkZKR69Oih4cOHq2XLllXePwAAAAAAAAAAAHzD0lCquiIiIsq9LScnR3PmzNGmTZtctufl5Sk7O1vHjh3Tl19+qXHjxummm26yuFIAAAAAAAAAAABUxNJQqmnTphoxYoTH7Xfs2KHk5GRJUnh4uOLj48tsV1hYqJkzZyoxMdHc1rp1a7Vr104FBQXas2ePTp8+LafTqQ8//FBOp1O/+c1vqncwAAAAAAAAAAAAqDJLQ6nmzZvrnnvu8ahtUVGRfvvb35rrgwYNksPhKLPtxx9/bAZSgYGBmjp1qgYMGGDeXlhYqMWLF+vTTz+VJH300Ufq1q2bunXrVtVDAQAAAAAAAAAAQDXY/V1AsW3btikzM9NcHzJkSJntzpw5o88//9xcnzx5sksgJUkBAQG6/fbb1b9/f0mSYRhatGiR74sGAAAAAAAAAACAR2pNKJWQkGAut2vXTm3atCm3XV5enqQLZ2Jdc8015Y55++23y2azSZL27dunw4cP+7BiAAAAAAAAAAAAeKpWhFLZ2dn64YcfzPXyzpKSpO+//95cHjp0qBk6laVZs2aKi4sz17/77rtqVgoAAAAAAAAAAICqqBWh1ObNm1VQUCBJcjgcGjhwYJnt8vPztW/fPnO9e/fulY5dsk3xPFQAAAAAAAAAAACoWbUilCp56b4rrrhCjRs3LrPdiRMnZBiGJMlms6lt27aVjt2+fXtzOSkpqXqFAgAAAAAAAAAAoEr8HkolJydr79695vrQoUPLbXvixAlzuXHjxgoKCqp0/GbNmpnLWVlZOnv2bNUKBQAAAAAAAAAAQJUF+LuAkmdJhYWFqWfPnuW2zcrKMpcjIiI8Gr90u6ysrHLPxCrLqVOnPNqHw+GQJNntfs/5AAB1gN1uV1GpdQAAAAA1x1k8Tbmt/v//eMnjq+/HWuxiun8BoC7xayhlGIY2bNhgrg8YMEABAeWXlJubay57cpZUWe1KjuGJBx54oNI2b731liIjI+VwOBQbG+vV+ACAi1fx+b8OO+8fAAAAQE07YXdo/yUjdaTtdXJ8djFcWSfT3wXUKGf8c2p75Et1zP6Jz1sAUIv4NZTavXu30tPTzfWKLt0nSfn5+eZyReFVSaXblRwDAAAAAAAAF6/CgAbKDYqQsgr9XQp8LShChQEN/F0FAKAUv4ZSJS/d17p1a7Vv377C9iXPeios9Ox/Fkq38/QMq2JvvfVWpW2KLxHodDpdQjYAAMpT8vIRziKnUlJS/FgNAAAAcPFxFjkVUHheIfmZUngTf5djMZscjgufQZzOIkmGf8upCWdOK6DwPJ+3AKCaoqKizOmLfMFvoVReXp62bt1qrg8ZMqTSPiEhIeayp2c8lW5XcgxPREZGetW+qKio8kYAAJTC+wcAAABQwwyp/bGv1P7s93K8Ot/f1VjKbrebl7BLSUm5KD5/OJ/4vZR5SoqIvCiOFwDqCr/N8rd161adP3/+QhF2uwYNGlRpn0aNGpnLmZmZHu2ndLuSYwAAAAAAAAAAAKBm+C2UKnnpvh49eqhJk8pPk27RooW5fPbsWY/Oljp58qS53KhRIzVu3NjLSgEAAAAAAAAAAFBdfgmlTp06pcTERHPdk0v3SRdCKZvNJkkyDENHjhyptM+hQ4fM5ZYtW3pXKAAAAAAAAAAAAHzCL6HUhg0bZBgXJlRs2LChrrzySo/6BQUFqVOnTub67t27K+3z888/m8txcXFeVgoAAAAAAAAAAABf8EsoVfLSff369VNQUJDHfXv37m0ur1u3rsK2J0+e1M6dO8vsCwAAAAAAAAAAgJpT46HUgQMHlJSUZK4PHTrUq/5DhgxRcHCwJOnEiRNas2ZNuW0XLlyooqIiSVKnTp3Uvn177wsGAAAAAAAAAABAtdV4KFXy7KbmzZu7XI7PE+Hh4Ro9erS5Pn/+fG3atMmlTWFhoRYuXKiNGzea2yZMmFC1ggEAAAAAAAAAAFBtATW5s8LCQpcAaciQIVUa5+abb9bevXuVmJio/Px8vf7661q2bJnatWungoIC/fzzzzp9+rTZfty4cerWrVu16wcAAAAAAAAAAEDV1Ggo9eOPPyorK0uSZLPZqhxKBQQE6PHHH9c777yjzZs3S5KOHTumY8eOubRzOBy65ZZbNHbs2OoVDgAAAAAAAAAAgGqp0VAqISHBXI6Li1NkZGSVxwoNDdUf/vAHXX311UpISNC+ffuUmZkph8OhyMhI9ejRQ8OHD1erVq18UToAAAAAAAAAAACqoUZDqSeffNLnY1522WW67LLLfD4uAAAAAAAAAAAAfMfu7wIAAAAAAAAAAABQ/xFKAQAAAAAAAAAAwHKEUgAAAAAAAAAAALAcoRQAAAAAAAAAAAAsRygFAAAAAAAAAAAAyxFKAQAAAAAAAAAAwHKEUgAAAAAAAAAAALAcoRQAAAAAAAAAAAAsRygFAAAAAAAAAAAAyxFKAQAAAAAAAAAAwHKEUgAAAAAAAAAAALAcoRQAAAAAAAAAAAAsRygFAAAAAAAAAAAAyxFKAQAAAAAAAAAAwHKEUgAAAAAAAAAAALBcgL8LAAAAAAAAAGpc5inzv84n7vJvLRZz2qTjZ89IRpFks0lhEf4uyXpnTvu7AgBAGQilAAAAAAAAcHErDqguFhfT8YY08HcFAIASCKUAAAAAAABwcYuI9HcF1rLpwplDRUWSzS6FN/F3RTUjpIHsN070dxUAgBIIpQAAAAAAAHDRccz91N8l1Bi73a6iJ++W81SaFNFEjlfm+7skAMBFyu7vAgAAAAAAAAAAAFD/EUoBAAAAAAAAAADAcoRSAAAAAAAAAAAAsByhFAAAAAAAAAAAACxHKAUAAAAAAAAAAADLEUoBAAAAAAAAAADAcoRSAAAAAAAAAPD/2rvXOLur+l78nz0zmQyTKwlJJgTCNSGQBIHK3ZKIVEPBS1MKilpsEaxRDrWKSPvydbSeCihUOUg8ohwFKoK0VFQMKNoEBQqioEmQkHAzQGYmN0KSyWQyM/v/IP/sk8mFzMDs2Znk/X7iWr+91vp9d3iw3fPZa/0AKDuhFAAAAAAAAGUnlAIAAAAAAKDshFIAAAAAAACUnVAKAAAAAACAshNKAQAAAAAAUHZCKQAAAAAAAMpOKAUAAAAAAEDZCaUAAAAAAAAoO6EUAAAAAAAAZSeUAgAAAAAAoOyEUgAAAAAAAJSdUAoAAAAAAICyE0oBAAAAAABQdkIpAAAAAAAAyk4oBQAAAAAAQNkJpQAAAAAAACg7oRQAAAAAAABlJ5QCAAAAAACg7IRSAAAAAAAAlJ1QCgAAAAAAgLKrqXQBALBF8bFfpfPu25LWDZUupew6CknWrN7ceWV1Oi77m4rW02fq9knVe96fwp+cWulKAAAAAOhjQikAdhudd9+WNL5Y6TL6XrEzeWVlpavoM50/+G6qhVIAAAAAex2hFAC7jy07pApVybB9K1tLuRWSvLpmcyBVKCRDhle6ovJbs3rz+90LdsIBAAAAsD2hFAC7n2H7pvrL3650FWVVVVWVhoaGJEljY2M6OzsrXFH5dVz2N3vVjjAAAAAAuqqqdAEAAAAAAADs+YRSAAAAAAAAlJ1QCgAAAAAAgLITSgEAAAAAAFB2QikAAAAAAADKTigFAAAAAABA2QmlAAAAAAAAKDuhFAAAAAAAAGUnlAIAAAAAAKDshFIAAAAAAACUnVAKAAAAAACAshNKAQAAAAAAUHZCKQAAAAAAAMpOKAUAAAAAAEDZCaUAAAAAAAAoO6EUAAAAAAAAZSeUAgAAAAAAoOyEUgAAAAAAAJSdUAoAAAAAAICyE0oBAAAAAABQdkIpAAAAAAAAyk4oBQAAAAAAQNkJpQAAAAAAACg7oRQAAAAAAABlJ5QCAAAAAACg7IRSAAAAAAAAlF1NpQsAgK09O35Gnj/4z5Mfrql0KWVXXf1qkqSjo6PClfSRo/9nDn7+Jzn01V9XuhIAAAAAKkAoBcBupb1mn7TWDk82FCtdSh9or3QBfat2eNpr9ql0FQAAAABUiFAKgN1KTfuG1LW9kgzbt9KllF11dXWSvWin1JrVqWnfUOkqAAAAAKgQoRQAu5VD/3hvDn3116n+8rcrXUpZVVVVpaGhIUnS2NiYzs7OCldUfh2X/X3yyspk+MhKlwIAAABABVRVugAAAAAAAAD2fEIpAAAAAAAAyk4oBQAAAAAAQNkJpQAAAAAAACg7oRQAAAAAAABlJ5QCAAAAAACg7IRSAAAAAAAAlJ1QCgAAAAAAgLITSgEAAAAAAFB2QikAAAAAAADKTigFAAAAAABA2QmlAAAAAAAAKDuhFAAAAAAAAGUnlAIAAAAAAKDshFIAAAAAAACUnVAKAAAAAACAshNKAQAAAAAAUHZCKQAAAAAAAMpOKAUAAAAAAEDZCaUAAAAAAAAoO6EUAAAAAAAAZSeUAgAAAAAAoOyEUgAAAAAAAJSdUAoAAAAAAICyE0oBAAAAAABQdkIpAAAAAAAAyq6m0gUAQMkrK0v/23HZ31S2ljLrKCRLX12TFDuTQiEZMrzSJZXfmtWVrgAAACruzDPPTHNzc5/es1AopLhmVdLZmRSqkp//SZ/eP0lGjx6dOXPm9Pl9Adi9CKUA2D1tCaj2FnvT+63bp9IVAABAxTQ3N6exsbGyRWyo8P0B2GsJpQDYPQ0fWekKyquQzTuHtvxScdi+la6ob9Ttk6r3vL/SVQAAQMWMHj26z+9ZKBSSV9ekWOzY/P1jyLA+r6ES7xuA3U+hWCwWK13EnqKjoyNNTU2VLgOAfqCqqiqdn/7bdKxsTvYdmeovfbvSJQEAAHuoqqqqNDQ0JEkaGxvT2dlZ4YoA6C/GjBmT6urqXluvqtdWAgAAAAAAgJ0QSgEAAAAAAFB2QikAAAAA2INdfvnlGT58eGprazNx4sRcccUVlS4JgL1UTaULAAAAAAB615o1azJ58uRs+zj5TZs25ZZbbsktt9ySQqGQhQsXZtiwYRWqEoC9jVAKAAAAAPYghx56aDZu3LjLccViMUcddVQGDhyYZ599tg8qA2Bv5/g+AAAAANhDjBs3rluB1NY2btyYcePGlakiAPh/hFIAAAAAsAc49NBDd3j9m9/8ZorFYorFYpYtW5Ybb7yxR/MBoLcIpQAAAACgn1uzZs12O6SuuuqqvPTSSzn77LO7XD/rrLPy0ksv5aqrrupyfePGjVmzZk3ZawVg7yWUAgAAAIB+bvLkyV36V111VT74wQ++5pwPfvCD2wVT264DAL1JKAUAAAAA/VyxWOzS31UgtbNx264DAL1JKAUAAAAA/dgVV1zRpb+zZ0btzLbjt10PAHqLUAoAAAAA+rH//M//7NI/66yzejR/2/E/+MEP3mhJALBDQikAAAAA6Mc2bNjQq+u1tLT06noAsIVQCgAAAAD6sX322adX16uvr+/V9QBgC6EUAAAAAPRjf/EXf9Glf8899/Ro/rbj3/Oe97zRkgBghwrFYrFY6SL2FB0dHWlqaqp0GQD0A1VVVen89N+mY2Vzsu/IVH/p25UuCQAA6MfGjRvXpf/SSy+V2lVVVWloaEiSNDY2prOzs9tzAdi7jRkzJtXV1b22Xk2vrdRNzz77bB5++OHMnz8/q1atyrp16zJkyJAMHz48Bx10UKZMmZKjjz46w4cP3+Va8+fPz7x587J48eKsWrUqNTU1GTlyZN70pjfl9NNP3+4DFQAAAAD2RIVCIVv/9vzWW2/NBz/4wV3O++Y3v7ndOgBQLn0WSq1ZsyY333xzfvWrX2332urVq7N69eo899xzmTt3bt7xjnfkwgsv3OlaLS0tufHGG/PQQw91ub5x48asX78+f/zjH/OTn/wk55577nbblwEAAABgT7Nw4cIcddRRpf5nPvOZJHnNYOrWW2/N5z73ue3WAYBy6ZNQasWKFfnc5z6X5ubm0rX9998/48ePz+DBg9PW1pampqY8//zz2bhx42uu1d7enmuuuSYLFiwoXTvwwANzyCGHZNOmTXnqqaeyevXqdHR05Hvf+146OjpyzjnnlO29AQAAAEClDRs2LAMHDuzyt7XPfOYz+cxnPpP3vOc9+d3vfpdXXnklgwcPznHHHZe77757uzUGDhyYYcOG9WXZAOxlyh5KtbS05POf/3wpkJo8eXI+9KEP5aCDDtpubHt7exYsWJANGzbsdL3/+I//KAVSAwYMyKxZs3Lqqad2WeP222/PD3/4wyTJnXfemaOOOqrLL0UAAAAAYE/z7LPP7vBxFj/4wQ9K7dWrV2fp0qU7nQ8A5VRV7hvccsstaWpqSpKccsop+exnP7vDQCpJampqcswxx+Tkk0/e4etr1qzJj3/841L/Qx/6UJdAassaH/jAB3LKKackSYrFYm677bbeeCsAAAAAsFt76aWX+nQeAPREWUOp559/Pr/4xS+SJCNHjsxHPvKRVFW9/lvOmzevtAV57NixOeOMM3Y69gMf+EDpwYxPP/10nnvuudd9XwAAAADoDw4++OA+nQcAPVHWUOqnP/1pqf2Od7wj++yzzxta79e//nWpPX369FLotCP77bdfpkyZUuo/+uijb+jeAAAAALA7O/roo7Np06Yu1wqFQv7sz/4sw4cPz4ABAzJ06NCcccYZ2/1dbdOmTTn66KP7slwA9kJlC6U6Ozvz4IMPlvonnXTSG1qvra0tTz/9dKk/efLkXc7ZesyW51ABAAAAwJ5m/fr1WblyZZdr3/rWt/Liiy/mlltuyerVq9PW1pZFixbl5ptvzosvvphvfetbXcavXLky69ev78uyAdjL1JRr4T/+8Y/ZsGFDkqS+vj5jxoxJR0dHHnjggfzyl7/M0qVLs379+gwZMiQHHXRQ3vzmN+etb31rBgwYsMP1Xn755RSLxSSbf+HRnS3Fhx56aKntXFwAAAAA9lRTp07t0v/Wt76VM8888zXnnHnmmfnWt76VD3/4w6VrRx99dJ555pmy1AgAZQultv7wGjlyZFauXJl//dd/zZIlS7qMW716dVavXp0nnngiP/jBD/IP//APOfzww7db7+WXXy61hw4dmtra2l3WsN9++5Xa69aty6uvvpqhQ4e+nrcDAAAAALutLc9hTzb/oHtXgdQWZ555ZgqFQunH4K2trWWpDwCSMoZS224XvvLKK7N06dIkybhx43LYYYelqqoqL7zwQp577rkkyYoVK/L5z38+n//857vscko2h0pbDB8+vFs1bDtu3bp1PQ6ltn0fO7tPdXV1kqSqqqyP6QJgD1FVVZXObfoAAACvx3XXXdelf+edd3b5jrGz9tbjzznnnFL/+uuvz6WXXlqGSgHY25UtlNr6/NktYdTAgQMza9asnHzyyV3GLliwIF/5yleydu3abNy4MV/5ylfyla98JTU1/6+8rX+l0Z1dUjsa93p+6fHRj350l2O+/vWvZ+TIkamurk5DQ0OP7wHA3mnLHuDqKp8fAADA63fHHXd06f/lX/7lTseOHj16u2vbjr/zzjtz5ZVX9k5xALCVsv0se+stw1tccskl2wVSSTJlypRcfvnlKRQKSZKmpqb88pe/7DKmra2t1N46rHot247beg0AAAAA2BO88sorvbreqlWrenU9ANiibDulBgwY0KU/ceLEnHDCCTsdP3HixJx44on57//+7yTJQw89lLe+9a2l17fe9dTe3t6tGrYd190dVlv7+te/vssxW44J7OjoyPLly3t8DwD2PlsfmdHR2ZHGxsYKVgMAAPRngwcPzurVq0v9bb9fVFVVlXZINTc3p7OzM69l6NChvqMAkCQZNWpU6fFFvaFsoVRdXV2X/msFUluP2RJKPf300ztdr7s7nrYdt21N3TFy5Mgejd/VhzoA7IjPDwAA4PV6//vfn6uuuqrU/9WvfpVTTjllh2M7Ozu3+/7x0EMPdem/733v8x0FgLIo2/F9Q4YM6dI/4IADdjln3LhxpfaGDRuyYcOGUn/w4MGldne3JG87bus1AAAAAGBPcMkll3Tpn3vuuT2av+34bdcDgN5StlBq//3379Lvzi6lffbZp0t/61Bq6/VeffXVbu2WWrFiRak9ePDgDB06dJdzAAAAAKC/GThwYKldLBYzZ86cbs27++67UywWS/3Xc9IQAHRX2UKp8ePHd+m3trbucs7WIVSS1NfXl9r7779/CoVCks0frM8///wu13v22WdL7a13YQEAAADAnmT+/Pld+h/+8IdLwdTatWvz5JNP5tFHH82iRYuydu3aJMmcOXMya9asLvN+//vf903BAOyVyvZMqdGjR2f06NFpbm5Okrz44os57rjjXnPOSy+9VGoPHjy4yy8zamtrM3HixCxatChJ8uSTT2bixImvud4f/vCHUnvKlCk9fg8AAAAA0B8MGjQoI0eOzMqVK0vXPvzhD/dojZEjR2bQoEG9XRoAlJRtp1SSnHDCCaX2r3/9612Of/TRR0vtI488crvXjz/++FJ77ty5r7nWihUruvxCZOu5AAAAALCn+f3vf58BAwa8rrkDBgywSwqAsitrKPX2t7891dXVSZJFixblscce2+nYJUuWdAmlpk+fvt2YadOmlc7Hffnll/Pzn/98p+t997vfTWdnZ5Jk4sSJOfTQQ1/PWwAAAACAfuOWW27p03kA0BNlDaUaGhryjne8o9S/7rrr8sgjj2w37sknn8xVV11VCpEmTJiQN7/5zduNGzZsWM4+++xS/9vf/nYeeuihLmPa29vz3e9+Nw8++GDp2vnnn/+G3wsAAAAA7M7mz5+fCy+88HXNvfDCC7d7LhUA9LZCsVgslvMGmzZtyv/6X/+ry/Odxo0bl8MOOyxVVVX54x//mGeffbb02r777pt/+Zd/yX777bfD9drb2/PFL34xCxYsKF0bP358DjnkkGzatCl/+MMfsnr16tJr5557bs4555wyvLPtdXR0pKmpqU/uBUD/VlVVlc5P/206VjYn+45M9Ze+XemSAACAfqxYLOZtb3tb6XnsM2bMyA033JC6urpcf/31ufPOO7Nq1aoMHTo073vf+3LJJZektbU1s2bNyn333ZckmTRpUu6///4UCoVKvhUAdiNjxowpnYjXG8oeSiVJS0tLvvnNb3bZvbQjEyZMyCc+8YmdBlJbr/eNb3wjDz/88E7HVFdX56/+6q8yc+bM11Xz6yGUAqC7hFIAAEBvevDBB3PuuecmSaZMmZK77747dXV1STZ//2hoaEiSNDY2lk4rSpLW1ta8+93vLv0A/M4778wpp5zSx9UDsLvq7VCqptdWeg319fW59NJL82d/9md54IEH8tRTT2XVqlXp7OzMsGHDMmHChJxyyik5/vjju/VLjPr6+nziE5/I2972tsybNy9PP/10XnnllVRXV2fkyJF505velNNPPz0HHHBAH7w7AAAAAKism2++udSeNWtWKZDalbq6usyaNSuzZs0qrSOUAqBc+mSn1N7CTikAustOKQAAoLesXbs2kydPTkdHR0aNGpVHH300tbW1pddfa6dUkrS1teX444/PihUrUl1dnYULF2bIkCF9+h4A2D319k6pql5bCQAAAADoc8uWLUtHR0eS5LTTTusSSHVHbW1tpk2blmTzj64bGxt7vUYASIRSAAAAANCvrV+/vtQeOnTo61pj651R69ate8M1AcCOCKUAAAAAoB8bNGhQqf3qq6++rjXWrl1bag8ePPgN1wQAOyKUAgAAAIB+bOzYsaXnfTzwwANpa2vr0fy2trbMmzcvSVJTU1N6/hQA9DahFAAAAAD0Y0OGDMmMGTOSJMuXL8+cOXN6NH/OnDlZsWJFkmTGjBldjvIDgN4klAIAAACAfu6CCy4otWfPnp3W1tZuzduwYUNmz569w3UAoLfVVLoAAAAAAOCNOeWUU3LEEUdk0aJFWbBgQWbNmpXZs2enrq4uixcvzr//+7+nqakp++yzT0499dRMmDAhra2t+djHPpYFCxYkSSZNmpSTTz65wu8EgD2ZUAoAAAAA+rlCoZDrrrsuM2fOTEtLS+677768+c1vzrp167Jp06btxg8YMCCDBw/O6tWrkyT19fX56le/mkKh0NelA7AXcXwfAAAAAOwBpk6dmptuuik1NZt/h7569eodBlJJsmnTplIgVVNTk5tuuilTp07ts1oB2DsJpQAAAABgD3H33Xenvb29R3Pa29tz9913l6kiAPh/hFIAAAAAsAe47rrrcvvtt5f6hUIho0aN2m7clutbH9V3++2357rrruuTOgHYexWKxWKx0kXsKTo6OtLU1FTpMgDoB6qqqtL56b9Nx8rmZN+Rqf7StytdEgAA0I91dHTkoIMOypY/9dXW1uaRRx7J6NGjs379+rS3t2ft2rVpbW3NmDFjMmTIkDQ3N+fEE09MW1tbks1h1QsvvJDq6upKvhUAdiNjxozp1c8FO6UAAAAAoJ/7p3/6p1IgVSgUSoFUkgwZMiRHHnlkTjjhhEycODFDhgxJkowePTqPPPJIacdUsVjMZz/72cq8AQD2CkIpAAAAAOjnvv/975fa06ZNKwVSuzJ69OhMmzat1L/jjjt6vTYA2EIoBQAAAAD92OLFi7Nx48ZS//rrr+/R/K3Ht7a2ZvHixb1WGwBsTSgFAAAAAP3Yr371q1K7vr4+I0aM6NH8ESNGpL6+vtR/+OGHe602ANiaUAoAAAAA+rHly5eX2gMHDnxda9TW1pbajY2Nb7gmANgRoRQAAAAA9GOjRo0qtbc+xq8n2traSu2GhoY3XBMA7IhQCgAAAAD6sbe85S2ldktLS1atWtWj+atWrUpLS0upf/LJJ/dabQCwNaEUAAAAAPRjEyZM6HJs3yWXXNKj+VuPr6ury4QJE3qtNgDYmlAKAAAAAPq5c889t9SeN29empubuzVv2bJlmTdvXql/3nnn9XptALCFUAoAAAAA+rl/+Zd/SaFQSJIUi8WceOKJuwymmpubc8opp6RYLCZJCoVCvvCFL5S9VgD2XkIpAAAAAOjnqqurc9lll5X6bW1tOe644/L+979/u2dMrVq1Ku9///tz3HHHpa2trXT9sssuS3V1dZ/VDMDep6bSBQAAAAAAb9yll16aP/7xj7n99tuTbN4xNXfu3EyePDmDBw9ObW1tWltb09LSst3c9773vbn00kv7umQA9jJCKQAAAADYQ1x77bUZP358vvzlL5eO5UuSdevW7XB8oVDIZZddJpACoE84vg8AAAAA9iCXXnppXnjhhVxwwQUZOHDgDsfU1dXlggsuyAsvvCCQAqDPFIpb/2SCN6SjoyNNTU2VLgOAfqCqqiqdn/7bdKxsTvYdmeovfbvSJQEAAHuoZ555JgsWLMjLL7+cQYMG5eSTT86ECRMqXRYA/cCYMWN69XmDju8DAAAAgD3YhAkT8qd/+qdJksbGxnR2dla4IgD2Vo7vAwAAAAAAoOyEUgAAAAAAAJSdUAoAAAAAAICyE0oBAAAAAABQdkIpAAAAAAAAyk4oBQAAAAAAQNkJpQAAAAAAACg7oRQAAAAAAABlJ5QCAAAAAACg7IRSAAAAAAAAlJ1QCgAAAAAAgLITSgEAAAAAAFB2QikAAAAAAADKTigFAAAAAABA2QmlAAAAAAAAKDuhFAAAAAAAAGUnlAIAAAAAAKDsaipdAABU2plnnpnm5uY+vWehUEhxzaqkszMpVCU//5M+vX+SjB49OnPmzOnz+wIAAACwdxJKAbDXa25uTmNjY2WL2FDh+wMAAABAmQmlANjrjR49us/vWSgUklfXpFjs2LxTasiwPq+hEu8bAAAAgL2XUAqAvV4ljrCrqqpKQ0NDkqSxsTGdnZ19XgMAAAAA9KWqShcAAAAAAADAnk8oBQAAAAAAQNkVisVisdJF7Ck6OjrS1NRU6TIA6AeeeeaZ/O53v0tTU1P22WefnHrqqZkwYUKlywIAAPZA69evz6ZNm7Ju3bps2LAhDQ0NGTJkSKXLAqAfGDNmTKqrq3ttPc+UAoA+0tHRkX/6p3/K97///WzcuHG71wcOHJhzzz03//Iv/9KrH/YAAMDep1gs5qGHHsp3vvOd3Hfffeno6Ci9Vl1dnRkzZuSCCy7IKaeckkKhUMFKAdib2CnVi+yUAmBnrrvuunz5y19Odz52C4VCLrvsslx66aV9UBkAALCnmT9/fi699NIsWrRol2OPOOKIXHfddZk6dWofVAZAf9PbO6WEUr1IKAXAjnzyk5/M7bffvt31wYMHZ+DAgdmwYUNaWlq2e/29731vrr322r4oEQAA2EM88MADufDCC7t8xxg1alRmzJiRYcOGpbGxMfPmzcvy5ctLr9fX1+emm27KaaedVomSAdiN9XYoVdVrKwEA27nuuuu6BFKFQiGnn356Fi5cmLVr12bFihV55plnMn/+/EyfPr3LsRm33357rrvuukqUDQAA9EPz58/vEkhNmTIlX//61/PYY4/llltuyfXXX5/rr78+jz76aGbPnp0pU6YkSVpaWnLhhRdm/vz5lSwfgL2AnVK9yE4pALbW0dGRgw46qHRkX21tbR555JGMHj06VVVVaWhoSJI0Njams7MzSdLc3JwTTzwxbW1tSTaHWC+88IJnTAEAAK+pWCzmbW97W+nIvhkzZuSGG25IXV3dTr9/tLa2ZtasWbnvvvuSJJMmTcr999/vGVMAlNgpBQD9xD/90z+VAqlCoVAKpF7L6NGj88gjj5S+BBaLxXz2s58te60AAED/9tBDD5UCqSlTppQCqddSV1fXZcfUU089lYcffrjstQKw9xJKAUCZfP/73y+1p02btstAaovRo0dn2rRppf4dd9zR67UBAAB7lptvvrnUnjVr1i4DqS3q6uoya9asHa4DAL1NKAUAZbB48eJs3Lix1L/++ut7NH/r8a2trVm8eHGv1QYAAOxZ1q5dm3vvvTdJMmrUqJx55pk9mn/mmWdmv/32S5LMmTMna9eu7fUaASARSgFAWfzqV78qtevr6zNixIgezR8xYkTq6+tLfUdoAAAAO7Ns2bJ0dHQkSU477bTU1tb2aH5tbW3ptIaOjo40Njb2eo0AkAilAKAsli9fXmoPHDjwda2x9RdJXwoBAICdWb9+fak9dOjQ17XGkCFDSu1169a94ZoAYEeEUgBQBqNGjSq1tz7Gryfa2tpK7YaGhjdcEwAAsGcaNGhQqf3qq6++rjW2PrJv8ODBb7gmANgRoRQAlMFb3vKWUrulpSWrVq3q0fxVq1alpaWl1D/55JN7rTYAAGDPMnbs2FRXVydJHnjggS4/cOuOtra2zJs3L0lSU1PjR3EAlI1QCgDKYMKECV2O7bvkkkt6NH/r8XV1dZkwYUKv1QYAAOxZhgwZkhkzZiTZfJT4nDlzejR/zpw5WbFiRZJkxowZXY7yA4DeJJQCgDI599xzS+158+alubm5W/OWLVtW+pVikpx33nm9XhsAALBnueCCC0rt2bNnp7W1tVvzNmzYkNmzZ+9wHQDobYVisVisdBF7io6OjjQ1NVW6DAB2Ex0dHTnooIOy5aO2trY2jzzySEaPHp1nnnkmv/vd79LU1JR99tknp556aiZMmJDm5uaceOKJpeM2CoVCXnjhhdJRHAAAADtSLBbztre9LYsWLUqSvOMd78js2bNTV1eXqqqq0pF8jY2N6ezsTJK0trZm1qxZue+++5IkkyZNyv33359CoVCZNwHAbmfMmDG9+ncpoVQvEkoBsK3rrrsuX/rSl7pcKxQK2dHH746uf/rTn86ll15a1hoBAIA9w/z58zNz5szS82mnTJmSWbNm5ayzzsr48eOTbA6lWltbM2fOnMyePTsLFixIktTX1+euu+7K1KlTK1Y/ALsfodRuTCgFwI588pOfzO23397jee9973tz7bXXlqEiAABgT/XAAw/kwgsvLAVTSTJq1KjMmDEjQ4cOTVNTU+bOnVt6hlSyOZC66aabctppp1WiZAB2Y70dStX02koAAAAAQEWddtppueuuu3LppZeWjvJbvnx5br311h2OnzRpUr761a/aIQVAn6iqdAEAsCe77rrrttsltbPz2auqun4s33777bnuuuvKVhsAALBnmjp1an7+85/nzjvvzFlnnbXdL9xrampy9tln584778z9998vkAKgzzi+rxc5vg+ArXV0dOSggw4qPSeqtrY2jzzySEaPHp1nnnkmCxYsyMsvv5xBgwbl5JNPzoQJE9Lc3JwTTzwxbW1tSTYHWC+88EKvbpMGAAD2LuvXr097e3vWrl2b1tbWjBkzJkOGDKl0WQD0A54ptRsTSgGwtc985jOlIzIKhUJ++9vfZvTo0Uk274pqaGhIsvlBw52dnaV5zc3NOe6440ph1gUXXJAvfvGLfVw9AACwp3it7x8A8Fp6O5RyfB8AlMn3v//9UnvatGmlQGpXRo8enWnTppX6d9xxR6/XBgAAAAB9TSgFAGWwePHibNy4sdS//vrrezR/6/Gtra1ZvHhxr9UGAAAAAJUglAKAMvjVr35VatfX12fEiBE9mj9ixIjU19eX+g8//HCv1QYAAAAAlSCUAoAyWL58eak9cODA17VGbW1tqd3Y2PiGawIAAACAShJKAUAZjBo1qtTe+hi/nmhrayu1tzyUGAAAAAD6K6EUAJTBW97yllK7paUlq1at6tH8VatWpaWlpdQ/+eSTe602AAAAAKgEoRQAlMGECRO6HNt3ySWX9Gj+1uPr6uoyYcKEXqsNAAAAACpBKAUAZXLuueeW2vPmzUtzc3O35i1btizz5s0r9c8777xerw0AAAAA+lqhWCwWK13EnqKjoyNNTU2VLgOA3URHR0cOOuigbPmora2tzSOPPJLRo0enqqqq9JyoxsbGdHZ2Jkmam5tz4oknlp4nVSgU8sILL6S6uroybwIAAOj3dvb9AwB2ZcyYMb36d6maXlsJAOiiuro6l112Wb70pS8lSdra2nLcccdl2rRpOfvss/PTn/40jY2N2XfffXP22Wfnnnvuybx587L170Uuu+wygRQAAAAAewQ7pXqRnVIA7MgnP/nJ3H777T2e9973vjfXXnttGSoCAAD2JnZKAfB69fZOKaFULxJKAbAzf/Inf5LGxsZuj29oaMhvfvObMlYEAADsLYRSALxevR1KVfXaSgDADvU0kEo2f1H8kz/5kzJVBAAAAAB9zzOlAKCMzjrrrO0CqUGDBmX27NlZv359Xn755QwaNCgNDQ35+Mc/nvXr15fGNTY25qyzzso999zT12UDAAAAQK8TSgFAmWzcuDFPPPFEl2s//vGPc+yxx+7w+Iynn346jz/+eM4+++zS+CeeeCIbN27MwIED+7J0AAAAAOh1ju8DgDI57bTTuvS3BFKv5dhjj82Pf/zjLtemTZvW67UBAAAAQF8TSgFAmbz44oul9qBBg3YZSG1x7LHHZtCgQaX+0qVLe702AAAAAOhrQikAKIMf/ehHXfrb7n7alW3Hb7seAAAAAPQ3QikAKIPvfe97XfoTJ07s0fxtx99xxx1vuCYAAAAAqCShFACUQXNzc6+u19jY2KvrAQAAAEBfE0oBQBmMHj26V9draGjo1fUAAAAAoK8JpQCgDN73vvd16T/99NM9mr/t+PPOO+8N1wQAAAAAlSSUAoAyeOc739mlf/bZZ/do/rbjt10PAAAAAPoboRQAlMkBBxxQaq9fvz6PP/54t+Y9+uijWb9+fal/4IEH9nptAAAAANDXCsVisVjpIvYUHR0daWpqqnQZAOwmNm7cmEMPPbTLtR//+Mc59thj09TUlKVLl2blypWpqqrKlClTMnbs2Dz++OPb7ZJ69tlnM3DgwL4sHQAA2INUVVWVnlPb2NiYzs7OClcEQH8xZsyYVFdX99p6Nb22EgDQxcCBA3PMMcfkiSeeKF3r6TF+xxxzjEAKAAAAgD2C4/sAoIzuueee0i8Se6qhoSH33HNPL1cEAAAAAJUhlAKAMvubv/mbPp0HAAAAALsjoRQAlNFdd92VK6+88nXNvfLKK3PXXXf1ckUAAAAAUBmFYrFYrHQRe4qOjo40NTVVugwAdhOdnZ057LDD0tbWliQZPXp05s6dm2HDhuXHP/5xfvCDH+Sll17KyJEjc9555+Wd73xn1qxZk+nTp6e5uTnJ5udSLVmyJFVVfkcCAAC8PlVVVaVjxRsbG9PZ2VnhigDoL8aMGZPq6upeW6+m11YCALr45je/WQqk6urqSoFUkrzrXe/KxRdfnKTrl8Jhw4Zl7ty5Oe6449La2pqNGzfmpptuykUXXVSZNwEAAAAAvcTPrgGgTG688cZS+/zzzy8FUrsybNiwnH/++aX+N77xjV6vDQAAAAD6mlAKAMpg2bJlaWxsTJIUCoVcfvnlPZp/+eWXp1AolNZatmxZr9cIAAAAAH1JKAUAZTB//vxS+8ADD8zgwYN7NH/w4ME58MADS/2FCxf2Wm0AAAAAUAlCKQAog1WrVpXagwYNel1r1NfXl9orVqx4wzUBAAAAQCUJpQCgDEaMGFFqr1+//nWt0dLSUmrvt99+b7gmAAAAAKgkoRQAlMHUqVNL7aVLl2bdunU9mr9u3bosXbq01J88eXKv1QYAAAAAlSCUAoAyGDt2bBoaGpIkxWIxV199dY/mX3311SkWi6W1xo4d2+s1AgAAAEBfEkoBQJlcfPHFpfZtt92WNWvWdGve6tWrc9ttt5X6H/nIR3q9NgAAAADoa4Xilp9h84Z1dHSkqamp0mUAsJvo7OzMYYcdlra2tiTJ6NGjM3fu3AwbNixNTU1ZunRpVq5cmaqqqkyZMiVjx47NmjVrMn369DQ3NydJBg4cmCVLlqSqyu9IAACA16eqqqp0kkNjY2M6OzsrXBEA/cWYMWNSXV3da+vV9NpKAEAXVVVVufbaa3PJJZckSZqbm3P00UdnwIAB2bBhw3bj6+vr09bWlvb29tK1a665RiAFAAAAwB7BX7kAoIxmzpyZK664otRvb2/fYSCVJC0tLV0CqSuuuCIzZ84se40AAAAA0BeEUgAAAAAAAJSdUAoAyuiuu+7KlVdeWerX1NSkvr5+h2Pr6+tTU/P/Tta98sorc9ddd5W9RgAAAADoC4VisVisdBF7io6OjjQ1NVW6DAB2E52dnTnssMPS1taWJBk9enTmzp2bYcOGpampKS+99FKWL1+e6urqTJ48OWPHjs2aNWsyffr0NDc3J0kGDhyYJUuWeK4UAADwulVVVaWhoSFJ0tjYmM7OzgpXBEB/MWbMmFRXV/faejW7HgIAvB7f/OY3S4FUXV1dKZBKkrFjx+bYY49N0vVL4bBhwzJ37twcd9xxaW1tzcaNG3PTTTfloosuqsybAAAAAIBe4mfXAFAmN954Y6l9/vnnlwKpXRk2bFjOP//8Uv8b3/hGr9cGAAAAAH1NKAUAZbBs2bI0NjYmSQqFQi6//PIezb/88stTKBRKay1btqzXawQAAACAviSUAoAymD9/fql94IEHZvDgwT2aP3jw4Bx44IGl/sKFC3utNgAAAACoBKEUAJTBqlWrSu1Bgwa9rjXq6+tL7RUrVrzhmgAAAACgkoRSAFAGI0aMKLXXr1//utZoaWkptffbb783XBMAAAAAVJJQCgDKYOrUqaX20qVLs27duh7NX7duXZYuXVrqT548uddqAwAAAIBKqCn3DebOnZvZs2f3aM7pp5+ev/u7v+vW2Pnz52fevHlZvHhxVq1alZqamowcOTJvetObcvrpp2fcuHGvp2wAeEPGjh2bhoaGNDY2plgs5uqrr84XvvCFbs+/+uqrUywWS2uNHTu2XKUCAAAAQJ/otzulWlpa8tWvfjVf+MIX8sADD2TZsmXZuHFj1q9fnz/+8Y/50Y9+lE996lP5z//8z0qXCsBe6uKLLy61b7vttqxZs6Zb81avXp3bbrut1P/IRz7S67UBAAAAQF8r+06prY0bNy5TpkzZ5bgjjjjiNV9vb2/PNddckwULFpSuHXjggTnkkEOyadOmPPXUU1m9enU6Ojryve99Lx0dHTnnnHPecP0A0BMXXXRRrrrqqrS1taW1tTXTp0/P3LlzM2zYsKxduzarVq3KunXrsmHDhjQ0NGTIkCFZs2ZNTj/99LS2tiZJBg4cmAsvvLDC7wQAAAAA3rg+DaUOP/zwXvnD2n/8x3+UAqkBAwZk1qxZOfXUU0uvt7e35/bbb88Pf/jDJMmdd96Zo446KkcdddQbvjcAdFdVVVWuvfbaXHLJJUmS5ubmHHPMMdl///3zxz/+MZ2dnV3Gjh8/Pi+//HLa2tpK16+55ppUVfXbjc0AAAAAUNLv/sq1Zs2a/PjHPy71P/ShD3UJpJKkpqYmH/jAB3LKKackSYrFYpdjkACgr8ycOTNXXHFFqd/W1pbnn3++SyCVJJ2dnXn++ee7BFJXXHFFZs6c2We1AgAAAEA59btQat68edm4cWOSzQ9+P+OMM3Y69gMf+EAKhUKS5Omnn85zzz3XJzUCwNaOPvro1NbW9mhObW1tjj766DJVBAAAAAB9r9+FUr/+9a9L7enTp5dCpx3Zb7/9ujzD6tFHHy1rbQCwrfnz5+fCCy8s7YBqaGjI8OHDdzh2+PDhaWhoSLJ5R9WFF16Y+fPn91WpAAAAAFBWffpMqTeqra0tTz/9dKk/efLkXc6ZPHly6Q96CxYsyHnnnVe2+gBga8ViMZdeemlaWlqSJDNmzMgNN9yQurq6NDU15aWXXsry5ctTXV2dyZMnZ+zYsWltbc2sWbNy3333paWlJX//93+f+++//zV/hAEAAAAA/UGfhlLr16/Pww8/nKVLl6alpSX19fXZd999M3HixIwfP36Xf3B7+eWXUywWkySFQiEHH3zwLu956KGHltovvfTSG6ofAHrioYceyqJFi5IkU6ZMKQVSyeYjaI899tgkSWNjY+kZU3V1dZk9e3be/e53Z8GCBXnqqafy8MMPl56TCAAAAAD9VZ+GUo899lgee+yxHb42duzYvPvd785b3/rWnYZTL7/8cqk9dOjQbj2fY7/99iu1161bl1dffTVDhw7tYeUA0HM333xzqT1r1qxSILUrdXV1mTVrVmbNmlVaRygFAAAAQH+32xzft2zZsvyf//N/8uijj+bv//7vd/iHu3Xr1pXaO3sex7a2Hbdu3boehVIrV67s1j2qq6uTJFVV/e4xXQCUwdq1a3PvvfcmSUaNGpWzzjqry2fEztpbnHXWWdlvv/2yYsWKzJkzJ+vXr8+QIUPKXzgAALDH2dX3DwDoK30SSu2333456aSTMnXq1IwfPz5Dhw5NZ2dnVq5cmQULFmTOnDmlo/V++9vf5n//7/+dT33qU9t9SLa2tpba3dkltaNxW6/RHR/96Ed3OebrX/96Ro4cmerq6tID6gHYu61atSodHR1JNj9Lavz48TsdO3r06B1eP/PMM3Prrbemo6Mj7e3tPmMAAIA3bGffPwCgL5Q9lDr++ONz2mmn7fBXGPvvv3/233//nH766bnxxhszd+7cJJuP+fvVr36V0047rcv4tra2Urumpnulbztu6zUAoFy23t07bNiw17XG1jt7165d+4ZrAgAAAIBKKnsoNWjQoF0XUVOTv/u7v0tTU1P+8Ic/JEnuvvvu7UKprXc9tbe3d+v+247r7g6rLb7+9a/vcsyWIwI7OjqyfPnyHq0PwJ5pw4YNpXZjY2MaGxu7vF5VVVX6hWJzc3M6Ozu3W6OpqanUbm1t3W4NAACA7ujO9w8A2JFRo0aVHl/UG3abZ0pVVVXlnHPOyRe+8IUkydKlS7Ny5cqMHDmyNGbr50x1d8fTtuO6+5D5Lba+f3f4UAcgSRoaGlJdXZ2Ojo7Mmzcvra2tO/1hRGdn53afH21tbaUdxDU1NRkzZozPGAAA4A3b0fcPAOgru9WTDY888sguiduW50xtMXjw4FL7lVde6daa247beg0AKJchQ4ZkxowZSZLly5dnzpw5PZo/Z86crFixIsnmZ1INGTKk12sEAAAAgL60W4VSNTU1XZ6f8eqrr3Z5ff/99+/yWnd2S235g16yOZDaen0AKKcLLrig1J49e3ZaW1u7NW/Dhg2ZPXv2DtcBAAAAgP5qtwqlknT5g922R+3tv//+KRQKSZJisZjnn39+l+s9++yzpfa4ceN6p0gA6IZTTjklRxxxRJJkwYIFmTVr1i6DqdbW1nzsYx/LggULkiSTJk3KySefXPZaAQCAPdfatWvz5JNP5tFHH82iRYuydu3aSpcEwF5qtwqlmpqaujwYft999+3yem1tbSZOnFjqP/nkk7tc8w9/+EOpPWXKlF6oEgC6p1Ao5Lrrrkt9fX2S5L777su73/3u3H333dvt9m1ra8vdd9+dd7/73bnvvvuSJPX19fnqV79a+kEGAABAdxWLxTz44IO56KKLcuSRR2by5Mk58cQTM3369EyePDkXX3xxHnzwwRSLxUqXCsBepKbSBWztv/7rv0rt+vr6HHzwwduNOf7447No0aIkydy5c/Oe97xnp+utWLEi8+fP7zIXAPrS1KlTc9NNN+XCCy9MS0tLacfUqFGjMmPGjAwdOjRNTU2ZO3dulyNn6+vrc9NNN2Xq1KkVrB4AAOiP5s+fn0svvbT0N7RtdXR05J577sk999yTI444Itddd53vHgD0ibLulOruszOSZNGiRfnRj35U6p9yyimprq7ebty0adMycODAJMnLL7+cn//85ztd87vf/W46OzuTJBMnTsyhhx7a7XoAoLecdtppueuuu0pH+SXJ8uXLc+utt+aGG27Iv//7v3cJpCZNmpS77rorp512WiXKBQAA+rEHHnggM2fO7BJIjRo1Kh/84Afz8Y9/POecc05GjRpVem3RokWZOXNmHnjggUqUC8BeplAs4x7duXPn5r777suMGTNy/PHHl44v2lpbW1vuv//+3HbbbaWjjAYNGpR//dd/3e74vi3uuOOO/Md//EeSzUf6zZo1K6ecckrp9fb29txxxx25++67S9c+97nP5aijjurNt7edjo6ONDU1lfUeAPRfxWIxDz/8cL7zne/k3nvvTUdHR+m1mpqazJgxIxdccEFOPvlkR/YBAAA9Nn/+/MycOTMtLS1JNj/K4mMf+1j+/M//POPHj0+SNDY2prW1NXPmzMns2bNLz7Otr6/PXXfdZccUAF2MGTNmhxuIXq+yh1KzZ89OklRXV2f//ffPuHHjMmjQoHR2dmbVqlV5+umnuzxHqra2Nv/4j//4mgFSe3t7vvjFL5Y+NJNk/PjxOeSQQ7Jp06b84Q9/yOrVq0uvnXvuuTnnnHPK8A67EkoB0F3r169Pe3t71q5dm9bW1owZMyZDhgypdFkAAEA/VSwW87a3va20Q2rGjBm54YYbUldXl6qqqjQ0NCTZHEptOVmotbU1s2bNKj3XdtKkSbn//vv9SA6Akn4bSnXH4YcfnlmzZuWAAw7Y5diWlpZ84xvfyMMPP7zTMdXV1fmrv/qrzJw5s9s1vBFCKQC6a2dfCgEAAF6PBx98MOeee26SzTuk7r777tTV1SV57e8fra2tefe731368fedd97Z5UQiAPZuvR1K1fTaSjtw6qmnZuzYsVm0aFEWL16cpqamrF27NmvXrk2xWEx9fX1Gjx6dCRMm5KSTTsqkSZO6vXZ9fX0+8YlP5G1ve1vmzZuXp59+Oq+88kqqq6szcuTIvOlNb8rpp5/erYALAAAAAPqzm2++udSeNWtWKZDalbq6usyaNSuzZs0qrSOUAqBcyrpTam9jpxQA3WWnFAAA0FvWrl2byZMnp6OjI6NGjcqjjz6a2tra0uu7+v7R1taW448/PitWrEh1dXUWLlzoeHEAkvT+TqmqXlsJAAAAAOhzy5YtS0dHR5LktNNO6xJIdUdtbW2mTZuWZPOPrhsbG3u9RgBIhFIAAAAA0K+tX7++1B46dOjrWmPrnVHr1q17wzUBwI4IpQAAAACgHxs0aFCp/eqrr76uNdauXVtqDx48+A3XBAA7IpQCAAAAgH5s7Nixped9PPDAA2lra+vR/La2tsybNy9JUlNTU3r+FAD0NqEUAAAAAPRjQ4YMyYwZM5Iky5cvz5w5c3o0f86cOVmxYkWSZMaMGV2O8gOA3iSUAgAAAIB+7oILLii1Z8+endbW1m7N27BhQ2bPnr3DdQCgtwmlAKACli1blh/+8If59re/nfvuuy/Lli2rdEkAAEA/dsopp+SII45IkixYsCCzZs3aZTDV2tqaj33sY1mwYEGSZNKkSTn55JPLXisAe69CsVgsVrqIPUVHR0eampoqXQYAu6nOzs5885vfzI033pjGxsbtXm9oaMjFF1+ciy66KFVVfjcCAAD0zPz58zNz5sy0tLQkSaZMmZJZs2blrLPOyvjx45MkjY2NaW1tzZw5czJ79uxSIFVfX5+77rorU6dOrVj9AOx+xowZU3puYW8QSvUioRQAO3PXXXflk5/8ZLceOFxbW5trr702M2fO7IPKAACAPckDDzyQCy+8sBRMJcmoUaMyY8aMDB06NE1NTZk7d27pGVLJ5kDqpptuymmnnVaJkgHYjQmldmNCKQB25Gtf+1quvPLKLtcKhUIOOeSQDBo0KGvWrMnSpUuz7UfyFVdckY9//ON9WSoAALAHmD9/fi699NIsWrRol2MnTZqUr371q3ZIAbBDvR1KORsIAMrorrvu6hJI1dXV5cMf/nCefvrpPPPMM/n973+fRx55JE899VT+9m//NnV1daWxV155Ze66665KlA0AAPRjU6dOzc9//vPceeedOeuss7b7Y2JNTU3OPvvs3Hnnnbn//vsFUgD0GTulepGdUgBsrbOzM4cddljpyL7Ro0dn7ty5GTZsWKqqqtLQ0JBk85nunZ2dSZI1a9Zk+vTpaW5uTpIMHDgwS5Ys8YwpAADgdVu/fn3a29uzdu3atLa2ZsyYMRkyZEilywKgH7BTCgD6iW9+85ulQKqurq4USL2WYcOGZe7cuaUdUxs3bsxNN91U9loBAIA915AhQ3LkkUfmhBNOyMSJEwVSAFSMUAoAyuTGG28stc8///xdBlJbDBs2LOeff36p/41vfKPXawMAAACAviaUAoAyWLZsWRobG5MkhUIhl19+eY/mX3755SkUCqW1li1b1us1AgAAAEBfEkoBQBnMnz+/1D7wwAMzePDgHs0fPHhwDjzwwFJ/4cKFvVYbAAAAAFSCUAoAymDVqlWl9qBBg17XGvX19aX2ihUr3nBNAAAAAFBJQikAKIMRI0aU2uvXr39da7S0tJTa++233xuuCQAAAAAqSSgFAGUwderUUnvp0qVZt25dj+avW7cuS5cuLfUnT57ca7UBAAAAQCUIpQCgDMaOHZuGhoYkSbFYzNVXX92j+VdffXWKxWJprbFjx/Z6jQAAAADQl4RSAFAmF198cal92223Zc2aNd2at3r16tx2222l/kc+8pFerw0AAAAA+ppQCgDK5KKLLkptbW2SpLW1NdOnT99lMLVmzZqcfvrpaW1tTZIMHDgwF154YdlrBQAAAIByE0oBQJlUVVXl2muvLfWbm5tz3HHH5bOf/ex2z5hat25dPvvZz+a4445Lc3Nz6fo111yTqiof1wAAAAD0f4XilgdW8IZ1dHSkqamp0mUAsJv52te+liuvvLLLtUKhkEMOOSSDBg3KmjVrsnTp0mz7kXzFFVfk4x//eF+WCgAA7IGqqqpKz7xtbGxMZ2dnhSsCoL8YM2ZMqqure229ml5bCQDYoY9//OPZf//988lPfjJtbW1JkmKxmGeffXaH4wcOHJhrrrkmM2fO7MsyAQAAAKCsnAcEAH1g5syZeeaZZ/K5z32u9AvFbY0dOzaf+9znsmTJEoEUAAAAAHscx/f1Isf3AdBdTU1Neemll7J8+fJUV1dn8uTJGTt2bKXLAgAA9kCO7wPg9XJ8HwDsAcaOHZtjjz02iS+FAAAAAOwdHN8HAAAAAABA2QmlAAAAAAAAKDuhFAAAAAAAAGUnlAIAAAAAAKDshFIAAAAAAACUnVAKAAAAAACAshNKAQAAAAAAUHZCKQAAAAAAAMpOKAUAAAAAAEDZCaUAAAAAAAAoO6EUAAAAAAAAZSeUAgAAAAAAoOyEUgAAAAAAAJSdUAoAAAAAAICyE0oBAAAAAABQdkIpAAAAAAAAyk4oBQAAAAAAQNkJpQAAAAAAACg7oRQAAAAAAABlJ5QCAAAAAACg7IRSAAAAAAAAlF2hWCwWK13EnqJYLKazs7PSZQDQT1RXVydJOjo6KlwJAACwp/P9A4DXo6qqKoVCodfWE0oBAAAAAABQdjWVLgAA9kYdHR155ZVXkiTDhw8v/WoRAACgt/n+AcDuwjOlAKACXnnllXz0ox/NRz/60dKXQwAAgHLw/QOA3YVQCgAAAAAAgLITSgEAAAAAAFB2QikAAAAAAADKTigFAAAAAABA2QmlAAAAAAAAKDuhFAAAAAAAAGUnlAIAAAAAAKDsCsVisVjpIgAAAAAAANiz2SkFAAAAAABA2QmlAAAAAAAAKDuhFAAAAAAAAGUnlAIAAAAAAKDshFIAAAAAAACUnVAKAAAAAACAshNKAQAAAAAAUHZCKQAAAAAAAMpOKAUAAAAAAEDZ1VS6AADYm61duzb33ntvHn/88SxbtiwtLS0pFotJklmzZmX69OmVLRAAAAAAeolQCgAqpKmpKf/zf/7PrFq1qtKlAAAAAEDZCaUAoEJuvPHGUiBVW1ubqVOnZsSIEamq2ny67rhx4ypZHgAAAAD0KqEUAFTA6tWrM3/+/CTJgAED8uUvfzljx46tcFUAAAAAUD5VlS4AAPZGzz33XKk9adIkgRQAAAAAezyhFABUwPr160vtfffdt4KVAAAAAEDfEEoBQAV0dHSU2oVCoYKVAAAAAEDfKBSLxWKliwCAvcHChQvz+c9/vltjp02blo997GNlrggAAOivzj333FL7+9//fpLk+eefz89+9rMsWLAgq1atSpIceOCBmTZtWs4444xUV1d3WeOZZ57JvffemyVLlmTFihUZMGBADjrooJx++un50z/90757MwDsNWoqXQAAAAAA8Mbcfffd+d73vpfOzs4u15csWZIlS5bksccey6c//ekMGDAgnZ2d+b//9//mpz/9aZexGzduzMKFC7Nw4cL85je/yf/4H/8jVVUOWgKg9wilAKCPjBgxIu94xzuSJC+//HLmz5+fJBk3blymTJnSZeyECRP6vD4AAKB/+tnPfpbvfve7SZKDDjooBx10UKqqqrJkyZK8+OKLSZLf/e53+fa3v52LL7443/rWt3L//fenUCjk8MMPz7hx49LZ2Zmnnnoqzc3NSZKHHnooBx98cN7znvdU6m0BsAdyfB8AVMDcuXMze/bsJI7qAwAAem7r4/sGDBiQQYMG5dJLL83kyZO7jPvRj36UW2+9NUlSXV2d97///bnlllsybty4XHrppTn44INLYzs7O3PLLbfkJz/5SZKkrq4uN954Y+rq6sr/hgDYK9h/CwAAAAD93Gc/+9ntAqkkeec735mpU6cmSTo6OnLLLbdk2LBh+dznPtclkEqSqqqq/PVf/3X233//JElra2t++9vflr12APYeQikAAAAA6Mf+7M/+LAceeOBOXz/11FO79P/iL/4iw4YN2+HYqqqqnHzyyaX+kiVLeqdIAIhQCgAAAAD6tZNOOuk1Xx8/fnyPxm8dcG15xhQA9AahFAAAAAD0Y6+1SypJBg8eXGrX19dnxIgR3R6/YcOGN1YcAGxFKAUAAAAA/Vh9ff1rvl5V9f/+BLirsUlSXV1dand0dLz+wgBgG0IpAAAAAOjHCoVCWcYCQG8TSgEAAAAAAFB2QikAAAAAAADKTigFAAAAAABA2QmlAAAAAAAAKDuhFAAAAAAAAGUnlAIAAAAAAKDshFIAAAAAAACUnVAKAAAAAACAshNKAQAAAAAAUHaFYrFYrHQRAAAAAAAA7NnslAIAAAAAAKDshFIAAAAAAACUnVAKAAAAAACAshNKAQAAAAAAUHZCKQAAAAAAAMpOKAUAAAAAAEDZCaUAAAAAAAAoO6EUAAAAAAAAZSeUAgAAAAAAoOyEUgAAAAAAAJSdUAoAAAAAAICyE0oBAAAAAABQdkIpAAAAAAAAyk4oBQAAAAAAQNkJpQAAAAAAACg7oRQAAAAAAABlJ5QCAAAAAACg7GoqXQAAAACVt3Dhwnz+858v9WfNmpXp06dXriAAAGCPY6cUAAAAAAAAZSeUAgAAAAAAoOyEUgAAAAAAAJSdUAoAAAAAAICyE0oBAAAAAABQdkIpAAAAAAAAyk4oBQAAAAAAQNnVVLoAAACA16OlpSULFizIypUr09bWln333Tf7779/Dj/88F69z/Lly/PMM89kzZo1Wb9+fQYPHpyRI0fmyCOPTH19fa/dp729PX/4wx+yfPnyrFmzJoMGDUpDQ0MmTZqU2traN7T2Cy+8kOeffz6rV6/OPvvsk5EjR+aII47IkCFDeqn6zdrb2/P000+nubk5r776agqFQoYNG5bx48fn4IMP7tV7NTY25vnnn88rr7ySlpaWDBs2LNOmTUtNja+5AACwu/L/1gEAgH5l1apVueWWW/Loo4+mvb19u9fHjh2bd77znTnjjDOSJJ/73Ofy5JNPJklGjRqVG264YZf36OjoyM9//vPce++9efHFF3c4prq6Om9605vyvve9LwcddNAu11y4cGE+//nPl/qzZs3K9OnT097enn//93/P/fffn1dffXW7eQMHDsxZZ52VmTNn9jiceuyxx/Ld7343L7300nav1dTU5IQTTsh73/veNDQ09Gjdbb388su5884785vf/Catra07HDNixIicffbZmTFjRreCo539d3vsscfyn//5n1m8ePF2c0466SShFAAA7Mb8v3UAAKDfWLhwYb70pS9lw4YNOx2zbNmy3HjjjVmwYEE+/vGP9/geL7/8cr785S/vMMjZWkdHR37729/m8ccfzwc+8IG8853v7PG9Vq5cmWuuuSbPPPPMTsds3Lgxd911V5588slcccUV2WeffXa5brFYzE033ZSf/vSnOx3T3t6ehx56KI8//ng+9alPpaqq56e7F4vFfP/7388PfvCDdHR0vObYLWHif/3Xf+WKK67Ifvvt1+N73XzzzfnJT37S4zoBAIDdg1AKAADoFxYvXpyrrroqGzdu7HJ97NixGTduXGpqarJ8+fI8++yzKRaLeeihhzJixIge3WPJkiX54he/mHXr1nW5Pnr06BxwwAGpr6/PunXrsmTJktKYYrGYW2+9NW1tbfnLv/zLbt+rtbU1V111VV544YUkyT777JPDDz88Q4cOzYYNG7J48eKsXbu2NP6pp57KzTffnL/7u7/b5drf+c53tgukBgwYkAkTJmT48OFZv359lixZkvXr12fDhg255ppr8oEPfKDbtSeb3/cNN9yQBx54oMv12traHHLIIdl3332TJE1NTXn++edTLBaTJEuXLs1nP/vZXHnllRk+fHi373f33Xd3CaQOPPDANDQ0pLq6OitXrnzNYA8AANg9CKUAAIDdXltbW772ta91CaQOOuigXHTRRZk4cWKXsStWrMh3vvOdPProo7nnnnsyaNCgbt1j7dq1ueaaa7oEUm9+85tz3nnnbXc8X2dnZx544IF85zvfSUtLS5Lk+9//fo466qgceeSR3brfnXfembVr12bw4MH5wAc+kGnTpqW6urr0ekdHR370ox/le9/7XinQ+cUvfpGzzz47BxxwwE7XfeKJJzJnzpxSv1Ao5Mwzz8y5557b5RlY7e3t+cUvfpFbb701GzZsyG233dature4++67uwRSgwYNyvve975Mnz59u2MGm5ub853vfCePPfZYks07xG644Yb84z/+YwqFwi7v9corr+T2229PkhxzzDG54IILMm7cuC5jVq1albq6uh69BwAAoG/1/HwGAACAPnbvvfdm2bJlpf7BBx+cz3/+89sFUkmy33775ZOf/GSmT5+eYrG43a6nnbnpppuyatWqUv8v//Iv8+lPf3qHz4uqqqrK9OnT88///M+lIKRYLOaWW27p9nvaEkh94QtfyOmnn94lkEo2P7PqPe95T9797nd3uT537tydrtnZ2Zmbbrqpy7X3v//9+dCHPtQlkEo2P1Pq7W9/ez7zmc9kwIABWb9+fbdrX7p0ae64445Sf+TIkbn66qvz9re/fYfPvRo9enQuu+yyTJ8+vXTtd7/7XR5//PFu3W/Tpk3p7OzMW97ylnzmM5/ZLpBKNj+zatt/QwAAYPcilAIAAHZrxWIxP/vZz0r9qqqqfOxjH9suZNlaoVDIhRde2O3nFjU2Nubhhx8u9Y899ticd955u5w3fvz4nH/++aX+M888k0WLFnXrnknyt3/7tzsMWLb2nve8JwMGDCj1n3zyyZ2OfeKJJ9LU1FTqT548Oe9617tec/3Jkyf3+HlYd999d+kZUoVCIZ/4xCcyevTo15xTKBTy4Q9/OCNHjixd68nzofbdd99cdNFFr+vZVwAAwO7B/5sHAAB2a88991yXoOWYY47Z4e6lbQ0cODAzZszo1j3uv//+0hF5SboVSG1x+umnZ+DAgaX+b37zm27NGzVqVE455ZRdjquvr8+kSZNK/RdeeKFLrVv75S9/2aU/c+bMbtXyrne9q0vw9VrWr1+fBx98sNQ/9thjd7hjbUdqa2vztre9rdRfuHDhds8I25kzzjgj++yzT7fGAgAAuyehFAAAsFt7+umnu/RPOumkbs/t7tiFCxeW2qNGjcqhhx7a7XvU1tbmsMMOK/W7u1Pq6KOP7vaun/3337/U3rRpU1pbW3c4but/q6FDh2by5MndWr++vj7HHHNMt8YuWrSotEsq6dl/jyRdnrnV0dGRxYsXd2vem9/85h7dBwAA2P3UVLoAAACA1/LHP/6xS/+QQw7p9tzRo0dn0KBBr/m8pI0bN+a5554r9RsaGtLc3NyjGrc8VypJli9f3q05uzq2b2vbHlW4YcOG7XYNrVu3rsu9DznkkB4ddXfYYYfl17/+9S7HPfXUU136Q4YM6dG/V2dnZ5d+d/69qqqqcuCBB3b7HgAAwO5JKAUAAOzW1q5d26W/9TOJumPkyJGvGUq98sorXYKS+fPn5+Mf/3jPitzKunXrujXutZ6Jta3q6uou/fb29u3GrFmzpkt/zJgx3V4/2RzGdceqVau69K+++uoe3Wdb3fn3GjRoUGpqfH0FAID+zvF9AADAbq2lpaVLv6fPFdrV+O6GSN21s6P1ttWTXUzdsW3w1pPQqyfjK/HvtfVONAAAoP8SSgEAALu1bXfIbP08o+7Y0a6iN7Le3q63/72KxWKvrgcAAOy+nH8AAADs1gYNGtSlv27duowYMaLb83e1s2fw4MFd+ieffHI+8YlPdL/A3cS2/07b7jDble6O3/Y+//qv/5oDDjigR/cCAAD2TnZKAQAAu7X99tuvS//FF1/s9ty2trYsX778NccMHTq0S3/bZ1j1F8OGDevSb2pq6tH8xsbG13Wf/vrvBQAA9D2hFAAAsFs7/PDDu/SffPLJbs996qmn0tnZ+ZpjBg8enLFjx5b6zz777C7n7I4GDx6cUaNGlfo9fR/PPPNMt8ZNmDChS3/x4sXdvgcAALB3E0oBAAC7tUmTJqW6urrU/+Uvf7nL50Rt8V//9V/dGjd16tRSu6WlJU888USPatxdTJw4sdReu3ZtFi5c2K15PXnPU6ZMSaFQKPUffvjhHtUIAADsvYRSAADAbm3o0KE5/vjjS/3ly5fnxz/+8S7nLVq0KA899FC37nHGGWd0CVruuOOObNq0qefFVtif/umfdunfdddd3Zr3wx/+sNvvd/jw4V3+ezzzzDOCKQAAoFuEUgAAwG7vXe96V5fQ6Pbbb88DDzyw0/HPPfdcvvzlL6dYLHZr/YMPPrhL0PLcc8/l+uuvT1tbW7drLBaL+c1vfpM1a9Z0e05vO+aYYzJmzJhSf+HChfnhD3/4mnMWLlyYH/3oRz26zznnnNPlv8fXv/71Hh2rmCSrV6/Ob3/72x7NAQAA+reaShcAAACwK4cffnj+/M//PPfcc0+SpLOzM1/72tfy4IMP5rTTTssBBxyQ6urqLF++PI8++mjmzp2bjo6OjBkzJvX19Xnuued2eY+LLroozzzzTFauXJkk+e///u+8+OKLOeecc3LCCSekpmb7r0+dnZ1ZunRpHn300fzqV7/KsmXL8pWvfCXDhg3r3X+AbqqqqsqFF16YL37xi6Vr3/3ud7Nq1aqce+65qa+vL11vb2/PL37xi/zbv/1bNm3alEGDBmX9+vXdus/BBx+c9773vfne976XJGltbc0///M/5+1vf3v+/M//PA0NDTuct379+vzud7/LI488kl//+tc54YQTctxxx72BdwwAAPQnQikAAKBfeP/735+mpqY89thjpWuPP/54Hn/88R2Or62tzaWXXpp/+7d/69b6w4YNy6c//el88YtfLO12evHFF/PVr341tbW1OeSQQzJs2LDU1tZmw4YNWbNmTZYuXZqNGze+8TfXi4455piceeaZmTNnTpLNO7h+8pOf5Gc/+1kmTpyY4cOHZ/369VmyZEnWrVuXJKmrq8v73ve+fOtb3+r2ff7iL/4iy5cvz/33359kc0B377335t57783o0aMzbty4DBo0KO3t7WlpacmyZcuyfPny3n/DAABAvyGUAgAA+oWampr8wz/8Q2677bb85Cc/SWdn507HjhkzJp/85Cdz8MEHdzmCr66u7jXvccghh+Sqq67KV7/61SxatKh0va2trUt/ZwYMGJABAwZ0492U14c+9KFs2rSpFBglyaZNm7Jw4cLtxg4cODCf+tSnUl1d3eP7XHzxxRk/fnz+7d/+rcu/c3Nzc5qbm3c5f9CgQT2+JwAA0H8JpQAAgH6jpqYmf/3Xf523vvWtmTt3bn7/+99nxYoVaWtry4gRIzJ27Ni85S1vyUknnZTa2tok6XIk3dbH1+3MyJEj84UvfCGPPfZY7rnnnjz11FPp6OjY6fiBAwfmyCOPzJvf/Oaceuqpu0XQUigUcvHFF+fYY4/Nbbfdlpdeemm7MdXV1Xnzm9+c973vfdl///13GFh1x4wZM3LSSSflRz/6UR588MGsWrXqNcePHTs2b3rTm/KWt7wlEydOfF33BAAA+qdCsbtP/gUAAOhn2tvb89d//ddpb29Pkpxwwgn51Kc+1aM1Wltb8/TTT2fFihVZt25d2tvbs88++2T48OEZN25c9t9//x0+b2p38vzzz+f555/PK6+8krq6uowcOTJHHHFEhg4d2uv3eumll/LCCy/k1VdfTUtLS2pqajJo0KCMGTMmBxxwQIYPH97r9wQAAPqH3fubEwAAwBuwePHiUiCVbD6er6fq6upy9NFH92ZZfe7ggw/OwQcf3Cf3GjduXMaNG9cn9wIAAPqXqkoXAAAAUC4///nPu/QPP/zwClUCAACAUAoAANgjPfnkk/nlL39Z6g8fPjxTpkypYEUAAAB7N6EUAADQL6xbty5f+cpX8tJLL+1y7BNPPJEvfelL2foRumeccUaqq6vLWSIAAACvwTOlAACAfqGzszMPP/xwHn744UyaNCnHHXdcDj300AwfPjw1NTVZt25dnnvuuTz66KOZP39+l7njxo3Le97znsoUDgAAQBKhFAAA0A899dRTeeqpp7o1dr/99sunPvWp1NbWlrkqAAAAXotQCgAA6Bdqamqyzz77ZMOGDd0aXygUcuKJJ+Zv/uZvsu+++5a5OgAAAHalUNz6kHUAAIDd2KZNmzJ//vwsXLgwzz33XJqamrJ27dq0tbWltrY2gwcPTkNDQ4466qiceOKJOfDAAytdMgAAAP8/oRQAAAAAAABlV1XpAgAAAAAAANjzCaUAAAAAAAAoO6EUAAAAAAAAZSeUAgAAAAAAoOyEUgAAAAAAAJSdUAoAAAAAAICyE0oBAAAAAABQdkIpAAAAAAAAyk4oBQAAAAAAQNkJpQAAAAAAACg7oRQAAAAAAABlJ5QCAAAAAACg7IRSAAAAAAAAlJ1QCgAAAAAAgLITSgEAAAAAAFB2QikAAAAAAADKTigFAAAAAABA2QmlAAAAAAAAKDuhFAAAAAAAAGX3/wF8zjarSWgbiwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 473, "width": 850 } }, "output_type": "display_data" } ], "source": [ "cdc.boxplot(column = 'height', by = 'gender')\n", "plt.title('Boxplot of height by gender')\n", "plt.suptitle('')\n", "plt.show();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next let's consider a new variable that doesn't show up directly in this data set: Body Mass Index ([BMI](http://en.wikipedia.org/wiki/Body_mass_index)). BMI is a weight to height ratio and can be calculated as:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**BMI** = $\\displaystyle\\frac{mass_{kg}}{height^2_{m}} = \\frac{mass_{lb}}{height^2_{in}}\\times703$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "703 is the approximate conversion factor to change units from metric (meters and kilograms) to imperial (inches and pounds) units.\n", "\n", "The following two lines first make a new object called `bmi` and then creates box plots of these values using `seaborn` library, defining groups by the variable `genhlth`." ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "bmi = (cdc['weight'] / (cdc['height'])**2) * 703" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABqcAAAPHCAYAAAClv5NoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeXxU5d3///dMJhsQEghLIomAEAwIg0awIomApKJ1X2sxClpurbRK6eJt9afV2mr7rRWptlVKZRERtbbWfQEFw6IiGhLASIKACQSEQEICk8xM5vz+4M5pJpNlJpnMTOD1fDx4cM51rus6n8kkJ5nzOdd1WQzDMAQAAAAAAAAAAACEgDXcAQAAAAAAAAAAAODkQXIKAAAAAAAAAAAAIUNyCgAAAAAAAAAAACFDcgoAAAAAAAAAAAAhQ3IKAAAAAAAAAAAAIUNyCgAAAAAAAAAAACFDcgoAAAAAAAAAAAAhQ3IKAAAAAAAAAAAAIUNyCgAAAAAAAAAAACFDcgoAAAAAAAAAAAAhQ3IKAAAAAAAAAAAAIUNyCgAAAAAAAAAAACFDcgoAAAAAAAAAAAAhQ3IKAAAAAAAAAAAAIUNyCgAAAAAAAAAAACFDcgoAAAAAAAAAAAAhQ3IKAAAAAAAAAAAAIUNyCgAAAAAAAAAAACFDcgoAAAAAAAAAAAAhQ3IKAAAA6IAhQ4bIYrGY/x588MFwhwQ/VFZW6rHHHtOll16qwYMHq3fv3l7vo8Vi0auvvhruMBEizd/7xYsXhzsknMQWL17s8z0ZKpMnT/Y678yZM0N27kg4PwAACD1buAMAAAAAgFD4y1/+orvvvlvHjh0LdygAAAAAcFJj5BQAAEAXWb16tc8T0O3969Gjh1JSUjR69Gj94Ac/0GOPPaadO3eG+6UA3d4f//hH/eQnPwl5YmrmzJkBXQOioqKUmJio9PR0TZw4UT/+8Y/1wgsvdCrutmL4yU9+EpTXeeaZZ7Z6Dn9GI+3atcunHSMnAAAAgBMXySkAAIAI4nA4tH//fm3dulUrVqzQL3/5Sw0bNkwXXHCBvvjii3CHh24onNNERYrt27frvvvu8ylPT0/XtGnTdM0113j9GzRoUBiiPM7j8ejIkSMqLy/X+vXr9de//lXTp0/XwIED9fOf/1w1NTVBPd8LL7wgp9PZqT6++OILbd68OUgRAeguHnzwQa/fLUOGDAl3SAAAoBthWj8AAIAIZxiGPvzwQ40fP16PPvqofvnLX4Y7JKBbefrpp+Vyucz96OhoLVu2TNdff30YowpMbW2tHn/8cb344ot6++23NWbMmKD0e+jQIb322mu69tprO9zHokWLghILAAAAgJMHySkAAIAQGjlypEaNGtXiMcMwVFNTo3379qm4uNjrZrokNTQ06O6775bVatXPf/7zUIQLnBBef/11r/3bbrstrImpiy++WD169GjxmMvl0pEjR1RaWqry8nKf43v27NHkyZP18ccfKyMjIyjxLFq0qMPJKafTqeXLlwclDgAAAAAnD5JTAAAAIXT99dfrwQcfbLfesWPH9O9//1sPPPCAvv76a69j9913ny677DKNGDGii6IEThzV1dXasWOHV9n3vve9MEVz3F//+le/pr/auXOnnnnmGc2bN89r6r1Dhw7p9ttv1wcffNCh8/fq1UsWi8WcIvDdd9/Vvn37lJKSEnBfr732miorK839U045RXv37u1QXAAAAABOHqw5BQAAEIF69OihG2+8UQUFBRo/frzXsfr6ej355JNhigzoXvbs2SPDMLzKusu6KEOHDtXvf/97vffee4qNjfU69uGHH2rTpk0d6jc2NlbXXXedud/Q0KDnnnuuQ301n9Lvpptu6lA/AAAAAE4uJKcAAAAiWEJCghYvXuxT/p///Cf0wQDd0JEjR3zKWptSL1JNmjRJd911l095Z64Dt9xyi9d+S9eZ9lRUVOjdd98193v37q2rr766wzEBAAAAOHmQnAIAAIhwo0aN0tixY73KysrKvKb5AtCyurq6cIcQFNOnT/cpKy0t7XB/2dnZGj58uLm/bds2ffrppwH1sXTpUjU0NJj7119/fbdL/AEAAAAID9acAgAA6AYyMjK0efNmr7KDBw/qlFNO6XCfX3/9tQoLC/Xtt9+qsrJSvXr10oABA3Taaafp7LPPltV64jzHtGXLFn3xxRfat2+fGhoadMopp2jo0KGaMGGCbLbI+JP4ZHo/mjt06JA++eQT7du3TwcOHJDNZlP//v01aNAgTZgwQfHx8eEOMewyMjJ8yg4ePNipPmfOnKn/7//7/8z9xYsX65xzzvG7ffPRVs1HY50ojhw5og0bNqikpETV1dVKTEzUoEGDNH78eKWlpYU7vLDaunWrtmzZooqKCjkcDvXp00enn366JkyYoLi4uC4//44dO7RlyxYdOHBABw8eVFxcnAYMGKChQ4dq/PjxXXp9b2ho0GeffaaioiIdOHBA0dHR6t+/v8444wxlZWV16TV73759+vjjj7Vz504dO3ZMffv2VWpqqnJycpScnNxl540EBQUFKigo0P79+2WxWNS/f39lZGTo3HPPjZjf5wAAwE8GAAAAusSHH35oSPL69+tf/7pDfV177bU+fR0+fDjgfg4fPmzcd999RkZGhk9/Tf8lJycbN910k7Ft2za/+p0xY4ZPH48++mjA8T333HM+/Vx88cWGx+Npsf6vf/1rr7qDBw82j7lcLuPPf/6zMXTo0FZfZ79+/Yw777zTqKysDDjWwYMHd/q97ar3o/nXJdB/Tb+OXcXtdhvPPPOM8Z3vfMewWq2txhIXF2dMmzbNePvtt/3qd9GiRZ167R9++GFQX2dLPxs7d+4MuJ/a2lqffq644ooOxZCcnGwYhmF88803Xl/7pKQko66uzq8+N2zY4NXniBEjDMMwjKKiIp84Fy1a1G5/O3fu9Gk3Y8YMv2LpjLZi3bJli3Httdca0dHRLX6vWCwWY+LEicZrr73m17neeecdnz7eeeedTsU/bdo0r/4yMjJavV4Gi9vtNubPn29kZma2+nPUo0cP44c//KGxe/dus11b1+tA7Nmzx5g7d64xbNiwNn+WExMTjRtuuMEoKioK+BxtXd9ramqM+++/3+jfv3+bv1seeugh4+jRowGdt6XrV1Nr1qwxpk6dalgslhbPa7VajSlTphgbNmwI+DVPmjTJr5+/lq5pgfybNGlSwOevr683/vSnPxmnnnpqq/327t3bmDNnTod+nwMAgPA4cR+/BAAAOIE0n76rT58+SkxMDKiPhQsXatiwYfrd736nkpKSNutWVlbqueee05gxY/TjH/9Y9fX1bdb/61//qjPOOMOr7P7779e6dev8ju/LL7/Uj370I6+ytLQ0LV26VBaLxe9+pONr4UyYMEF33XWXdu7c2Wq9gwcP6sknn9TIkSP1xhtvBHSOzurK9yPSrV+/XqNHj9btt9+uTz75RB6Pp9W6dXV1evfdd3XxxRcrNzdXZWVlIYw0crQ0hd/QoUM71Wd6erqmTp1q7ldVVenVV1/1q+2iRYu89mfOnNmpWCLNX/7yF2VlZemf//ynXC5Xi3UMw9C6det0+eWX6/rrr1dtbW2bfV544YVeUylK0jPPPNPhGHfu3Kn33nvPq+y2224L+HoZiJKSEo0fP15z5sxRcXFxq/WOHTumf/zjHxo9erT+9a9/BeXcLpdL9957r4YPH6558+Zpx44dbdavrq7WihUrNHbsWN1xxx1BmQr3s88+0xlnnKGHH35YBw4caLXewYMH9etf/1pnnXWWvvnmm06f1+1266677tKkSZO0atUqGYbRYj2Px6MPP/xQEyZM0KOPPtrp80aCHTt2aNy4cfr5z3/e5tfyyJEjmj9/vkaNGuUz0hwAAEQmklMAAAARrri42OdGS05Ojt83IA3D0P/+7//qf/7nf3To0KGAzt3Q0KC//vWvmjZtmqqqqlqt16NHD7388svq2bOnWeZ2u3XDDTf4NfWYw+HQ9ddfr6NHj5plNptNL7zwgvr16xdQzJWVlTr//PP12Wef+d3m22+/1VVXXRW0m6htCcX7Ecn+9a9/aerUqW3e2G7NqlWrNGHCBG3ZsqULIotsK1as8Ck7//zzO91v86n4mk/V1xKHw6EXX3zR3Ldarbr55ps7HUuk+POf/6yf/OQnASUzXn75ZV1yySVe17DmLBaLTwL+9ddfV0VFRYfi/Pvf/+6VpIiNje3SJOH27ds1efJkffHFF363qamp0XXXXad///vfnTp3VVWVLrroIj366KNyOBwBtfV4PHr66ad14YUXduq6uX79ek2aNCmgZNP27dt1/vnnq7q6usPnbWho0A033KAnn3wyoHb33nuv5s+f3+HzRoLt27frvPPOU1FRkd9t9u/fr8mTJ2v37t1dGBkAAAgGJuQFAACIYLW1tbrlllt8npK+/fbb/e7jd7/7nf7f//t/PuVDhw7VjTfeqPPOO08DBgxQVVWVvvzyS61YscJnxNOaNWt0xRVX6MMPP2x1HY2RI0fqr3/9q2bMmGGWlZeX6+abb9abb77ZZjLtxz/+sU/C4eGHH1Z2drbfr7PRzJkzzVEmFotF3/ve93TNNddo2LBhio+P1549e/Tuu+9qxYoVXjcqG5Np69at0/jx4wM+r79C8X6MGjVK11xzjSRp9+7dPom6xmOtGTBgQKAvyy9r1qzRdddd5zNSKjExUd///vc1bdo0DRo0SC6XS7t27dJ//vMfvfrqq3K73WbdPXv2aMqUKSoqKlJKSorPOYYMGeL1+g4cOKCPPvrIq87FF1+sHj16tBhj//79O/MSu8TatWv1xBNPeJUNGjRIl156aaf7vuqqq5SYmGjePH/vvfe0Z88eDRo0qNU2//rXv7xutn/3u99ts3538sknn+jvf/+7uZ+WlqYbb7xR559/vgYOHKjq6mpt27ZNy5cv14YNG7zafvTRR7rxxhvbHH12yy236P777zcTLG63W//4xz+81v7yh8vl0rPPPutVds011wSczPdXbW2tLrroIu3du9erPCoqSldeeaUuv/xyDR06VHFxcaqoqNDq1av1wgsvaN++ffJ4PLr55pt13XXXdejcDodDF1xwgU9SLDY2VldeeaXOP/98ZWZmKikpSXV1dfrmm2/0wQcfaPny5V7JwjVr1mjGjBl69dVXAx5dVl5erssvv1zHjh2TdPz74vvf/75ycnKUmpoqj8ejr7/+Wv/+97/1yiuveP3O3r17t37xi194fV8F4t5779Urr7wi6b+/0y699FKNGDFCffr00aFDh7RhwwYtWLDAZ2Tpr371K11yySU+I/Y6Y/z48eYowW3btunLL780j/Xo0UMXX3xxm+2bj7JuTU1NjS655BJ9++23kqS+ffvqhhtu0JQpUzRo0CDZbDZ98803euutt7R06VKv3xNVVVWaNWuW3n///UBfHgAACKUwTikIAABwQuvMmlPHjh0zXnjhhRbXIvr+97/vdwwff/yxYbPZfPq455572lxb5sUXXzR69+7t0+53v/tdu+e89dZbfdq1tf7UkiVLfOq3tc5UU83XMGm6Dscpp5xirF69utW2FRUVxoUXXuhz7jFjxhhOp7Pdc3dkzalwvB/trWESKocPHzbS09N9Yvne975nVFRUtNruiy++MEaOHOnTbtq0aX59j7T0c9iRNZ86qjNrTu3evdu49957jbi4OJ91Zd54440Ox9C45lSj22+/3e+fV8MwjKlTp3rVX7FihXmsu6851fQacttttxm1tbWttn3uueeM+Ph4nz5eeOGFNs85c+ZMr/qnnnqq0dDQEFDcL730ks95P/roo4D6CMSPf/xjn/ONGDHC+Pzzz1ttU11d7fVam68t5++aUy39TsnLyzO+/fbbNtsdOHDAuOKKK3zazp8/v91zNr++N/2+uPfeew2Hw9Fq2/fee8/o0aOHV3ubzWbs3bu33fO2dL1uPHdGRoaxadOmVtseO3asxdc7e/bsds9rGP6vOdVUsNYRa+n8Tb/mt956q1FVVdVq2y+++MIYMGCAz2v/9NNPOxwPAADoeiSnAAAAukhLN8VHjhxpXHPNNS3+u/rqq41p06YZdrvdiImJ8WnbeLOovr7e7xjOPffcDiU0DMMwPvroI5+b4jExMca+ffvabHfs2DFjzJgxPjfm1q5d61N369atRs+ePb3qpqWlGQcOHPArxuY3xhr/9enTx9i6dWu77evq6nxuiEkynnzyyXbbdiQ5FY73I1KSU/fcc49PHN/73vf8SgRWVFQYw4YN82n/73//u922kZicuvjii1u9DlxxxRXGlClTjFNPPbXF7+3ExETjxRdf7FQMzZNTGzZs8DqemZnZal+7d+/2ummclJTklVjt7smpxn+33367X+3feOMNIyoqyqttSkpKm9/Xn376qc/5Akk2GoZvgnDUqFEBtQ9EaWmp13suyUhPTzfKy8v9an/LLbe0+DX2J5Hx9ttvd/iaaRiG4fF4jOuuu86r/YABA9pMLhmG7/W98d8TTzzh13kXLFjg0/YPf/hDu+1aul5LMoYPH+7X70WHw+FzrUxKSvLr74ZIS041/vvpT3/qV/v33nvPp+0dd9zR4XgAAEDXIzkFAADQRVq6Kd6Rf2lpacbMmTONdevWBXT+Tz75xKevSZMmBdTHww8/7NOHP0mY4uJio1evXj6vo+nNtaNHjxqjRo3yqhMVFWXk5+f7HV9ryakFCxb43ceuXbt8Rj/4c6M30ORUuN6PSEhOHTt2zEhOTvaKITk52e8kpGEcT841v0Huz9cvEpNTgf6zWCzGOeecYzz00EPtJiP9iaF5csowDCMzM9Orzvr161vs6ze/+U2bN39PhOTUaaed1uZIxuZmz57t00d7CcRx48Z51b/sssv8Pl9JSYnPz4I/o4E66he/+IXP63vttdf8bl9bW2ukpaX59OFPIuP888/3anPllVcGHP+RI0d8rj/PPPNMm21aSk5dcsklfp+zoaHBGDRoUMDtWxs5FcgIoGeeecanj40bN7bbLhKTU2eeeaZfDzA0mjBhglf7M844o8PxAACArtfyggEAAACIGIcPH9ahQ4d0+PDhgNr94x//8Cn74x//GFAfd999twYOHOhVtnDhwnbbnX766Xr66ae9yhrXnzL+by2O2bNna9u2bV51OrrOVFPDhg3TD3/4Q7/rDx48WD/60Y+8yrZt26aPP/64U3E0F873I9xeffVVVVZWepX97//+b0Dr4+Tk5OiKK67wKluzZo25vtiJzDAM7d+/X4cOHTLXvAm2W265xWt/8eLFLcbRvLx5uxPBAw88oNjYWL/rP/TQQ4qJifEqa74eVHOzZ8/22n/rrbdUXl7u1/kWLFjgtaZRfHy8br75Zj+jDdxzzz3ntX/22Wfrsssu87t9z549dffddwd83k2bNvmsF/eHP/wh4H4SEhI0a9Ysr7K33nor4H4eeOABv+tarVaf69WmTZsCPqckXXTRRQGtg3jVVVf5lHX03OH2q1/9StHR0X7Xb/7ai4uLu+yaCQAAOo/kFAAAQIQ7evSoXnvtNV166aXKzs7Wzp07/WrX/KbeGWecEdANLkmKiYlRXl6eV9mePXv8iuHGG2/U//zP/3iVvf322/rDH/6gRYsWacmSJV7HLrroIt1zzz0Bxdfaea3WwP7MnTFjhk9Z869fZ4X7/Qin5q89KipKN910U8D9tJR0zM/P73Bc3cnu3bs1f/58ZWRk6L777pPb7Q5q/zfddJOioqLM/RdffFEOh8OrzkcffaSvv/7a3O/I93Ck69Gjh6655pqA2vTr10/f+973vMrWrVsnj8fTapsbbrhBffv2NfcbGhr097//vd1zOZ1OnwTh97//fSUlJQUUs7927Nih/fv3e5U1vwb54wc/+IHX95c/3nnnHa/9cePGacSIEQGfW5IuuOACr/38/HyvBF97Bg8erHPOOSegc44dO9Zrf9++fR36ub3++usDqt+/f3+lpqZ6lfmb+IwksbGxPgm+9jT/mjc0NKiioiKYYQEAgCAiOQUAABBCv/71r2Ucn1q5xX9Op1MHDhzQ+vXr9dhjj2n06NFe7detW6dzzjlHW7dubfM8hw8f1ldffeVV9t3vfrdDMU+bNs2nbMOGDX61/fOf/+xzs+j+++/Xj3/8Y6+yQYMG6bnnnpPFYulQjE1NnTo14DZjx45VcnKyV9knn3zS6VgaRcr7ES7N4xszZoxSUlIC7mfq1Kk+N7gj/bW3ZOfOnW1eB2pra7V79269/vrr+slPfqLExESzbUNDgx555BFdc801crlcQYspNTXV63ururpa//73v73qLFq0yGt/5syZQTt/pPjOd76jXr16Bdyu+XWntra2zet0fHy8z6izf/zjH2poaGjzPK+88ooOHDjgVdZ85GcwtXQd7Mjo1n79+un0008PqM2aNWu89seNGxfweRulpaV57R86dEjffvut3+3PPffcgM/ZfJSrJB05ciTgfoJx7urq6oD7CLczzzwzoBGMUstf8+742gEAOFmQnAIAAIgg0dHR6tevnyZMmKCf//znKiws1J/+9CevpM3Bgwd18cUXt3mTq7S01Oep8KysrA7F1FK77du3+9U2Li5OL730khISEswyt9vtNSIjKipKK1asCGiKt7Y0T4b568wzz/TaLy4uDkI0x0XK+xEuJSUlXvsdfe3x8fEaOXKkV1mkv/aO6Nmzp0499VRdeumlevLJJ/XVV18pNzfXq85rr72mX/7yl0E9b1tT+9XW1uqf//ynuW+z2To0gibSNb8OdKZde9eQO+64w+vavmfPHr3xxhtttnnmmWd8zvud73zH/0AD1HxUpsVi8Xlowl92uz2g+p9//rnX/tNPPy2LxdKhf2eccYZP/82nGm1L85FI/mj6e69RbW1twP0E49wdOW+4hfNrDgAAQoPkFAAAQASzWCz62c9+poceesirvKysTL/+9a9bbdfS+lTNnxz3V3JysuLi4trtvzUjRozQggULWj0ejHWmGvXo0cNrlEkgTjnlFK/9QNf4akskvR+h5nQ6fdb86Ohrb6ltJL/2YBk4cKD+85//+CQF/vznP+uLL74I2nkuv/xyr6nmVq1apbKyMknSSy+9pKNHj5rHLrroog6Nfot0HbkhLvleP6T2vzeHDRumCy+80KusefKpqeLiYp/RRLfffnsAUQauqqrKaz8hIcHn+uOvQB5A8Hg8Xf6zHUj/vXv3Drj/lqaXbWuqx648d0fOG27h/JoDAIDQIDkFAADQDfzyl7/0ma5m4cKFqqmpabF+SzfdOnKjp1HzhM+hQ4cCan/99ddr+PDhPuVnnXVWUNaZahTM19jVyalwvh+hdDK/9mDq0aOHfvOb33iVGYahJ554ImjniImJ0fTp0819j8ejpUuXSvKd0q/5KKsTRUe/N1tKivtzDZk9e7bX/rvvvqvdu3e3WLd5kr9Xr1668cYbA4gycC0lpzoqkK/t4cOHuzypEMi0mMGYcrajwnnucDpZXzcAACcTW7gDAAAAQPvi4uJ04YUX6rnnnjPLamtrtWbNGl166aVhjMw/Dz30kEpLS33KCwsLtWbNGk2ePDn0QQHdzEUXXaTY2FjV19ebZW+99VZQzzFz5kw99dRT5v6SJUv0/e9/X2vXrjXLkpOTu8V1pzu49NJLdeqpp+qbb76RdDwhuGDBAv3ud7/zqldXV6clS5Z4lU2fPr1TySJ/NF/zx+l0drivQNq2VHfkyJEaNWpUh8/fXP/+/YPWFwAAAAJHcgoAAKCbaGmdj02bNrV4k7hPnz4+ZR1ZiL1R8wXFm0791Z5Vq1bpt7/9bYvHGhoaNH36dBUUFGjAgAEdjq9RMF9jS1/Djoqk9yPUTubXHmzx8fE67bTT9OWXX5plBw8e1O7duzV48OCgnOPss8/WmDFjVFRUJOn4emHNp4678cYbFRMTE5TzRZqOfm82/76U/LuGWK1W3X777brvvvvMsmeffVYPPfSQbLb/flx/+eWXfUYJ/uhHP+pQrIFISkry2u/Mz24gbVv6ub7ooov0+OOPd/j8AAAAiCxM6wcAANBNtHSj88CBA37X3bNnT4fOW1lZqbq6unb7b8m+fft04403ek3P1Hy9koqKCt10001BmcLp2LFjLd4k9sfevXu99rs6ORWO9yMcYmJi1KNHD6+yjr72ltpG8mvvCoFcBzqq+ZR9H3zwQZvHTyQVFRUdatf8+iH5/705a9Ysr2Tfvn379J///MerTvO1qMaPH6+zzjqrA5EGpvk6UfX19S2+Vn/s2LHD77qxsbHq1auXV9nBgwc7dF4AAABEJpJTAAAA3cTRo0d9ygzDaLHu8OHDfdZr+Pzzzzt03pbajRgxot12Ho9HN954o/bv3+9V/vzzz2vWrFleZe+9954eeeSRDsXX3ObNmzvUrqCgwGs/MzMzCNEcFwnvRzhlZGR47Xf0tdfV1XmNGpIi/7UHWyDXgY668cYbvUbtNDV27FideeaZQT1fJGl+HehMO3+vIQMGDNC1117rVdY0GbV161atW7fO63goRk1JavG97ujPb6Bf29NPPz0o5wUAAEBkIjkFAADQTezatcunbODAgS3W7dOnj8+N0ZUrV3bovO+//75P2Xnnndduu4cffthnxMWdd96pq6++Wn/+8581ZswYr2MPPvigPvroow7F2FTzc/qjsLBQlZWVXmXf+c53Oh1Lo3C+H1ar75/8wU5mtKd5fEVFRfr2228D7ueDDz6Q2+1us+8TmWEY5tpETbV2HeioAQMG6JJLLmnx2Ik8akqSPv300xYTgO1pft3p1auXzjjjDL/bz54922t/5cqV5kijp59+2utYYmKibrjhhoBj7Ijx48crKirKq6z5qC5/5Ofn+1xj25Obm+u1v23btg6PbEPXaP77JdS/WwAAQPdGcgoAAKCbaCmZMWzYsFbrn3/++V77RUVF2rRpU0DndLlceu6557zK0tPTNWTIkDbbffjhh/rNb37jVXb22Wfrsccek3R87ZyXXnpJPXv2NI83NDToBz/4QaenKHv++ecDvkG2dOlSn7LmX7/OCtf70XxKPUlyOBwBnbezmr92t9vt8zr88Y9//MOnLCcnp8NxdTebNm3S4cOHvcp69OihlJSUoJ9r5syZPmXR0dG68cYbg36uSHL06FH961//CqhNZWWl3nzzTa+yiRMntpgYbs3EiRM1duxYc98wDC1YsEDHjh3z+Vm56aabWvy57go9e/b0+Rl7+eWXfb4P29N8WkJ/TJs2zWvfMAzNnz8/4H7QdZp/H4b6dwsAAOjeSE4BAAB0A2+++aa2bt3qVRYVFeVz866p5lPnSdLdd98d0Hkfe+wx7du3r91+m9q/f7+mT5/utYZU79699dJLL3mtq5KZmekzImDv3r266aabOvX0dWlpqRYtWuR3/bKyMv3tb3/zKhs1apTOPffcDsfQknC9H4mJiT5lHV0zpqOuvPJKn7Vrfv/73+vQoUN+97F+/Xr9+9//9iqbMmVKmwnaE80f/vAHn7Lc3Fyvn6tgueSSS/T22297/Vu9erXP+3gi+s1vfiOn0+l3/QcffNCn/q233hrwee+44w6v/UWLFum5557zWUfv9ttvD7jvzmg+hWB1dbXuuecev9uvW7dOy5cvD/i8kydP9llX66mnnvL5XYjwaf77pbKyUvX19WGKBgAAdDckpwAAACLctm3bWhzFcMkll7R5o3jcuHE+U5598MEH+uMf/+jXedetW6eHH37Yqyw2NrbNtU4a15lqnkBZuHChTjvtNJ/6eXl5Pjdx3333XT366KN+xdiau+++W1999VW79err6zVz5kwdO3bMq7z5TeJgCMf7IbW8JtPatWv9OmewxMXF6bbbbvMqO3jwoG655Rafafpa8u2332rmzJk+Scuf/vSnwQwzov3xj3/UP//5T5/ylq4NwRAdHa2LLrrI69/JMoViaWmpfvazn/lV95133vFJbqekpOiqq64K+Lx5eXnq3bu3uX/gwAH94he/8KozceJEjR49OuC+O+Pqq6/2uX4vWLBAjz/+eLttv/zyS1199dUdeuDAYrHooYce8io7evSoLr/8cn399dcB99fo7bff7lR7/Ffz3y8ej0cbNmwIUzQAAKC7ITkFAAAQoXbv3q0HHnhA48aN08GDB72OxcTE6E9/+lO7fTzxxBOKjo72Krv77rv1wAMPtDky4JVXXtEll1ziM0XPgw8+qAEDBrTa7re//a1WrVrlVTZ79mxdd911rbZ58sknfdZmeeCBB5Sfn99qm9ZYLBZJx5/ezs3NbTMJs3//fl155ZU+a8WMHj26y0YmhPr9kKTBgwf7rEn0m9/8JuSjD+6++24NHjzYq+y1117TNddc0+b6U4WFhbrgggtUUlLiVX7RRRfpsssu65JYI4XH49Hq1at1ySWXtDjK7oILLuhQEgSta7yG/OUvf9Hs2bN9EtdNvfDCC7rmmmvU0NDgVf7444/7/Jz7o2fPnrr55pu9ympra73220tGd4Xo6GgtXLjQ/No0+vnPf65rr71W27Zt82lz+PBhPfbYYzrnnHPMn+/hw4cHfO7LLrvM52vy9ddf6+yzz9azzz4rl8vlVz979+7VU089pTFjxuh73/teyEePnqiysrJks9m8yn75y1+2uDYeAABAc7b2qwAAACBYXnrpJW3ZsqXV4y6XS0eOHFFJSYn27NnTYp2oqCgtXbrUrxt948eP10MPPaR7773Xq/zhhx/W8uXLdeONN+rcc8/VwIEDVV1drW3btunFF19sMTE0efLkNqehW716tc86U2eddVa7T9f36NFDL7/8ssaPH6+jR49K+u/6UwUFBQFNI3bqqadq9OjRevPNN1VeXq7zzz9fl156qa6++moNHz5csbGx2rt3r9577z0tX75cVVVVXu2jo6P17LPPdujGsj9C+X40lZeX55XM3Llzp0aPHq3TTz9dQ4cOVY8ePbxuPA8YMEB//etfO/gqW5aYmKjnnntOU6ZM8bqZ/9prr+mjjz7SD37wA333u9/VoEGD5HK5tGvXLv3nP//Rq6++6nMDesCAAVq8eLHPzfLuYvbs2W2uGXTs2DFVVlZq69at5s9EcxkZGVq2bFlXhXjSuv3227VgwQJ5PB797W9/0+uvv66bbrpJOTk5GjBggI4cOaJt27bphRde0Lp163zaX3HFFfrBD37Q4fPPnj1bTz31VIvHkpOTde2113a4786YMmWK7rnnHp9Rra+88opeeeUVnXbaaRo6dKji4uJUUVGhoqIir5/biy++WOecc47XSCh/f34XLFigkpISrxE5VVVV+uEPf6gHHnhAl156qbKzszVo0CD16dNHdXV1qqqq0p49e/TFF19o48aN2rhxY6emi0XLEhISdMUVV+iVV14xyz777DMNHTpUZ5xxhtLT0xUfH+/V5owzzvAZEQcAAE5OJKcAAABC6Msvv9SXX37Z4fbJyclasGCBrr76ar/b/OpXv9KRI0f0+9//3qt8x44dPsmk1kyePFmvvvqqrNaWB95/++23mj59ulfSoXGdqdjY2Hb7HzlypP7yl794TVG2Z88e3XzzzXrzzTcDSkIsWrRIEyZM0I4dO2QYhl5//XW9/vrr7baz2WxasWKFxo8f7/e5OiIU70dzv/zlL/X888/7TLf41VdftTj9YfMRTsGSk5Ojf/7zn/rBD36guro6s7yqqkp/+9vffKZHa0laWpreeecdn9Fg3cnbb7/dqfbZ2dlasWKFUlNTgxQRGn3nO9/RiBEjzGn9ysvL9eijj/o11WhOTo6ef/75Tp1/5MiRmjx5slavXu1zbMaMGYqLi+tU/53xyCOPyOVy6bHHHvM59vXXX7c6Vd6ECRO0YsUKn3ZtJWibio2N1XvvvadbbrnFZ2rLPXv26JlnntEzzzzj56tAsD388MN65513vBLpHo9HRUVFKioq8qnffCQ4AAA4eTGtHwAAQDfQq1cv3X777eb6HYF69NFHtXDhQvXt2zegdlFRUZo9e7beeecdn4XPG3k8HuXl5amiosKr/O9//3tA0zjNmDHDZ/2ct99+W3/4wx8Cirl///5avXq1zjrrrIDa/Otf/+rQ17YjuvL9aMnAgQP13nvv+UyfGA5XXnmlVq1apZEjRwbcNjc3Vxs2bIiI1xEOI0aM0DPPPKOPPvpIgwYNCnc4J6y5c+fqiSee8JmurC3XXnut3nrrLfXs2bPT5589e3aL5c3XbQuHxrXP/Pn+i4qK0l133aVVq1apd+/eqq6u9joeyDWsV69eevnll/XUU0+1O5VpWywWi6ZMmaJTTz21w33A28iRI/Xmm28qPT093KEAAIBuhuQUAABABLFarUpKStLgwYOVnZ2tu+66S8uXL9e+ffv09NNPq3///h3u+4c//KF27Nih++67TxkZGW3WTU5O1k033aQtW7boL3/5S5ujnx555BG9//77XmU/+tGPdP311wcc41/+8heNGjXKq+z+++9vcfqstqSlpemTTz7R448/3uZNyH79+unOO+9UcXFxyNcv6qr3ozVjxozR5s2b9dZbb+n222/Xueeeq5SUFPXs2TPk0+Odd955Kioq0oIFC/Sd73ynzRFgcXFxmjZtmt5++229//77SktLC2Gk4REbG6sBAwZoxIgRuvzyy/XQQw9p7dq1+uqrr3Tbbbd12+kMu5M5c+Zo06ZNuuqqq1pNUlksFp133nl67bXX9PLLL6tXr15BOfeVV17pMxXalClTdPrppwel/8665pprtH37dr3wwgu69tprdfrpp6t3796Kjo5W//79lZOTowcffFClpaWaP3+++Vqaj5hJSkoK+Nw//vGPtWvXLj355JOaOHGiYmJi2m3Ts2dPXXzxxXr88ce1a9cuffDBBySngmzSpEkqKSnRSy+9pFtuuUVnn322BgwY4PN9DAAA0JTFYOJlAACAk9KOHTu0efNmHThwQJWVlerVq5f69++vYcOGady4cX5PGRdODz74oNfaFYMHD9auXbt86hUWFqqgoED79u2Tx+NRSkqKhg4dqokTJwY0OqIrnQjvR0dVVlbq448/1v79+3XgwAHZbDb1799fgwYN0oQJE/ye/gvoClVVVdqwYYNKSkpUU1Oj3r1765RTTtE555zTJaNF1q5dq5ycHK+yF198sUMJ/0gycuRIFRcXm/t33nmn/vznP3eqz2PHjunTTz/V3r17VVlZqerqasXHxyshIUGDBg1SZmamhg4dekJfPwEAALorklMAAADotvxNTgFAdzFjxgwtXbrU3B8wYIDKy8sVHR0dxqg6Z8+ePUpPT1fT2w9Lly7VTTfdFMaoAAAAEE48PgQAAAAAQASorKzUSy+95FV26623duvElHR8ytbmz8Wee+65YYoGAAAAkYDkFAAAAAAAEeDPf/6z6urqzP2oqCjNnj07jBF1XmFhoebNm+dVNmHChHbX2gMAAMCJjeQUAAAAAABhVl5e7pPEueqqq7pkXauOWLt2rTZs2BBQm4KCAl166aVeCTdJuuOOO4IZGgAAALohklMAAAAAAITRtm3bdMUVV6impsYss1qt+vWvfx3GqLwVFBTovPPO04QJE/Tkk0+2ub7ftm3bdNddd2nChAkqKyvzOpadna3p06d3cbQAAACIdLZwBwAAAAAAwMniwIED5sghl8ulXbt2aevWrWpoaPCqN3PmTI0ePTocIbbp448/1scff6y77rpL/fr104gRI5SUlCSr1apDhw6ppKREBw4caLFt37599dxzzykqKirEUQMAACDSkJwCAAAAACBEjh49qldeeaXNOkOGDNHjjz8eoog67uDBgzp48KBfdTMyMvTGG29oyJAhXRsUAAAAugWm9QMAAAAAIEJkZGTo/fffV2JiYrhD8TJixAgNHjw44Ha9e/fWfffdp08//VQjRozogsgAAADQHTFyCgAAAACAMImKilKfPn1kt9t19dVX69Zbb1V8fHy4w/Jx4YUXateuXfr888+Vn5+vTz/9VKWlpSorK9ORI0dUV1en+Ph49e3bV/3799f48eM1adIkXXzxxRGXaAMAAED4WQzDMMIdBAAAAAAAAAAAAE4OTOsHAAAAAAAAAACAkCE5BQAAAAAAAAAAgJAhOQUAAAAAAAAAAICQITkFAAAAAAAAAACAkCE5BQAAAAAAAAAAgJAhOQUAAAAAAAAAAICQsYU7AEQmwzDk8XjCHQYAAAAAAAAAAAgjq9Uqi8US1D5JTqFFHo9H+/fvD3cYAAAAAAAAAAAgjAYOHKioqKig9sm0fgAAAAAAAAAAAAgZklMAAAAAAAAAAAAIGZJTAAAAAAAAAAAACBmSUwAAAAAAAAAAAAgZklMAAAAAAAAAAAAIGZJTAAAAAAAAAAAACBmSUwAAAAAAAAAAAAgZklMAAAAAAAAAAAAIGZJTAAAAAAAAAAAACBmSUwAAAAAAAAAAAAgZklMAAAAAAAAAAAAIGZJTAAAAAAAAAAAACBmSUwAAAAAAAAAAAAgZklMAAAAAAAAAAAAIGZJTAAAAAAAAAAAACBmSUwAAAAAAAAAAAAgZklMAAAAAAAAAAAAIGZJTAAAAAAAAAAAACBmSUwAAAAAAAAAAAAgZklMAAAAAAAAAAAAIGZJTAAAAAAAAAAAACBmSUwAAAAAAAAAAAAgZW7gDAAAAAAAAALqSw+FQVVWVnE6nYmJilJSUpPj4+HCHBQDASYvkFAAAAAAAAE44hmGopKRE+fn5KioqksfjMY9ZrVbZ7XZlZ2crIyNDFosljJECAHDysRiGYYQ7CESehoYG7d+/P9xhAAAAAAAABKysrEzLli1TRUVFu3VTU1OVl5en9PT0EEQGAED3M3DgQEVFRQW1T5JTaBHJKQAAAAAA0B0VFxdr4cKFcjqdZllCQoIyMzMVHx8vh8Oh4uJi1dTUmMdjYmI0a9YsZWZmhiNkAAAiGskphAzJKQAAAAAA0N2UlZVp/vz5ZmIqLS1Nubm5stvtstn+u7qF2+1WYWGhVq5cqfLycknHE1Rz5sxhBBUAAM10RXLKGtTeAAAAAAAAgDAwDEPLli0zE1N2u11z585VVlaWV2JKkmw2m7KysjR37lyNGTNGkuR0OrVs2TLxHDcAAF2P5BQAAAAAAAC6vZKSEnONqbS0NM2YMUPR0dFttomOjtbMmTOVlpYmSaqoqFBpaWmXxwoAwMmO5BQAAAAAAAC6vbVr15rbubm57SamGkVHR2vq1Knmfn5+ftBjAwAA3khOAQAAAAAAoFtzOBwqLCyUJCUkJMhutwfUfuzYsUpISJAkFRYWyuFwBD1GAADwXySnAAAAAAAA0K1VVVXJ4/FIkjIzM33WmGqPzWZTZmamJMnj8ai6ujroMQIAgP8iOQUAAAAAAIBuzel0mtvx8fEd6iMuLs7crq+v73RMAACgdSSnAAAAAAAA0K3FxMSY2x2dkq+urs7cjo2N7XRMAACgdSSnAAAAAAAA0K0lJSXJaj1+m6u4uFhutzug9m63W8XFxZIkq9WqxMTEoMcIAAD+i+QUAAAAAAAAurX4+HjZ7XZJUk1NjQoLCwNqv3nzZtXU1EiS7HZ7h6cGBAAA/iE5BQAAAAAAgG4vOzvb3F65cqVcLpdf7ZxOp1atWmXu5+TkBD02AADgjeQUAAAAAAAAur2MjAylpqZKksrLy7V48eJ2E1Qul0tLlixReXm5JCk1NVXDhw/v8lgBADjZkZwCAAAAAABAt2exWJSXl6eYmBhJUlFRkebNm6fPP//cZw0qt9utTZs2ad68eSoqKpIkxcTEKC8vTxaLJeSxAwBwsrEYhmGEOwhEnoaGBu3fvz/cYQAAAAAAAASkuLhYCxculNPpNMsSEhKUmZmpuLg41dXVqbi42FxjSjqemJo1a5YyMzPDETIAABFt4MCBioqKCmqfJKfQIpJTAAAAAACguyorK9OyZctUUVHRbt3U1FTl5eUpPT09BJEBAND9kJxCyJCcAgAAAAAA3ZlhGCotLVV+fr4KCwvl8XjMY1arVXa7XTk5ORo+fDhT+QEA0AaSUwgZklMAAAAAAOBE4XA4VF1drfr6esXGxioxMVHx8fHhDgsAgG6hK5JTtqD2BgAAAAAAAESY+Ph4klEAAEQQa7gDAAAAAAAAAAAAwMmD5BQAAAAAAAAAAABChuQUAAAAAAAAAAAAQobkFAAAAAAAAAAAAEKG5BQAAAAAAAAAAABChuQUAAAAAAAAAAAAQobkFAAAAAAAAAAAAEKG5BQAAAAAAAAAAABChuQUAAAAAAAAAAAAQobkFAAAAAAAAAAAAEKG5BQAAAAAAAAAAABChuQUAAAAAAAAAAAAQsYW7gC6i61bt+qhhx7qcPvZs2dr8uTJbdYpKirSmjVrVFJSokOHDslmsyk5OVljx47VBRdcoEGDBnX4/AAAAAAAAAAAAJGA5FSIJCUltXrs2LFjWrBggdavX+9VXl9fr6NHj+qbb77RW2+9peuvv15XXXVVF0cKAAAAAAAAAADQdUhO+alv376aNm2a3/ULCwtVUVEhSUpMTNSYMWNarOd2u/XYY49py5YtZll6erqGDh0ql8ul4uJiHT58WA0NDXrhhRfU0NCga6+9tnMvBgAAAAAAAAAAIExITvkpNTVVP/zhD/2q6/F49KMf/cjcz8nJUVRUVIt1X3nlFTMxFR0drdmzZ2vixInmcbfbrRUrVui1116TJL388ssaNWqURo0a1dGXAgAAAAAAAAAAEDbWcAdwIiooKFBVVZW5P2nSpBbrVVdX64033jD3Z86c6ZWYkiSbzaa8vDydd955kiTDMLR8+fLgBw0AAAAAAAAAABACJKe6wJo1a8ztoUOHavDgwa3Wq6+vl3R8ZFZubm6rfebl5clisUiStm/frp07dwYxYgAAAAAAAAAAgNAgORVkR48e1WeffWbutzZqSpI2btxobk+ePNlMPrWkX79+Gj16tLn/6aefdjJSAAAAAAAAAACA0CM5FWQbNmyQy+WSJEVFRSk7O7vFek6nU9u3bzf3zzjjjHb7blqncZ0qAAAAAAAAAACA7oTkVJA1ndLvrLPOUu/evVust3fvXhmGIUmyWCwaMmRIu32fdtpp5vaePXs6FygAAAAAAAAAAEAYkJwKooqKCn311Vfm/uTJk1utu3fvXnO7d+/eiomJabf/fv36mdu1tbU6cuRIxwIFAAAAAAAAAAAIE1u4AziRNB01lZCQoKysrFbr1tbWmttJSUl+9d+8Xm1tbasjs1pSWVnp1zmioqIkSVYruUsAAAAAAAAAABBcJKeCxDAM5efnm/sTJ06Uzdb6l7eurs7c9mfUVEv1mvbhjzvuuKPdOn/729+UnJysqKgopaSkBNQ/AAAAAAAAAABAexgaEyTbtm3TgQMHzP22pvSTJKfTaW63lcRqqnm9pn0AAAAAAAAAAAB0B4ycCpKmU/qlp6frtNNOa7N+01FQbrfbr3M0r+fviKtGf/vb39qt0zh1YENDg1eyDQAAAAAAAAAAnHz69+9vLgcULCSngqC+vl6ffPKJuT9p0qR228TFxZnb/o6Aal6vaR/+SE5ODqi+x+MJqD4AAAAAAAAAAEB7mNYvCD755BM5HA5JktVqVU5OTrttevXqZW5XVVX5dZ7m9Zr2AQAAAAAAAAAA0B2QnAqCplP6jR07Vn369Gm3zSmnnGJuHzlyxK/RUwcPHjS3e/Xqpd69ewcYKQAAAAAAAAAAQHiRnOqkyspKbdmyxdz3Z0o/6XhyymKxSJIMw9CuXbvabfP111+b24MGDQosUAAAAAAAAAAAgAhAcqqT8vPzZRiGJKlnz54aN26cX+1iYmI0YsQIc3/btm3ttvnyyy/N7dGjRwcYKQAAAAAAAAAAQPiRnOqkplP6TZgwQTExMX63HT9+vLm9evXqNusePHhQRUVFLbYFAAAAAAAAAADoLkhOdUJpaan27Nlj7k+ePDmg9pMmTVJsbKwkae/evVq1alWrdZ9//nl5PB5J0ogRI3TaaacFHjAAAAAAAAAAAECYkZzqhKajnVJTU72m6fNHYmKiLr30UnN/0aJFWr9+vVcdt9ut559/XuvWrTPLpk+f3rGAAQAAAAAAAAAAwswW7gC6K7fb7ZVImjRpUof6ueaaa/TVV19py5YtcjqdeuKJJ/Svf/1LQ4cOlcvl0pdffqnDhw+b9a+//nqNGjWq0/EDAAAAAAAAAACEA8mpDtq0aZNqa2slSRaLpcPJKZvNpl/84hd65plntGHDBknSN998o2+++carXlRUlK677jpdffXVnQscAAAAAAAAAAAgjEhOddCaNWvM7dGjRys5ObnDffXo0UNz587V1KlTtWbNGm3fvl1VVVWKiopScnKyxo4dqwsuuEBpaWnBCB0AAAAAAAAAACBsLIZhGOEOApGnoaFB+/fvD3cYAAAAAAAAAAAgjAYOHKioqKig9mkNam8AAAAAAAAAAABAG0hOAQAAAAAAAAAAIGRITgEAAAAAAAAAACBkSE4BAAAAAAAAAAAgZEhOAQAAAAAAAAAAIGRITgEAAAAAAAAAACBkSE4BAAAAAAAAAAAgZEhOAQAAAAAAAAAAIGRITgEAAAAAAAAAACBkSE4BAAAAAAAAAAAgZEhOAQAAAAAAAAAAIGRITgEAAAAAAAAAACBkSE4BAAAAAAAAAAAgZEhOAQAAAAAAAAAAIGRITgEAAAAAAAAAACBkSE4BAAAAAAAAAAAgZEhOAQAAAAAAAAAAIGRITgEAAAAAAAAAACBkSE4BAAAAAAAAAAAgZEhOAQAAAAAAAAAAIGRITgEAAAAAAAAAACBkSE4BAAAAAAAAAAAgZEhOAQAAAAAAAAAAIGRITgEAAAAAAAAAACBkSE4BAAAAAAAAAAAgZEhOAQAAAAAAAAAAIGRITgEAAAAAAAAAACBkSE4BAAAAAAAAAAAgZEhOAQAAAAAAAAAAIGRITgEAAAAAAAAAACBkSE4BAAAAAAAAAAAgZEhOAQAAAAAAAAAAIGRITgEAAAAAAAAAACBkSE4BAAAAAAAAAAAgZEhOAQAAAAAAAAAAIGRITgEAAAAAAAAAACBkSE4BAAAAAAAAAAAgZEhOAQAAAAAAAAAAIGRITgEAAAAAAAAAACBkSE4BAAAAAAAAAAAgZEhOAQAAAAAAAAAAIGRITgEAAAAAAAAAACBkSE4BAAAAAAAAAAAgZGzhDgAAAAAAAAAAAPjP4XCoqqpKTqdTMTExSkpKUnx8fLjDAvxGcgoAAAAAAAAAgAhnGIZKSkqUn5+voqIieTwe85jVapXdbld2drYyMjJksVjCGCnQPothGEa4g0DkaWho0P79+8MdBgAAAAAAAACc9MrKyrRs2TJVVFS0Wzc1NVV5eXlKT08PQWQ4GQwcOFBRUVFB7ZPkFFpEcgoAAAAAAAAAwq+4uFgLFy6U0+k0yxISEpSZman4+Hg5HA4VFxerpqbGPB4TE6NZs2YpMzMzHCHjBENyCiFDcgoAAAAAAAAAwqusrEzz5883E1NpaWnKzc2V3W6XzfbfVXvcbrcKCwu1cuVKlZeXSzqeoJozZw4jqNBpXZGcsga1NwAAAAAAAAAA0GmGYWjZsmVmYsput2vu3LnKysrySkxJks1mU1ZWlubOnasxY8ZIkpxOp5YtWybGpyASkZwCAAAAAAAAACDClJSUmGtMpaWlacaMGYqOjm6zTXR0tGbOnKm0tDRJUkVFhUpLS7s8ViBQJKcAAAAAAAAAAIgwa9euNbdzc3PbTUw1io6O1tSpU839/Pz8oMcGdBbJKQAAAAAAAAAAIojD4VBhYaEkKSEhQXa7PaD2Y8eOVUJCgiSpsLBQDocj6DECnUFyCgAAAAAAAACACFJVVSWPxyNJyszM9Fljqj02m02ZmZmSJI/Ho+rq6qDHCHQGySkAAAAAAAAAACKI0+k0t+Pj4zvUR1xcnLldX1/f6ZiAYCI5BQAAAAAAAABABImJiTG3OzolX11dnbkdGxvb6ZiAYCI5BQAAAAAAAABABElKSpLVevz2fXFxsdxud0Dt3W63iouLJUlWq1WJiYlBjxHoDJJTAAAAAAAAAABEkPj4eNntdklSTU2NCgsLA2q/efNm1dTUSJLsdnuHpwYEugrJKQAAAAAAAAAAIkx2dra5vXLlSrlcLr/aOZ1OrVq1ytzPyckJemxAZ5GcAgAAAAAAAAAgwmRkZCg1NVWSVF5ersWLF7eboHK5XFqyZInKy8slSampqRo+fHiXxwoEiuQUAAAAAAAAAAARxmKxKC8vTzExMZKkoqIizZs3T59//rnPGlRut1ubNm3SvHnzVFRUJEmKiYlRXl6eLBZLyGMH2mMxDMMIdxCIPA0NDdq/f3+4wwAAAAAAAACAk1pxcbEWLlwop9NpliUkJCgzM1NxcXGqq6tTcXGxucaUdDwxNWvWLGVmZoYjZJxgBg4cqKioqKD2SXIKLSI5ha7kcDhUVVUlp9OpmJgYJSUlsSgjAAAAAAAA0IqysjItW7ZMFRUV7dZNTU1VXl6e0tPTQxAZTgYkpxAyJKcQbIZhqKSkRPn5+SoqKpLH4zGPWa1W2e12ZWdnKyMjg6HGAAAAAAAAQDOGYai0tFT5+fkqLCxs8f5aTk6Ohg8fzv01BBXJKYQMySkEE092AAAAAAAAAMHjcDhUXV2t+vp6xcbGKjExkZmJ0GVITiFkSE4hWNqaEzc+Pl4Oh4M5cQEAAAAAAAAgQpGcQsiQnEIwlJWVaf78+WZiKi0tTbm5ubLb7bLZbGY9t9utwsJCrVy5UuXl5ZKOJ6jmzJnDCCoAAAAAAAAACKOuSE5Zg9obAPwfwzC0bNkyMzFlt9s1d+5cZWVleSWmJMlmsykrK0tz587VmDFjJElOp1PLli0T+XMAAAAAAAAAOLGQnALQJUpKSsw1ptLS0jRjxgxFR0e32SY6OlozZ85UWlqaJKmiokKlpaVdHisAAAAAAAAAIHRITgHoEmvXrjW3c3Nz201MNYqOjtbUqVPN/fz8/KDHBgAAAAAAAAAIH5JTAILO4XCosLBQkpSQkCC73R5Q+7FjxyohIUGSVFhYKIfDEfQYAQAAAAAAAADhQXIKQNBVVVXJ4/FIkjIzM33WmGqPzWZTZmamJMnj8ai6ujroMQIAAAAAAAAAwoPkFICgczqd5nZ8fHyH+oiLizO36+vrOx0TAAAAAAAAACAykJwCEHQxMTHmdken5KurqzO3Y2NjOx0TAAAAAAAAACAyBDbXFgD4ISkpSVarVR6PR8XFxXK73QFN7ed2u1VcXCxJslqtSkxM7KpQAQAAAAAAgG7H4XCoqqpKTqdTMTExSkpK6vAMRkA4kJwCEHTx8fGy2+0qKChQTU2NCgsLlZWV5Xf7zZs3q6amRpJkt9v5xQoAAAAAAICTnmEYKikpUX5+voqKisw136XjD3jb7XZlZ2crIyNDFosljJEC7SM5BaBLZGdnq6CgQJK0cuVKjRkzRtHR0e22czqdWrVqlbmfk5PTVSECAAAAAAAA3UJZWZmWLVumioqKFo97PB4VFBSooKBAqampysvLU3p6eoijBPzHmlMAukRGRoZSU1MlSeXl5Vq8eLFcLlebbVwul5YsWaLy8nJJUmpqqoYPH97lsQIAAAAAAACRqri4WPPnz/dKTCUkJGj8+PE6//zzNX78eCUkJJjHKioqNH/+fHPZDCASWQzDMMIdBCJPQ0OD9u/fH+4w0M2VlZVp/vz5cjqdkqS0tDTl5ubKbrd7rUHldru1efNmrVq1ykxMxcTEaM6cOTzhAQAAAAAAgJNWIPfXCgsLtXLlSu6vIegGDhyoqKiooPZJcgotIjmFYCkuLtbChQvNX6DS8Sc7MjMzFRcXp7q6OhUXF5trTEnHf3HOmjVLmZmZ4QgZAAAAAAAACDvDMPT73//eHDFlt9s1Y8aMNpfOcLlcWrx4sYqKiiQdn5nonnvuYQ0qdEpXJKeY1g9Al8rMzNScOXPMKf4kqaamRhs3blR+fr42btzolZhKTU3VnDlzSEwBAAAAAADgpFZSUmImptLS0tpNTElSdHS0Zs6cqbS0NEnHp/grLS3t8liBQNnarwIAnZOenq577rlHpaWlys/PV2FhoTwej3ncarXKbrcrJydHw4cP50kOAAAAAAAAnPTWrl1rbufm5rabmGoUHR2tqVOnasmSJZKk/Px8ZWRkdEmMQEeRnAIQEhaLRRkZGcrIyJDD4VB1dbXq6+sVGxurxMRExcfHhztEAAAAAAAAICI4HA4VFhZKOr5Eht1uD6j92LFjlZCQoJqaGhUWFsrhcHD/DRGF5BSAkIuPj+eXIQAAAAAAANCKqqoqc+ahzMxM2WyB3cq32WzKzMzUxo0b5fF4VF1dzf04RBTWnAIAAAAAAAAAIII4nU5zu6NJpbi4OHO7vr6+0zEBwURyCgAAAAAAAACACBITE2NuOxyODvVRV1dnbsfGxnY6JiCYSE4BAAAAAAAAABBBkpKSZLUev31fXFwst9sdUHu3263i4mJJktVqVWJiYtBjBDqD5BQAAAAAAAAAABEkPj5edrtdklRTU6PCwsKA2m/evFk1NTWSJLvdznpTiDgkpwAAAAAAAAAAiDDZ2dnm9sqVK+Vyufxq53Q6tWrVKnM/Jycn6LEBnUVyCgAAAAAAAACACJORkaHU1FRJUnl5uRYvXtxugsrlcmnJkiUqLy+XJKWmpmr48OFdHisQKIthGEa4g0DkaWho0P79+8MdBgAA3YLD4VBVVZWcTqdiYmKUlJTElAkAAAAAgE4rKyvT/Pnz5XQ6JUlpaWnKzc2V3W6XzWYz67ndbm3evFmrVq0yE1MxMTGaM2eO0tPTwxI7ThwDBw5UVFRUUPskOdVJX3/9tTZs2KCioiIdOnRItbW1SkhIUFJSkgYPHqzRo0fLbrcrKSmp3b6Kioq0Zs0alZSU6NChQ7LZbEpOTtbYsWN1wQUXaNCgQV3/gv4PySkAANpmGIZKSkqUn5+voqIieTwe85jVapXdbld2drYyMjJksVjCGCkAAAAAoDsrLi7WwoULzQSVJCUkJCgzM1NxcXGqq6tTcXGxucaUdDwxNWvWLGVmZoYjZJxgSE5FkOrqai1ZskRr165tt+60adP0wx/+sNXjx44d04IFC7R+/fpW60RFRen666/XVVdd1aF4A0VyCgCA1pWVlWnZsmWqqKhot25qaqry8vJ4Ug0AAAAA0GF8DkU4kZyKEAcPHtSDDz6ob7/91iw75ZRTdOqpp6pXr15yOp3av3+/du3apfr6+jaTU263W4888oi2bNlilqWnp2vo0KFyuVwqLi7W4cOHzWPXX3+9rr322q57cf+H5BQAAC1r64m1+Ph4ORwOnlgDAAAAAASdYRgqLS1Vfn6+CgsLW5zBIycnR8OHD2cGDwQVyakIcOzYMf3v//6vmbg544wzNHPmTA0ePNinrtvt1pYtW+RwODRhwoQW+3vxxRf1yiuvSJKio6M1e/ZsTZw40auPFStW6LXXXpMkWSwW/frXv9aoUaOC/dK8kJwCAMBXIHN9FxYWauXKlcz1DQAAAAAIOofDoerqatXX1ys2NlaJiYmsfYwuQ3IqAjz99NP64IMPJEnnnXee7rrrLlmt1g71VV1drZ/85Ceqr6+XJP3P//yPvvvd77ZY94knnjCn/RsxYoR++9vfduic/iI5BQCAN8Mw9Pvf/96cQsFut2vGjBmKjo5utY3L5dLixYtVVFQk6fjUCvfccw9PsAEAAAAAgG6jK5JTHcuqnKR27dplJqaSk5N1++23dzgxJUlr1qwxE1OpqanKzc1ttW5eXp55I2v79u3auXNnh88LAAACV1JSYiam0tLS2k1MScdHRc+cOVNpaWmSpIqKCpWWlnZ5rAAAAAAAAJGM5FQA3nvvPXN72rRpnR4muXHjRnN78uTJbT5F3a9fP40ePdrc//TTTzt1bgAAEJi1a9ea27m5ue0mphpFR0dr6tSp5n5+fn7QYwMAAAAAAOhOSE75yePxaN26deb+ueee26n+nE6ntm/fbu6fccYZ7bZpWmfLli2dOj8AAPCfw+FQYWGhJCkhIUF2uz2g9mPHjlVCQoIkqbCwUA6HI+gxAgAAAAAAdBe29qtAkr755hvzRlKPHj00cOBANTQ06KOPPlJ+fr7Kysp09OhRJSQkaPDgwRo3bpymTJnS6lPVe/fuVeNyXxaLRUOGDGk3htNOO83c3rNnT+dfFAAA8EtVVZU8Ho8kKTMzUzZbYH9C2Ww2ZWZmauPGjfJ4PKqurmahWgAAAAAAcNIiOeWnHTt2mNvJycmqrKzU448/7rNuxOHDh3X48GEVFBTo1Vdf1c9+9jMNHz7cp7+9e/ea271791ZMTEy7MfTr18/crq2t1ZEjR9S7d2+/X0NlZWW7dZKSksyFzTqznhYAACcSl8tlbsfHx3fod2TTZJTT6eT3LAAAAAAAOGmRnPJT88TOo48+qrKyMknSoEGDNGzYMFmtVu3evVs7d+6UJB08eFAPPfSQHnroIa9RT9Lx5FKjpKQkv2JoXq+2tjag5NQdd9zRbp2//e1vSk5OVlRUlFJSUvzuGwCAE1nT5JSkTv+OTEtL4/csAAAAAAA4aZGc8tPRo0fN7cakVGxsrGbPnq0JEyZ41d2yZYvmzZunmpoa1dfXa968eZo3b57XFEB1dXXmtj+jplqq17QPAADQdZKTk2W1WuXxeFRYWCiXy9Xq1L0tcblc2rx5syQpKipKffv27apQAQAAAAAAIh7JKT/V19f7lN15550655xzfMpHjx6t//3f/9X9998vwzC0f/9+5efna8qUKWYdp9Npbvu7bkXzek378Mff/va3dus0js5qaGjQgQMHAuofAIAT2dixY/XFF1+oqqpK7733ns4++2y/23722Weqrq6WJNntdh05ckRHjhzpqlABAAAAAACCpn///uZyQMFCcspPzZ+OHjFiRIuJqabHv/Od7+jjjz+WJK1fv94rOdV0FJTb7fYrhub1/B1x1Sg5OTmg+o0LvwMAAGnixIn64osvJEnvv/++Ro8e7dfoKafTqZUrV5r72dnZ/I4FAAAAAAAnNVbi9lNcXJzXfluJqZbqbN++vdX+/B0B1bxe85gAAEDXycjIUGpqqiSpvLxcixcv9lmLqjmXy6UlS5aovLxckpSamqrhw4d3eawAAAAAAACRjOSUnxISErz209LS2m0zaNAgc9vhcMjhcJj7vXr1Mrerqqr8iqF5vaZ9AACArmWxWJSXl2eOXC4qKtK8efP0+eef+4xudrvd2rRpk+bNm6eioiJJx0c85+XlyWKxhDx2AAAAAACASMK0fn465ZRTvPb9GbUUHx/vte9wOMyypv0dOXJETqez3Wn6Dh48aG736tVLvXv3bjcGAAAQPOnp6Zo1a5YWLlwop9NpjqBKSEhQZmam4uLiVFdXp+LiYtXU1JjtYmJiNGvWLKWnp4cxegAAAAAAgMhAcspPp556qtd+XV1du22ajpSSpB49epjbp5xyiiwWiwzDkGEY2rVrl0aMGNFmf19//bW53XRUFgAACJ3MzEzNmTNHy5YtU0VFhSSppqZGGzdubLF+amqq8vLySEwBAAAAAAD8H5JTfhowYIAGDBigb7/9VtLxtSaysrLabLNnzx5zu1evXl6jrWJiYjRixAh99dVXkqRt27a1m5z68ssvze3Ro0cH/BoAAEBwpKen65577lFpaany8/NVWFgoj8djHrdarbLb7crJydHw4cOZyg8AAAAAAKAJklMBOOecc/TGG29IkjZu3KjLL7+8zfqffvqpuT1y5Eif4+PHjzeTU6tXr9aVV17Zal8HDx4016xobAsAAMLHYrEoIyNDGRkZcjgcqq6uVn19vWJjY5WYmOgzvS8AAAAAAACOs4Y7gO7kwgsvVFRUlCTpq6++0meffdZq3dLSUq/k1OTJk33qTJo0SbGxsZKkvXv3atWqVa329/zzz5tPZI8YMUKnnXZaR14CAADoAvHx8UpJSdHgwYOVkpJCYgoAAAAAAKANJKcCkJKSomnTppn78+fP1yeffOJTb9u2bfr9739vJpMyMjI0btw4n3qJiYm69NJLzf1FixZp/fr1XnXcbreef/55rVu3ziybPn16p18LAAAAAAAAAABAOFgMwzDCHUR34nK59Nvf/tZr/adBgwZp2LBhslqt+uabb/T111+bx/r06aPf/e536tevX4v9ud1uPfLII9qyZYtZduqpp2ro0KFyuVz68ssvdfjwYfPY9ddfr2uvvbYLXpm3hoYG7d+/v8vPAwAAAAAAAAAAItfAgQPNWeWCheRUBxw7dkx///vfvUYztSQjI0Nz585tNTHVtL9nnnlGGzZsaLVOVFSUrrvuOl199dUdijlQJKcAAAAAAAAAIDI5HA5VVVXJ6XQqJiZGSUlJTDGPLkNyKsJs27ZNH330kYqLi3Xo0CF5PB4lJiYqIyND5513nsaPHy+LxeJ3f4WFhVqzZo22b9+uqqoqRUVFKTk5WWPHjtUFF1ygtLS0Lnw13khOAQAAAAAAAEDkMAxDJSUlys/PV1FRkbmsjCRZrVbZ7XZlZ2crIyMjoPvSQHtITiFkSE4BAAAAAAAAQGQoKyvTsmXLVFFR0W7d1NRU5eXlKT09PQSR4WRAcgohQ3IKAAAAAAAAAMKvuLhYCxculNPpNMsSEhKUmZmp+Ph4ORwOFRcXq6amxjweExOjWbNmKTMzMxwh4wRDcgohQ3IKAAAAAACcKFibBUB3VVZWpvnz55uJqbS0NOXm5sput8tms5n13G63CgsLtXLlSpWXl0s6nqCaM2cOI6jQaSSnEDIkpwAAAAAAQHfG2iwAujvDMPT73//enMrPbrdrxowZio6ObrWNy+XS4sWLVVRUJOn4FH/33HMP1zl0Slckp2ztVwEAAAAAAAC6j/bWZvF4PCooKFBBQQFrswCIWCUlJeZ1LC0tzSsx1dqI0OjoaM2cOVPz5s1TeXm5KioqVFpaqoyMjHC+FMAHySkAAAAAAACcMAJdm6WiokLz589nbRYAEWft2rXmdm5urmw2m7Zv3+7XiNCpU6dqyZIlkqT8/HySU4g4JKcAAAAAAABwQigrK/NKTPm7NovT6dTChQtZmwVAxHA4HCosLJR0PMHet29fryn+mms+IvQHP/iBEhISVFNTo8LCQjkcDtbaQ0SxhjsAAAAAAAAAoLMMw9CyZcvMxJTdbtfcuXOVlZXllZiSJJvNpqysLM2dO1djxoyRJDmdTi1btkwszw4gElRVVZkjo1JTU/XUU095JaYSEhI0fvx4nX/++Ro/frwSEhLMYxUVFXrqqaeUmpoq6Xjiqrq6OrQvAGgHI6cAAAAAAADQ7bW1NktrWJsFQKRqOjVpaWmpmagKZERoaWmpeby+vj50wQN+YOQUAAAAAAAAur3ma7O0l5hqFB0dralTp5r7+fn5QY8NAAIVExNjbjcmpgIdEdp0TarY2NgQRA34j+QUAAAAAAAAurXma7PY7faA2o8dO9acEqtxbRYACKekpCRZLBZzf9CgQQGNCB00aJBZZrFYlJiY2GWxAh1BcgoAAAAAAADdWtO1WTIzM31GFLTHZrMpMzNTEmuzAIgM8fHx6t27t7k/fPjwgEaEDhs2zNxPTExUfHx80GMEOoM1pwAAAAAAANCtNV2bpaM3YOPi4sxt1mYBEG4Oh0NHjhwx90tLS+VyucwElcPhUFVVlZxOp2JiYpSUlGRe/5xOp3bs2GG2ra6ulsPhIEGFiEJyCgAAAAAAAN1a07VZOjolX11dnbnN2iwAwq2qqkqGYZj7e/bs0aJFi5STk6P169erqKjIa00pq9Uqu92uCRMmKD8/X3v27DGPGYah6upqklOIKCSnAAAAAAAA0K0lJSXJarXK4/GouLhYbrc7oKn93G63iouLJR2/wcvaLADCremI0Mbr25YtW7Rly5YW63s8HhUUFKigoMCnncSIUEQe1pwCAAAAAABAtxYfHy+73S5JqqmpUWFhYUDtN2/erJqaGkmS3W5ndAGAsGs6IjQ1NdXnuMViUXJyslJTU5WcnCyLxeJTp2k7RoQi0pCcAgAAAAAAQLeXnZ1tbq9cuVIul8uvdk6nU6tWrTL3c3Jygh4bAASqcUSoJK8p+hoZhqHKykpVVFSosrLSawrARo3tGBGKSERyCkDIORwOVVRUaPfu3aqoqOjwfOAAAAAAADTKyMgwRwmUl5dr8eLF7SaoXC6XlixZovLycknHRxkMHz68y2MFgPbEx8drzJgxXmVjxozRHXfcoTPPPNNMXDWyWq0688wzdccdd7TYjhGhiDSsOQUgJAzDUElJifLz81tdsDE7O1sZGRktDkMGAAAAAKAtFotFeXl5mj9/vpxOp4qKijRv3jzl5ubKbrd7rUHldru1efNmrVq1ykxMxcTEKC8vj8+kACLG0KFDtXnzZklSdHS0brzxRvXo0UMjR46Uw+FQdXW16uvrFRsbq8TERDMBdeqpp+qBBx4wE/SnnXZa2F4D0BqL0dJ4P5z0GhoatH///nCHgRNEWVmZli1bpoqKinbrpqamKi8vT+np6SGIDAAAAABwoikuLtbChQvldDrNsoSEBGVmZiouLk51dXUqLi4215iSjiemZs2apczMzHCEDAAtevbZZ1VQUGDujxkzRjNnzlR0dHSrbVwulxYvXqyioiKz7Mwzz9Stt97alaHiBDdw4EBFRUUFtU+SU2gRySkES1sfCuLj4+VwOPhQAAAAAAAIKh6SBNDdORwO/epXv/KafUiS0tLS/B4R2shqterRRx9laj90GMkphAzJKQRDWVmZOZ2C1PYvz8LCQq1cudJrOoU5c+bw4QAAAAAA0CGGYai0tFT5+fkqLCxscXr5nJwcDR8+nKn8AESciooKPfroo5KkESNGaNeuXQGPCB0yZIi2b98uSbr33nuVkpIS2heBE0ZXJKes7VcBgMAZhqFly5aZvzTtdrvmzp2rrKwsr8SUJNlsNmVlZWnu3Lnmgo1Op1PLli0T+XMAAAAAQEcZhmH+a17e9H8AiDRNE1EpKSmaM2eOUlNTzbKamhpt3LhR+fn52rhxo1diKjU1VXPmzNHAgQPNsvr6+tAEDvjJ1n4VAAhcSUmJOX1CWlqaZsyY0eZ8uNLxhR1nzpypefPmqby8XBUVFSotLVVGRkYoQgYAAAAAnCDam9bPMAwVFBSooKCAaf0ARKSYmBhz2+FwKD09Xffcc09AI0JXr15tHo+NjQ1l+EC7SE4B6BJr1641t3Nzc9tNTDWKjo7W1KlTtWTJEklSfn4+ySkAAAAAgN8CXfu4oqJC8+fPZ+1jABElKSlJVqtVHo9HxcXFcrvdstlsysjIUEZGhhwOh6qrq1VfX6/Y2FglJiZ6rSnldrtVXFws6XjiKjExMVwvBWgRySkAQedwOFRYWCjp+AcAu90eUPuxY8cqISFBNTU1KiwslMPhYMFGAAAAAEC7ysrKvBJT/q597HQ6tXDhQtY+BhAx4uPjZbfbVVBQYN4jy8rK8jre1v2yzZs3m0l4u93OvTVEHNacAhB0VVVV5rDizMxMnzWm2mOz2cyn1Twej6qrq4MeIwAAAADgxMLaxwBONNnZ2eb2ypUr5XK5/GrndDq1atUqcz8nJyfosQGdRXIKQNA1nTqho09lxMXFmdss2AgAAAAAaE9n1j5OS0uTJHPtYwCIBBkZGUpNTZUklZeXa/Hixe0mqFwul5YsWaLy8nJJUmpqqoYPH97lsQKBIjkFIOiaL9jYEXV1deY2CzYCAAAAANrT1trHDodDFRUV2r17tyoqKrw+qzaufdwoPz8/NAEDQDssFovy8vLMe21FRUWaN2+ePv/8c7ndbq+6brdbmzZt0rx581RUVCTp+D26vLw8WSyWkMcOtIc1pwAEXWsLNvqLBRsBAAAAAIFoae1jwzBUUlKi/Px8FRUVmdPPS8c/a9rtdmVnZysjI4O1jwFErPT0dM2aNctcT69xBFVCQoIyMzMVFxenuro6FRcXm2tMSccTU7NmzWIdPUQsklMAgq69BRvbw4KNAAAAAIBANF/7uKKiQsuWLTOn+WvO4/GooKBABQUFSk1NVV5enjIzM7Vx40Zz7WM+iwKIFJmZmZozZ47Xda2mpkYbN25ssX7jdY3EFCIZySkAXSI7O1sFBQWSji/YOGbMmHbn+pZYsBEAAAAAELimax/X1dVp/vz5XmWNIwzi4+PlcDi8RhhUVFRo/vz5GjFihFmftY8BRJr09HTdc889Ki0tVX5+vgoLC1scEZqTk6Phw4czlR8iHskpAF2iccHGiooKc7jxzJkz20xQsWAjAAAAAKAjmq59vHXrVvOGbVpamnJzc2W3272mm3e73SosLNTKlStVXl4up9Opbdu2mcdZ+xhAJLJYLMrIyFBGRoYcDoeqq6tVX1+v2NhYJSYmMuIT3QrJKQBdonHBxsan1RoXbGztQ8HmzZu1atUqMzHFgo0AAAAAAH81Xfu4MTFlt9s1Y8aMFh+StNlsysrK0pgxY7R48WKvNalY+xhAdxAfH08yCt2axTAMI9xBIPI0NDRo//794Q4DJ4Di4mJzwcZG/i7YmJmZGY6QAQAAAADd0Pz587Vjxw5JUt++fXXffff5Nb28y+XS7373Ox06dEiSNHz4cN11111dGisAAN3JwIEDFRUVFdQ+GTkFoEuxYCMAAAAAIJI1f26b57gBAOh6JKcAdDkWbAQAAOheHA6Hqqqq5HQ6FRMTo6SkJKaNARDRHA6Hvv76a3P/0KFDXmsft3Zda1z7uHHUlCR9/fXXcjgcXPcAAOhCJKcAhIRhGCorK9POnTu9ElOS5PF4tHPnTg0ZMkTDhg0jOQUAABAGhmGopKRE+fn5XmuvSP99mCg7O1sZGRn8vQYg4lRVVZkjnhrXnioqKtKjjz6qnj17qqyszOe6lp6erqNHj+rgwYNe7QzDUHV1NckpAAC6EGtOoUWsOYVg+uyzz7R8+XK53e5269psNk2fPl3jxo0LQWQAAACQpLKyMq9pmNvCNMwAItHu3bv1pz/9SZI0ZswYffnll359Bm1ks9mUmZmpLVu2SJJ+/vOfa/DgwV0SKwAA3U1XrDllDWpvANDM+++/r6VLl3p9KLBYLEpOTtYpp5yi5ORkrydv3W63li5dqvfffz8c4QIAAJx0iouLNX/+fL8SU5JUUVGh+fPnq7i4uIsjAwD/xcTEmNv19fUBj/C0WCxyOp3mfmxsbNBiAwAAvpjWD0CX+eyzz/T666+b+9HR0TrvvPM0depUORwOc67v+Ph4rVq1SuvXr5fL5ZIkvf766+rTpw8jqAB0C6zNAqC7Kisr08KFC71uyPrD6XRq4cKFmjNnDiOoAESEpKQkc1q+7du3m+X9+/dXjx499M0336jp5EEWi0Wnnnqqjh07pgMHDsjlcpntrFarEhMTQ/4aAAA4mZCcAtAlPB6Pli9fbu4nJCTohhtu0KeffqoHH3ywxTUMZs6cqRUrVqimpkaStHz5cmVlZclqZZAngMjD2iwAujvDMLRs2bIWE1MJCQnKzMxUfHy8HA6HiouLzb/RGjmdTi1btkz33HMP1zkAYRcfH68xY8Zo8+bNZpndbteMGTMUHR0th8Oh6upq1dfXKzY2VomJiYqPj5fL5dLixYtVVFRkthszZgwPGgEA0MVITgHoEqtXrzan8rPZbOrRo4f+/ve/t1jX4/GooKBABQUFGjhwoBwOh9xut9xut9asWaMpU6aEMnQAaFd7a7M0va6xNguASFVSUuJzHUtLS1Nubq7sdrtstv9+XHS73SosLNTKlStVXl5ulldUVKi0tFQZGRkhixsAWjN06FAzORUdHa3p06crOjpa0vHkVUsJp8Z6DzzwgDmTx2mnnRa6oAEAOEkxHAFAl/jwww/NbY/Ho/3795v7CQkJGj9+vM4//3yNHz9eCQkJ5rH9+/d7jT5o2g8ARIKW1mZp67rG2iwAIlV+fr7Xvt1u19y5c5WVlSWXy6WKigrt3r1bFRUVcrlcysrK0ty5czVmzBivdh999FEowwaAVu3atcvcdrlcev75582EU2tcLpeWL1/uVW/nzp1dFSIABI3D4fD6e83hcIQ7JCAgjJwCEHSHDx9WdXW1ud+YbPL3SdymyamqqiodPnxYffr0Cd0LAIBWNF+bxd/rGmuzAIg0DodDhYWF5v6gQYN08803a+fOne1OVzpjxgzNmzdPe/bskSQVFhbK4XAwBRaAsGp+XZOkoqIizZs3r9W/1zZv3qxVq1Z5jQiVuK4BiFxML48TCckpAEHX/A97yXuu7+ZsNpuysrI0ZswYn7m+JWnPnj0kpwCEXfO1WQK9rrE2C4BIUlVVJcMwzP2srCz96U9/8nu60rPPPttMThmGoerqam7iAgirqqoq8ybtiBEjtGvXLjmdTpWXl2vx4sXmWnpxcXGqq6vzWUsvJiZGQ4YM0fbt2+XxeLiuAYg4TC+PEw3T+gEIuqNHj3rtp6WltXoDt6no6GjNnDlTaWlpXuW1tbVBjxEAAtV0bZaOXtca12YBgHBrekPWZrPpnXfeCWi60nfffVdRUVFm2ZEjR0ITOAC0ovEBIklKSUnRnDlzlJqaapbV1NRo48aNys/P18aNG72ug6mpqZozZ44GDhxoltXX14cmcADwA9PL40TEyCkAQdezZ0+v/dzc3HZv4DaKjo7W1KlTtWTJErOsV69eQY0PADpi7dq15nZnrmv5+fnKyMjokhgBwF9Nb7q63W5z29/pSpuv4dL0pjAAhENMTIy57XA4lJ6ernvuuUelpaXKz89XYWFhi9Nf5eTkaPjw4bJYLFq9erV5PDY2NpThA0CrmF4eJyqSUwCCrl+/fl77I0aMCKj96aef7rWfnJzc6ZgAoDOarmGQkJAgu90eUPuxY8cqISFBNTU1rGEAICK0dNO1M9MwN70pDADhkJSUJKvVKo/Ho+LiYrndbtlsNmVkZCgjI0MOh0PV1dWqr69XbGysEhMTvf4ec7vd5ggDq9WqxMTEcL0UADAxvTxOZEzrB6DLvfvuuwHVf+edd7z2+eUJINyarmGQmZnp9XSaP2w2mzIzMyXJXMMAAMKp6bQvktS3b9+Apivt27evV3nv3r2DHiMABCI+Pt58gKjxgaDmx1NSUjR48GClpKT4PCi0efNmc6o/u93Og0QAIgLTy+NERnIKQNA1n9Zl/fr1OnbsmF9tjx49qg0bNniVMdc3gHBrel3r6I2KuLg4c5vrGoBwS0pK8to3DMPvtoZh+NRnhAGASJCdnW1ur1y50mcK0tY4nU6tWrXK3M/JyQl6bADQEZ2dXr5Rfn5+0GMDOovkFICgaz6ti8vl0iOPPNJugurYsWN69NFHfT5AMNc3gHBrvoZBR9TV1ZnbXNcARJrDhw9r8eLF7d7IdblcWrJkiQ4fPhyiyADAfxkZGUpNTZUklZeXB3RdKy8vlySlpqZq+PDhXR4rALQnWNPLSzKnlwciCckpAEHXONd3U0eOHNH999+vV155xesGrXT8hu0///lP3X///Tpy5IjXMeb6BhAJml7XGtcwCARrGACINFVVVT5lRUVFmjdvnj7//HOf65zb7damTZs0b948n/WmJDFdKYCIYLFYlJeXZz5Y1PS6Vltbq4qKCu3evVsVFRWqra31ua7FxMQoLy+PqeUBRASml8eJLrDvaADwQ+Nc3wUFBV7lLpdLa9as0UcffaS+ffsqJiZGTqdThw4danUqGeb6BhAJml7XGtcwyMrK8rs9axgAiDTNp2Fu1DjSICEhQZmZmYqLi1NdXZ2Ki4vN61hLmK4UQKRIT0/XrFmztHDhQjmdTvO61p6YmBjNmjVL6enpXR8kAPiB6eVxomPkFIAu0XSu7759+yoqKsrcNwxDlZWVqqioUGVlpVdiKioqymuBbeb6BhAp2lrDwOFweD2J23S6BNYwABCJmk5X2nzEuyTV1NRo48aNys/P18aNG1tMTDVtx3SlACJJZmambrjhBr9HGdhsNt1www3mCAMAiARML48THSOnAHSJxrm+KyoqdOjQIY0ePVq9e/fWp59+2uJ0WNHR0Ro/fryOHDmiLVu2SGKubwCRpel1rfEJ3IkTJ2rDhg0qKioyp1uQjt+wtdvtOvfcc7Vu3TrWMAAQcRqnK/V4PIqNjVVDQ0Oro6laEhMTo6ioKDkcDqYrBRBxiouLtWLFCr+nYna73VqxYoV69epFggpAxGj691rj9PKBTO3H9PKIdIycAtAlms/1vWXLFq1fv77VDwcul0vr1683E1PM9Q0g0rS0hsHTTz+tzZs3eyWmpOPzeRcUFOjpp59mDQMAEalxulLp+JO406ZNU2pqql9tU1NTdeGFF5pP8DJdKYBIUlZWZk7pJ0mJiYmtXqPi4+PNm7VOp1MLFy5UWVlZyGIFgLY0/XutcXr5QDC9PCIdySkAXSY9PV3Tpk3zKbdYLEpOTtYpp5yi5OTkFm/UTps2jbm+AUSc1q5r/uC6BiDSNJ2u9IsvvtDPf/5z3XnnnTrzzDN9pvqzWq0688wzdeedd+pnP/uZ19qiTFcKIFIYhqFly5aZiSmLxaLq6upWp8NyOByqrq42P5M6nU4tW7as1TWRASDU2ppevi1ML4/ugGn9AHSZsrIyvfvuuz7ljWtOteXdd99VZmYmN3IBRJSysjK9/fbbHWr79ttvc10DEFGaT1e6ZMkSzZw5UxkZGeYN2/r6esXGxpojD1wulxYvXsx0pQAiUklJiSoqKsx9f5NMTetVVFSotLRUGRkZQY8PAALV0vTyM2fOVHR0dKttXC6XlixZwt9riHiMnALQJZo/sTZ69Ghdfvnlrc5vm5SUpMsvv1xnnHGGJJ5YAxB5DMPQokWLvKYn7devnwYPHtziCIMhQ4aoX79+Zpnb7daiRYu4rgGIGC1NVzpv3jx9/vnnio6OVkpKigYPHqyUlBRFR0dr06ZNmjdvHtOVAohYa9euDUo/+fn5QekHADqrrb/Xmi+d4Xa7+XsN3YrF4A4JWtDQ0KD9+/eHOwx0Y9u3b9dTTz0lSRowYICsVqv27dvXbruUlBR5PB59++23kqQ777yTJ9YARISm1zXpeNL9lltuUXR0dJsjDJ599llt3brVbPeTn/xEI0aMCMdLAIAWFRcXe63PIkkJCQnKzMxUXFyc6urqVFxcbK5ZIB2/0TFr1ixlZmaGI2QA8OFwOPSrX/3KZy3QRo3Xtfj4eDkcDp/rWlNWq1WPPvoo67MAiBj8vYZwGzhwoKKiooLaJ9P6AegSTZ9YO3TokNfTHG19KNi3b59stv9emvLz80lOAYgITafz69u3r5mYko4vVNvSzYvo6Gjdeuut+t3vfqdDhw5Jkt555x2SUwAiSmZmpubMmaNly5aZ02HV1NRo48aNLdZPTU1VXl4e05QCiChVVVUtJqbS0tKUm5sru93u9VnT7XarsLBQK1euNKe+auTxeFRdXU1yCkDE4O81nIhITgEIOofDocLCQnO/MTHl74eCpomswsJCORwOPhQACCuHw6EdO3aY+5dcckmbc3w3FR0dre9973tatmyZJKm0tJTrGoCIk56ernvuuUelpaXKz89XYWGh101eq9Uqu92unJwcDR8+nKlhAEScpqMJGtntds2YMaPFv9tsNpuysrI0ZswYLV682JwCq1F9fX2XxQoAHcHfazjRkJwCEHQtPbHW0Q8FPLEGIBI0nerWZrPprLPOCqh9VlaWVqxYYSbf9+/fryFDhgQzRADoNIvFooyMDGVkZLQ6XSkARKq6ujqv/VNOOaXVz6BNRUdHa+bMmfrTn/6kvXv3muUkpwBEIv5ew4nE2n4VAAhM8yfW0tLSAvpQkJaW5lXOhwIA4VZZWWlu9+3b12v0pz9sNpv69u1r7jdO8QcAkSo+Pl4pKSkaPHiwUlJSuNEBIOLV1tZ67U+dOjWgke4XXHBBm/0BQKTh7zV0dySnAARdTEyM135ubm5AHwqmTp3qVRYbGxu02ACgI5gOAQAAILIdO3asU+2b/7139OjRTvUHAADaRnIKQNDFxcWZ2xaLRaNGjQqo/RlnnOH1wYDkFIBwaz7qqenaeP5wu91eo6WSk5ODFhsAAAAkwzC89j/88EO5XC5z3+FwqKKiQrt371ZFRYUcDod5zOl06sMPPwxZrAAAgDWnAHSBpnN9G4ahbdu2KSsry+/2W7du9fpgwbR+AMJt4MCB5rbb7dYXX3yh8ePH+93+iy++8EpoDRgwIKjxAQAAnOyaPkwkSeXl5Vq8eLEmTpyoDRs2qKioyGttZKvVKrvdrnPPPVfr1q1TeXm5V/s+ffqEJG4AAE5WJKcABF3zNadWrlypMWPG+DW1n9Pp1KpVq7zKSE4BCLf4+HgNGzZMO3bskCS9+eabOvPMM/2+rr355pvm/rBhw5gLHAAAIMhaGpleVFSkoqKiFut7PB4VFBSooKCgxeP9+vULZngAAKAZpvUDEHTN15xqfGKt6ZQKLXG5XFqyZInPE2tM6wcgElx00UXm9qFDh/Tss8/6dV1btGiR15R+F198cZfFCAAAcLJKSkpq87jFYlFycrJOOeUUJScnt7umaGJiYhCjAwAAzZGcAhB0SUlJslq9Ly9FRUWaN2+ePv/8c5+1WtxutzZt2qR58+b5PNVmtVr5UAAgIowYMcLrCdqtW7fq8ccfb/O69vjjj2vr1q1meb9+/ZSRkRGymAEAAE4W8fHxstvtrR43DEOVlZXau3evKisrfdaoasputzPSHQCALsa0fgCCrvFDQeP0CFFRUWpoaDBHUCUkJCgzM1NxcXGqq6tTcXGxampqzPaN9SU+FACIHBaLRbfccovmzZtnJqP27NnT4nXtyy+/VG1trVd7m82mW265pd2ndAEAANAxOTk5Kiws9CqLiopSnz59dOjQIZ81p/r27avDhw+bnz8bnX/++SGJFwCAkxnJKQBdIjs720xOJScny2q1at++fZKkmpoabdy4scV2KSkp8ng8+vbbbyUd/3ABAJEiPT1dt912mxYsWOA1Wqqt65p0PDF12223KT09PRRhAgAAnJRaegiooaFBBw8elHR8qj6bzSa3263q6mqzHAAAhB7T+gHoEhkZGUpNTZUkffvtt+rXr58uu+yyVqfoS0pK0mWXXaZ+/fqZianU1FQNHz48ZDEDgD8yMzM1d+5cDRgwwK/6AwcO1Ny5c5WZmdnFkQEAAJzc1q5d2+bx6upqVVZWqrq6ulP9AACAziM5BaBLWCwW5eXlKSYmRpK0ZcsWvf76661+CKiqqtLrr7+uLVu2SJJiYmKUl5fH9FcAItL+/ft16NAhv+pWVlZq//79XRwRAADAyc3hcJhT+sXHxys6Ojqg9tHR0eaU8oWFhXI4HEGPEQAA/BfJKQBdJj09XdOmTetQ22nTpjH9FYCI9P7772vp0qVe0/pZLBYlJSWpX79+SkpK8kqsu91uLV26VO+//344wgUAADgpVFVVmWtKjR49Wj/96U+VkpLiV9uUlBT99Kc/1ejRoyVJHo+n3dFVAACgc1hzCkCXKSsr09tvv92htm+//bYyMzNJUAGIKJ999plef/11cz86OlrnnXeeLrnkEsXFxZnldXV1evPNN7V+/Xq5XC5J0uuvv64+ffpo3LhxIY8bAADgROd0Os3txhFQgWr691x9fX2nYwIAAK1j5BSALmEYhhYtWuQ1sqBfv34aPHiwz1R9FotFgwcPVr9+/cwyt9utRYsWyTCMkMUMAG3xeDxavny5ud+7d289/PDDuuaaa7xuZEjHb2xcc801evjhh9W7d2+zfPny5eYTvQAAAAiexinlJWnfvn2aP3++9u3bZ5b16tVLo0eP1plnnqnRo0erV69ePvWbTsUcGxsbmsABADhJMXIKQJfYvn27Dh48aO6PHj1at9xyi6Kjo+VwOFRdXa36+nrFxsYqMTFR8fHxcrlcevbZZ7V161ZJ0sGDB1VSUqIRI0aE62UAgGn16tVmwj06Olr33nuvevTo0WabHj166N5779X9998vl8slt9utNWvWaMqUKaEIGQAA4KSRlJQkq9Uqj8ej7du3m+VpaWnKzc2V3W6Xzfbf22But1uFhYVauXKlysvL5XQ6zXZWq1WJiYkhfw0AAJxMGDkFoEu888475nbfvn3NxJR0fIqFlJQUDR48WCkpKeaUC9HR0br11lvVt29fs21HpwUEgGD78MMPze3zzjuv3cRUox49emjChAkt9gMAAIDgiI+P15gxY7zK7Ha75s6dq6ysLK/ElCTZbDZlZWVp7ty5Pu3GjBnT4akBAQCAf0hOAQg6h8OhHTt2mPuXXHKJmZhqT3R0tC655BJzf8eOHXI4HEGPEQACcfjwYXNRbIvF4nWd8sell15qTmlaVVWlw4cPBz1GAACAk93QoUPN7ejoaE2fPr3dz6It1TvttNO6LEYAAHAcySkAQdd0nm6bzaazzjoroPZnnXWW11Nt3377bdBiA4COKC8vN7f79u3rs8ZUe+Li4rxGhe7ZsydosQEAAOC4Xbt2mdsul0vPP/+8XC5Xm21cLpeWL1/uVW/nzp1dFSIAAPg/JKcABN2hQ4fM7b59+/pMn9Aem83mdRO3srIyaLEBQEccPXrU3O7o4thNF+mura3tdEwAAAD4L4fDocLCQq+yoqIizZs3T59//rm5dmgjt9utTZs2ad68eSoqKvI6VlhYyAweAAB0scDuGAOAHwzDCHcIABBUPXv2NLfr6+s71IfT6TS3e/Xq1emYAAAA8F9VVVXyeDySpBEjRmjXrl1yOp0qLy/X4sWL1atXLw0ZMkQ2m01ut1u7du3yemAoJiZGQ4YM0fbt2+XxeFRdXc26UwAAdCGSUwCCLjk52dw+dOiQ3G631+gph8OhqqoqOZ1OxcTEKCkpyeuPfrfb7TP6CgDCKS0tzdw+dOiQ6urqAprar66uzuu6NmjQoKDGBwAAcLJr+iBQSkqKrrjiCj333HPat2+fpOMj17ds2dJi25SUFN100036+OOPtX37dkkdfyAJAAD4h+QUgKAbOHCgue12u/XFF19o3LhxKikpUX5+voqKiswn2iTJarXKbrcrOztbGRkZPlMuNO0PAMKhT58+SkxMVHV1tQzD0JtvvqlrrrnG7/ZvvPGGOao0KSlJffr06apQAQAATkpNp1Du6JR8dXV15nZHp3IGAAD+ITkFIOji4+M1bNgw7dixQ5L0n//8R++//775xFpzHo9HBQUFKigo0MCBA70+SAwfPpypFABEhClTpujVV1+VJK1fv14XX3yxevTo0W67o0ePasOGDV79AAAAILiSkpJktVrl8Xi0ZcsWFRQUyOVymcfbmtZv3759euKJJ8wZP6xWqxITE8PyOgAAOFmQnALQJS6++GI99dRTkqQjR47oyJEj5rGEhARlZmYqPj5eDodDxcXFqqmpkSTt37/fq5+LLroodEEDQBsmT56sN954Q263Wy6XS4888ojuvffeNhNUx44d06OPPmreGLHZbJo0aVKoQgYAADhpxMfHy263q6CgwOuBx7S0NOXm5sput3tNN+92u1VYWKiVK1eqvLxcLpfL/JvNbrfzkCQAAF2M5BSALpGRkaGkpCRVVVWZZTabTRMnTtTUqVPlcDjMNacuu+wyrVy5UuvXr/eazi8pKUkZGRlhiB4AfFmtVk2fPl1Lly6VdDzxfv/99+u8887TJZdc4rUGVV1dnd544w1t2LDB64nd6dOny2q1hjx2AACAk0F2drYKCgrM/dGjR+uWW25RdHS0T12bzaasrCyNGTNGzz77rLZu3erVDwAA6FokpwB0maZPpUnHn0xbs2aN1qxZ06H2ABBu48aN0+HDh/X6669Lklwul9asWaOPPvpIffv2VUxMjJxOpw4dOmSuMdXosssu07hx48IRNgAAwEmh+d9fzfcB4ETicDhUVVVlPvydlJTEqE90K9z5DcDq1av117/+NaA2F1xwgX70ox/5VbeoqEhr1qxRSUmJDh06JJvNpuTkZI0dO1YXXHCBBg0a1JGwgbAoKSnRwYMHO9XHwYMHVVpayugpABHlu9/9rvr06aPly5eboz0Nw1BlZWWL9W02m6ZPn05iCgAAoIutW7fOa3/r1q2aN2+ecnNzlZGRodraWvMmbq9evbR9+3atWrVK5eXlXu3Wrl2rESNGhDJ0APCLYRgqKSlRfn6+CgsLvZLwFotFY8eOVXZ2tjIyMmSxWMIYKdA+klMR4NixY1qwYIHWr1/vVV5fX6+jR4/qm2++0VtvvaXrr79eV111VZiiBAKzdu1ac7txUVp/Na2fn59PcgpAxBk3bpyysrK0Zs0affDBB6qurvapk5SUpClTpmjSpElM5QcAANDFHA6HCgsLJR1ff6qhoUFOp1Pl5eVavHhxu+1jYmIUFRVl9uNwOBiBACCilJWV6bnnntO+fftaPG4YhgoKClRQUKCUlBTddNNNSk9PD3GUgP9ITnXQoEGDNHr06HbrnX766W0ed7vdeuyxx7RlyxazLD09XUOHDpXL5VJxcbEOHz6shoYGvfDCC2poaNC1117b6fiBrtT0Q4EkM9HUr18/9ezZU2VlZV7JKqvVqlNPPVW1tbU6ePCg1zE+FACIVFarVVOmTNGUKVN0+PBh7dmzR7W1terVq5cGDRqkPn36hDtEAACAk0ZVVZX5WXL06NEaOXKk10j3tthsNt1www368ssvtXHjRnk8HlVXV/M5FEDEKC4u1oIFC/y6pknSvn37NG/ePN12223KzMzs4uiAjiE51UHDhw/XD3/4w07388orr5iJqejoaM2ePVsTJ040j7vdbq1YsUKvvfaaJOnll1/WqFGjNGrUqE6fG+gqTT8UNLLb7ZoxY4aio6N1+PBhlZeX6+jRo+rZs6fS0tLUp08fuVwuLV68WEVFRWY7PhQA6C4ap1NgbQMAAIDQczqd5nZdXZ1WrFjh903cxnsvTafyq6+vD3qMANARZWVlLSamevXqpSFDhshms8ntdmvXrl2qra01j7vdbi1YsEBz585lBBUiEsmpMKqurtYbb7xh7s+cOdMrMSUdf3onLy9PBw8e1Pr162UYhpYvX67f/va3oQ4X8FvTDwWSlJaWpptvvlk7d+5sd07cGTNm6IknnvCa85sPBQAikcfj0erVq/Xhhx+2OK1fYmKipkyZosmTJzOtHwAAQBeLiYkxt7du3RrQ1PLS8c+x27ZtM/djY2ODFhsAdJRhGFq0aJFXYqpxZqJvvvnGazYui8WiwYMH6+jRo+Y68G63W4sWLdL999/PGlSIOCSnwmjNmjXmTffU1FTl5ua2WjcvL08bNmyQYRjavn27du7cqaFDh4YqVCAgTT8USNJZZ52lxx57zO85cceNG+eVnOJDAYBI89lnn7U7TUx1dbVeffVVvfHGG5o+fbrGjRsXwggBAABOLklJSbJYLDIMI+DEVKPGdhaLRYmJicEMDwA6ZPv27WaiSTp+j+zgwYNeZY0Mw9Du3bvNeo33nQ8ePKiSkhKv0aFAJOAx3jDauHGjuT158uQ2s9f9+vXzWuPq008/7dLYgM6Ii4vz2n/rrbdaTUw1t2/fPr399tteZSSnAESS999/X0uXLvVJTCUmJqpfv34+NzLcbreWLl2q999/P5RhAgAAnFTi4+N12mmnBaWv0077/9m78/C4yvvu/59ZtIyW0WZjybbANpYRXmQCdgvBxgs4tA/kSQLBLa4THAJ9Cg9XUlr8lJTLaRMSaGpSIIWQUAqGGEJDSULYgwk2ZgtmkSVjy7a8afWidbSMNBrN/P7wT6caaSTNSGfmjEfv13X1yiz3+eqryhyNzufc9z2HpeUBJITXXnst5Png1YWysrK0cOFCXXDBBVq4cKGysrLCjpM07FobkAiYOWURn8+nAwcOGM8XLFgw5jELFiww9uLZs2eP/uIv/iJm/QET0dPTE/K8v78/quOHjmdZPwCJ4qOPPtKLL75oPHc4HMrLy1NLS0vI0n52u135+flqbW01zmkvvvii8vLymEEFAABggczMTM2fP18ul0ter1d79+5VV1dX2LEsfQUgEXi9Xh06dGjY6wPL+tXW1oYs62e324ct6zfg0KFD8nq9BO9IKIRT49TV1aX3339ftbW16u7uVkZGhvLy8jRv3jydffbZY36QaWhoMPbcsdlsmjVr1phfc/AdQPX19RPqH4iloXtOTRThFIBEEAgE9MwzzxjP7Xa7+vv7wy6nEAgEjNftdruxRMwzzzyjCy+8kD2oAAAATDbSRdyioiJdeeWVmjdvnjo6OuTz+ZSamqqvfOUrOnDggF5//XU1NjaGHFNdXc1FXACWO3HixLDXRlvWLxAIhF3Wb8DJkyd1zjnnxKZZYBwIp8bpo48+0kcffRT2vaKiIn3pS1/SqlWrRgypGhoajMdut3vYHj3hTJkyxXjc2dkpj8cjt9sdZedA7I317zkrK0uzZs2S0+mU3+/X0aNH1dnZOeJ4lvUDkAi2b98espTf4L0MsrOzVVpaatyJW1VVpY6OjmHj/H6/duzYoVWrVsWvcQAAgEmgra0t7Ot9fX1666239NRTT4V8LrPb7SouLlZfX1/Y49rb2wmnAFiqpaUl5LnNZgsJnEb7O7S3t9fYh29Ac3Mz4RQSCuFUDDQ2NupnP/uZPvzwQ/3t3/7tsP13JIVciM/NzY2o7tBxnZ2dUYVTzc3NEX0Nh8MhSdzVjXHLz88P+/rg5a+GTjueMmVKyPJXg+Xl5fHvEYDltm/fPuy1mTNn6gtf+ILKysrkdP7Pxyq/36/du3frjTfeUF1dXcgxb731li6//PJYtwsAADCpjHTDYyQzDMLp6OjQ9OnTTesPACZqIGga+Du0pKREnZ2d6u3tVVpamq655hodOHDA+Dt0cDAlnQ63uL6GREI4FaUpU6bo4osv1qJFi3T22WfL7XYrEAioublZe/bs0auvvmosuffJJ5/oJz/5ie64445h/+EP3pMnkllT4cYN3ddnLLfccsuYYx555BEVFBTI4XCosLAwqvrAgO7u7rCvR7L8VTjTpk1TRkaGaf0BQLSam5uH3Y37J3/yJ/rbv/3bEX+Pz5w5U2vWrNH999+vXbt2Ga+3tbUpJSVFBQUFsWwZAABgUvnss89Cnjscjqj2Px46PhAIcF0EgKXCzXJaunSpvvCFL+jNN9/Uli1bhs0I/ZM/+RPdcMMN+v3vfx/yd+hAPc5rSCSEU1FYunSpLrvssrAJ8/Tp0zV9+nStXr1ajz76qHF39UcffaR33nlHl112Wcj4wXvyDL7TejRDx5m9rw9gFrP3RGtoaNDcuXNNrQkA0Th8+HDI89mzZ48aTA1ITU3V7bffrrvuuktHjhwxXj9y5AjhFAAAgIlOnjwZ8nwgaCosLFR2draqq6tDZhHY7Xade+656ujo0PHjx4cFWcePH4990wAwiqGrceXm5qqxsVE//OEPw44PBAL64IMP9MEHH2jmzJnKzc0Nucky3OpegJUIp6KQmZk55hin06m/+Zu/0YkTJ7Rv3z5J0gsvvDAsnBp8MWvw/hWjGTou0hlXAx555JExxwwsHdjf369Tp05FVR8YsH///rCvZ2Zmyuv1htzVMcDhcCg9PV1dXV1h62VlZZneJwBEaujSfCtXrhy2/vdoVqxYERJO1dbWaubMmab1BwAAMNmFW42jrKxM3/jGN5SSkiKv16v29nb19PQoPT1dOTk5crlc6uvr0xNPPKGKioph9QioAFhp6BYtbW1tIWFTdna2zj//fKWnp6unp0f79u0z9pwa+jesdPq8xvU1jNfUqVON7YDMQjgVA3a7XV/96ld19913Szp9Aaq5uTnkDunBSXWkM6CGjos27Y72Du1wAQIQicGbMw4WLnga0N/fP+L7PT09/HsEYKnBs5dtNpsWLVoU1XmprKwsZDPalJQUzmsAAAAmGnrBNSUlRevWrZPD4VAgEFBaWprOOuuskDGBQEAOh0PXX3+99u3bp76+vpB6fF4DYKWRzkEzZszQmjVrwu59XFFRoTfeeCPsqkbBYJDzGhIK4VSMnH/++SHrFdfX14eEQ4M/NA3dw2IkQ8eRdCNRRTKrLzU1VSkpKerr6xszoE1LSzOrNQAYl8G/c4PBoPx+f8gfAa2traqrq1NXV5cyMzM1c+ZM5eXlGe/7/f6QZWT4HQ4AAGCuWbNmhTzv6+vT008/rQ0bNiglJUWNjY06ePCgPB6P3G63SkpKVFRUpL6+Pj3zzDMhwZR0ehlnAEhEg/+2DPfeSO+PdhxgBcKpGHE6nXK73WptbZUkeTyekPenT59uPPZ4PPL5fGNe0B88RT0rK0tut9vEjgHzZGdnjznG5/NFPGuQi7gArDZ0tvLLL7+sr3zlK9q+fbveeusttbe3DzsmJydHq1at0sqVK/XSSy+FvEfoDgAAYK6hs6IkqbKyUt/97ndHXF7ebrfL5XKFXcVj6tSpMekTACJls9nCvt7Q0KAtW7YoKytr2LJ+nZ2dUdcDrEI4FUM9PT3G46EXtaZPn24s7xMMBnX06FHNmzdv1HqDN2OfMWOGuc0CJgoXtGZnZ+sv//IvtWvXLlVUVIT8YWC321VWVqalS5fq2WefNdbHHcBFXABWG3pee+edd/TOO+8M2zh7sPb2dv32t7/V7373u2F/BHBeAwAAMNfgazCDjba8fCAQGPH9kZarB4B4GWsiQ2dnp3bt2hVxPf4ORaIhnIqREydOyOv1Gs8HL+0jnT65zJs3T/v375ck7d27d8xwat++fcbjhQsXmtgtEHvTp09XaWmpFi1aZGxE29vbq7S0tJCNaKdPn278dzGAaccArJabmyu73W4E60NDKZvNpvz8fKWlpam3t1ctLS3GuWvoXbp2u105OTnxaRwAAGCSiHRljkgRTgGw2tDJDpKMvznHEm4c4RQSDeFUjLz11lvG44yMjGFrH0vS0qVLjYvw27dv15e//OUR6zU1NamysjLkWCBRhZsmvH//fv3bv/2bsWFjYWGh8Z7f79fHH3+sbdu2hd2wkWnHAKzmcrlUVlam8vLyYe/NmDFD/+f//B/l5uYar7W1telnP/uZGhoaho0vKyuTy+WKYbcAAACTTyR7H0eDi7gArBZuRmhvb6/cbrf8fr+6u7uHvZ+RkSGn0zlsi5mBY4FEQjgVoZ6enrBpdTj79+/Xiy++aDz//Oc/L4fDMWzcihUr9Nxzz6m3t1cNDQ168803dfnll4et+fTTTxt3Xs+bN09z5swZx3cBxMdIyynU19dry5YtysjI0JQpUxQMBmWz2XTq1KmQmYZD8csTQCK49NJLw4ZT9fX1+qd/+ifl5+crNTVVPp8vZOZUuDoAAAAw19CZ7hPBTHcAiWCkGaHhgqcB4QKrAVxfQ6KxW93AmeKDDz7Qd77zHe3YsWPE/8h9Pp9eeeUV3X333err65MkZWZm6rrrrgs7PicnR1dffbXx/IknntB7770XMsbv9+vpp5/Wu+++a7y2bt26iX47QEyNtvmidPoXZU1NjWpra1VTUzNqMBVJPQCIh7q6uhHfCwaDam5uVmNjo5qbm0OCqaGzP8PNEAUAAMDEuFyuYVsqjFd+fj4z3QFYjhmhSHbMnIrCoUOH9PDDD8vhcGj69OmaMWOGMjMzFQgE1NLSogMHDoRcZE9NTdXGjRtH/XB07bXXav/+/dqzZ498Pp8eeOAB/frXv9bs2bPV19enffv2qbW11Ri/du1azZ8/P6bfJzBRA+GsWcxeOxwAxmP79u3DXsvJyZHP5wsbsmdkZCglJUXt7e3D6qxevTpWbQIAAExag6+fJEIdAJiIkWaEOp1O5ebmqqmpadgxU6ZMUVtbm/x+f8jrzAhFIiKcGof+/n7V1taqtrZ2xDFz587VrbfeqpkzZ45ay+l06o477tDPf/5zvf/++5Kkmpoa1dTUhIxzOBy67rrrdM0110z8GwBiLDMz09R6WVlZptYDgGi1traGhEwDy/cNvJaVlaWioiLj/YaGBnV1dQ0bL53ej6q1tdW0O3sBAAAgNTY2hl3Sr6CgQFlZWTp27Niw92bNmqWOjg41NzeHvN7f36/GxsaQz3cAEG8ul0uLFi3S7t27Q173+/1qampSVlaWZs2aJafTKb/fr6NHj4YNrCRp0aJFzAhFwiGcitCll16qoqIi7d+/XwcPHtSJEyfU0dGhjo4OBYNBZWRk6KyzzlJJSYkuvvhilZaWRlw7IyNDt99+uy6//HLt2LFDBw4cUFtbmxwOhwoKCrR48WKtXr16zKALSBRm/1udMWOGqfUAIFqDl/QrKCjQjTfeqK1bt6qxsVHS6eVHDx48GPbYoqIirV+/Xo8//rhx4aO+vp5wCgAAwEQjfRZLT0/XqlWrVFJSoq6uLvX29iotLU2ZmZk6cOCAtm3bFva46upqwikAlps9e7YRTjmdThUUFOjEiROSTv8dumfPnrDHTZs2Tc3NzcYMqjlz5sSnYSAKhFMRSklJ0XnnnafzzjsvZl+jrKxMZWVlMasPxEteXp7cbveoGzRGyu12cwEXgOUGz4JKS0tTcXGx7rzzTlVXV2vnzp2qqKgIuVPXbrerrKxMy5cv19y5c2Wz2ULWC2cvPQAAAHMNXYrPZrMpGAyqvr5eW7ZsUXZ2tkpLS5Wenq6enh5VVVWpo6Nj2PgBLS0tcesdAEZy9OhR47Hf79fUqVN1zTXX6P333x/x79BLLrlEO3fuNEIsSTpy5IhWrVoVz9aBMRFOAYiJ/Pz8EcOpodOOjxw5EnLhd2gdALDa4OVKe3t7JZ2+gFFSUqKSkhJ5vV61t7cbd+Lm5OQMWzJh8P55LFcKINF5vV61tbXJ5/MpNTVVubm5LAUDIKE5HI6Q51dffbU++ugjY6Z7R0eHdu3aFfbYoqIiXXTRRXrppZeM15xOLpkBsJbX61VFRUXIa3v27FFbW5uuuOIKffGLX9Tx48fV1dWlzMxMFRYWqqamRi+++GLI6h+SVFFRIa/Xy+c5JBR+0wKIiaG/BAcbbdpxNHUAIF4GL1fa0tKinp4epaenG6+5XK5RP+T39PSE3H3LcqUAElEwGNTBgwe1c+dOVVZWhr0Td9myZSopKZHNZrOwUwAYrqCgIOT50qVLdfnll2v79u166623QvYPHZCbm6uVK1dq5cqV8ng8IeEUN0oCsFpbW5vxeWzevHk6evSofD6f6urqtGXLljGPT01N1axZs3TgwAEFAgG1t7cTTiGhEE4BMF1jY6Oxpu1gDodDeXl5amlpGXaxIz8/X62trerv7w85xu/3sxEtAMvl5eUpJydH7e3tCgaDevnll3XttddGfPxLL71kLBOTm5vLcqUAEk5tbW3IXnpDBQIBlZeXq7y83NhLr7i4OM5dAsDIhs5Mf/zxx9Xb2zvieU06feH3t7/9rf74xz8qLS0t5L3s7OyY9AkAkRq8+kZhYaEuvvhiPfPMM2GvuQ3ldDr1l3/5lzpy5IgOHDgg6X9WAQEShd3qBgAkn5E2ou3v71dTU5MCgYBycnJUUFCgnJwcBQIBNTU1DQumBlRXV8eyXQCIyOD1ud977z11d3dHdFxXV5fef//9sHUAIBFUVVXpwQcfDLmAm52draVLl+qyyy7T0qVLQy7SNjY26sEHH1RVVZUV7QJAWEPDpaNHj0Z1Xhu8r4ukkP1CAcAKg89Dx48f17PPPhtRMCWdvtn72WefDdl3auh5ErAaM6cAmG7oRrR/9Vd/pf/6r/8K+QUabkkF6fSdHX/xF3+hp59+2niNjWgBJIKVK1fqpZdekt/vV19fn+655x794z/+ozIyMkY8pru7W/fee6/6+voknT7HrVixIl4tA8CYamtr9dhjjxl35s6cOVNXXHGFysrKQvZb8fv9qqio0LZt21RXVyefz6fHHntM3/72t5lBBSAhjDTTqaioSFdeeeWI57XXX3897Owqt9sds14BIBK5ubmy2+0KBALG7Cfpfz6vzZs3T52dncbex1lZWTpw4EDI57WB4+x2u3Jycqz6VoCwCKcAmG7wRrR2u11/+qd/qiVLluj555/XBx98EPYuj5SUFP3pn/6prr32WjkcDv3yl780lv5jI1oAicBut2vdunV66qmnJEkej0ebNm3S5z//eV1++eXyer3y+XxKTU2Vy+XStm3b9P777xvBlCStW7dOdjsT1wEkhmAwqK1btxrBVFlZmW644QalpKTI6/Xq1KlTxnktNzdXF154oRYtWqQtW7aosrJSPp9PW7du1Z133skeVAAsl5ubK5vNZiylPKCxsVF//OMfNW/evJCl/3p6evTBBx+EDaZsNhsXcQFYzuVyqaysTOXl5cZrgz+vScOXNB36eW3wcew3hUTDFV8Aphu8P1QgEND+/fv1/PPP6/jx4yMe09fXp3feeUfV1dW69tprQ/akKiwsjGm/ABCpJUuWqLW1VS+++KKk0+euHTt2aMeOHWMe+8UvflFLliyJdYsAELGDBw8aF2Vnzpypr3/96zpy5Ih27typysrKYXuElpWVadmyZbrhhhv0wAMPqK6uTo2NjaqurlZJSYlV3wYASDp9EXf27Nk6fPjwsPf27dunf/zHf1RqaqqcTqf8fn/IXi5DzZkzh4u4ABLCrFmzjHAqJSVF69atM4KpkaSkpOiv/uqvtGnTJuNmydmzZ8e6VSBqhFMATDd9+vSQ5w8//HDExx4/fnzY+BkzZpjSFwCYYc2aNQoEAnr55ZcjPuaqq67SmjVrYtgVAETvnXfeMR5/7nOf03333TfizUSBQEDl5eUqLy9XYWGhlixZorq6OknSzp07CacAJISxZnH6fL5RQykASDRHjhwxHvf19enpp5/Whg0bRg2oBsYNXsXj8OHD7H+MhMO6MgBMl5uba2o9llMAkEiqqqr0+uuvR3XM66+/rqqqqhh1BADR83q9qqiokHR6tsGrr7466iz3wY4fP67XXnvNmFVQUVEhr9cbs14BIBJerzfsrKnxOHz4MOc1AJbzer0hS/NJUmVlpe6//3598sknw7bN8Pv9+vjjj3X//feHPY7zGhINM6cAmM7lcmnRokXDfhGOB2viAkgktbW1evTRR4f9EZCZmanp06cb+xw0NDSoq6vLeN/v9+vRRx/V7bffruLi4ni3DQDDtLW1Gcv29fT0DNujJSsrS+eff75cLpe8Xq/27dunzs5O432/36/+/n5Jp2dVtbe385kNgKXa2tqMc5ndbg9ZmjRSA8cFg0HOawAsN/jz2rx583T06FH5fD7V1dVpy5YtysrK0qxZs4zlSo8ePRryeS01NVWzZs3SgQMH+LyGhEQ4BSAm5syZM2I4NdbFjqF1ACARBINBPfHEEyHB1IwZM7RmzRqVlZXJ6fyfj1V+v18VFRV64403VF9fb7z2xBNPaNOmTWMuOQMAsTZ4WavBwVQ057XBx/X29sahawAY2eDz2oIFC1RVVRWypNVYUlJSdN5552nPnj2SOK8BsN7g81phYaG+9KUv6Re/+IUx272zs9M4Zw1VWFior33ta/rggw904MABSZzXkHgIpwDExEi/HKXTvzw//fRTY4bB0BkIg1VWVmr16tWxaBEAonLgwAE1NTUZzxcuXKhvfOMbSklJUWtrq+rq6tTV1aXMzEzNnDlTF154oRYtWqTHH39cn332mSSpqalJBw8e1Lx586z6NgBA0uk7aYcafF7zer06deqUfD6fUlNTlZubG/a8NiAtLS1erQNAWIPPa729vcNmhI4lGAyGXAjmvAbAaoPPa+Ndkq+np8d4zHkNiYZwCoDpvF6vDh06NOqY0QKpwQ4dOiSv18u0YwCWe+2114zH+fn5uuGGG7Rz50699dZbam9vHzY+JydHq1at0oYNG3TvvfeqpaVFkvTqq68STgGw3NA9QvPy8rRhwwYdOXJEO3fuVGVlZciSWHa7XWVlZVq2bJm+8Y1v6Ic//KFaW1uN99kjFIDVcnNzjWX5BmYJSKcvxo42W2Dgfb/fbxxnt9s5rwGw3ODz2p49e7R79+6QEH00x48f14MPPiiHwyGJ8xoSE+EUANOdOHHC1HonT57UOeecY2pNAIjG0ND9/PPP15133mnstxJOe3u7fvvb3+rFF1/UxRdfrHfffVcSoTuAxDRr1iz9+Mc/VmNjY9j3A4GAysvLVV5erqKiIp1zzjkh4RQAWM3lcqmsrEzl5eUhr4+1jFW499n7GEAiGHxeG8/MqcFBFuc1JCK71Q0ASD4DswPM0tzcbGo9AIjW4NDdbrfr3XffHTWYGqy/v1/vvvuu7Pb/+dh18uRJ03sEgGgMvZmovLw8JJjKzs7W0qVLddlll2np0qXKzs423mtsbNTu3btHrQcAVpg1a5YpdWbPnm1KHQCYqEsvvdSUOsuWLTOlDmAmZk4BMJ3ZGyxGOmUZAGJlcOg+eJmraAw+rrm5mRmhACw19Oafgb1ZZsyYoTVr1qisrExO5//8uej3+1VRUaE33nhD9fX1w/ZyaWlpMe2iMACM15EjR0Z8LzMzU/Pnz5fL5ZLX69XevXvV1dUVduzhw4e1atWqWLUJABGz2WxWtwDEDOEUANOF22B7IlJSUkytBwDRinZDbQBIdOO50MG5EEAi83q9w2Z1SpLT6dSll16qq666Sunp6cbrPT09eumll/Tee+8N2xN59+7dLMMMICHs3LlzxPeysrJ0/vnnG6H7vn371NnZGXbsO++8w97HSDiEUwBMN3jZl0SsBwDRKigoMLVefn6+qfUAIFpDz0M2m03BYFD19fXasmWLsrOzVVpaqvT0dPX09KiqqkodHR3Dxg8w+zwJANFqa2sL+7rf79eOHTv0ySefjHpeG6q9vZ1wCoClvF6vKioqRnx/4GajSG4gInRHIiKcAmC6SMKk1NRUpaSkqK+vb8xl+9xut1mtAcC4TJs2LaHrAUC0hp6HFi9erBMnThj7TnV0dGjXrl1hjy0qKtK0adNUXl5uvHbWWWfFrFcAiMTQvytTUlJUUFCg48ePSxr9vFZYWKjm5mb19fUZr5m9XD0ARKutrW1Y8JSWlmacn0Y7rw0eJ50OsAjdkWgIpwDE1fnnn6/rrrvOCKUGQqrnnntO+/btC3sMS8gAsFpPT4/p9fijAEAiOXbsmO666y4dO3ZMO3fuVEVFRcheeXa7XWVlZVq+fLnOPvts3XPPPRZ2CwDDeTyekOfXXHONLrnkEu3YsUN/+MMf1N7ePuyYnJwcrV69WitWrND777+v//qv/zLeG21WFQDEQ1NTU8jzvLy8iD+vnXPOOfrhD3+o1tZW4/1Tp06psLAwbv0DYyGcAmC6o0ePhn09Ly9P3d3duvvuu0MCJ5vNprPPPlt5eXkhvzQH1ysqKopVuwAwpsrKSlPr7dmzR8uXLze1JgBEY+jyV62trXriiSd04403qqSkRF6vV+3t7ert7VVaWppycnLkcrnU19enxx9/fNhnNu7EBWC1+vr6kOfTpk3Tj370I2NGaDjt7e36zW9+ow8++EDXXXddyHt1dXVauHBhTHoFgEicPHky5PnVV1+t1NRUlZSUjPp5bfD4X/ziFyPWA6xGOAXAdIcOHQr7emtra9jwKRgM6tixY6PWu+SSS0zrDwCiVV1dbXo9wikAVgq3rPJnn32mf/u3f9OaNWtUVlYWcmet3+/Xxx9/rG3btg27ACyx/BUA6w2dGfXTn/5Ufr8/omMbGxv105/+dNR6ABBvQ2eELlq0KOS5y+Ua9eagoeOZEYpEQzgFwHRdXV0JXQ8AomX2sn5er9fUegAQrdTUVOOxzWYzZrXX19dry5Ytys7OVmlpqdLT09XT06N9+/aps7MzpMbg49LS0uLXPACEMfi8JiniYGqk8enp6RPuCQAmwmazhTzfu3evLrzwQuO51+tVW1ubsW1Gbm5uSFj12WefjVoPsBrhFADTmf3Ljl+eAKyWk5OT0PUAIFq5ubmy2+0KBAJKT0+Xz+dTf3+/8f5oG2xLksPhUGpqqrxer+x2O+c1AJabO3eu3nrrLdPqnXvuuabVAoDxyM/PD3n++9//XgsXLtTRo0e1c+dOVVZWht1zatmyZTrnnHP0xhtvjFoPsBrhFADTDb1jbaK4Yw2A1YqLi/XHP/7RtHpnn322abUAYDxcLpfKyspUXl4ur9erL37xi9q1a5eOHz8+5rGFhYVasmSJXnrpJUlSWVkZ+00BsNzcuXNNrUc4BcBqQ/9ubGho0F133TXicsqBQEDl5eUqLy9XWlrasHHFxcUx6xUYD8IpAKbLzs42tV5mZqap9QAgWmbfYZaXl2dqPQAYj2XLlqm8vFyS9Omnn+qOO+7QsWPHtHPnTu3evdtYsk86PZN98eLFWr58uc4++2w9+OCDxnvsoQcgEbhcLqWkpKivr2/EMYNvfBxt2eaUlBRCdwCWmzZt2rDXIt3nM9y4cPUAKxFOATDd1KlTTa131llnmVoPAKI1+AItACSLkpISFRUVqbGxUXV1dXryySe1YcMGlZSUyOv1qr29Xb29vUpLS1NOTo5cLpf6+vq0ZcsW1dXVSZKKiopMn60AAOPh9XpHDaakyPcR7evrk9frJaACYCmXy6Vzzz1Xhw4dCvu+zWZTfn6+MUuqpaVlxL9dzz33XM5pSDiEUwBMN9pyVTNmzNANN9wgScbFDknasmWLGhoawh7DtGMAVmPvOwDJyGazaf369XrwwQfl8/lUWVmp+++/X1dccYXKyspUWFhojPX7/fr444/15ptvGsFUamqq1q9fzzkSQEJoa2sztV57ezsXcgFY7s/+7M/08MMPh30vGAyqubk54jpAoiGcAmC6jo6OEd+rr6/XPffco9zcXDmdTvn9/jH/iBitHgDEQ6RLJ0TK5/OZWg8Axqu4uFg33XSTHnvsMfl8PtXV1WnLli3Kzs5WaWmp0tPT1dPTo6qqqpDPZKmpqbrpppu4iQhAwjD770aPxxMS0gMAAHMRTgEw3UjTjQeL5q62w4cPa9GiRRPoCAAmpqury9R6nZ2dptYDgIkoLS3Vt7/9bW3dulWNjY2STl/k3bVrV9jxRUVFWr9+PcEUgIQS6eyBSLW0tJhaDwDG47XXXjOlzuuvv67zzjvPlFqAWQinAJjO7Iu4ZtcDgGh1d3ebWs/r9ZpaDwAmqri4WHfeeaeqq6u1c+dOVVRUKBAIGO/b7XaVlZVp+fLlmjt3Lkv5AUg4ZodTTU1NptYDgGh5vd6QG8AdDof6+/sjPn7w+OrqavbSQ8IhnAJgOrvdntD1ACBa0fwBEAm/329qPQAwg81mU0lJiUpKSuT1etXe3m7sEZqTk8PFDAAJLdzNP1OmTIkoZAo3rqenx7TeAGA8Tpw4YTx2Op361re+pWeeeUbHjx8f89iioiJdf/31+slPfmL8/XnixAnNmjUrVu0CUSOcAmC6jIwMU+txIQSA1RwOh6n1nE4+ggFIbC6Xi89gAM4obrd72GuDA6esrCzNmjXL2Pv46NGjxlLL4QKs7Ozs2DULABEYPCM0Pz9fs2bN0p133qnt27frrbfeUnt7+7BjcnNztXLlSq1cuVJ2u135+fk6efKkpNPLlRJOIZFwZQSA6dLS0kytl56ebmo9AIhWZmamqfXMDvEBAAAmu5EC9RkzZmjNmjWaN2+eOjo65PP5lJqaquzsbB04cEBvvPGG6uvrhx3H5zUAVhu6jHJtba1+8YtfjDpzqq2tTb/97W/1wQcf6Gtf+1qsWwQmhHAKgOmmTp1qar0pU6aYWg8AomX2TCdmTgEAAJhrpD2nent79dZbb2nLli3D3jvnnHPU29sbVT0AiJf8/HzjcVNTkx544AH19fVFdOzx48f1wAMPhCxRX1BQYHqPwERwZQSA6ebMmRP2dafTqUsvvVRLlixRTU2N2tvblZOTo7PPPlu7du3Se++9F3YflpHqAcCZaugdcAAAAJiY7u7usK83NTWNuO/UsWPHRqzX1dVlSl8AMF7Tpk0zHgcCAQUCgaiOHxpknXXWWab0BZiFcAqA6UZahs/v92vHjh366KOPNHv2bDmdTjU0NOiVV14Z9YM/y/oBsJrZy5WmpqaaWg8AAGCyy8nJMbVebm6uqfUAIFoul0tz5szR4cOHJ1xrzpw57CeKhGO3ugEAyaempmbU97u6urRnzx6Vl5drz549Y96RNlY9AIi1wcspmIHlFAAAAMxVUlJiar25c+eaWg8AxmPRokWjvp+amqrMzMwxb4AsKyszsy3AFMycAmC6uro6U+vV19frvPPOM7UmAERj8HIKZmA5BQCJzuv1qq2tTT6fT6mpqcrNzeVuWwAJze12m1rP7JlYADAee/bsCfv6jBkztGHDBgUCAePzmt1u1xNPPKGGhoZh4ysrK7V69epYtwtEhXAKgOm8Xq+p9UZaOxwA4qWtrc30elzkBZBogsGgDh48qJ07d6qysjJkXwO73a6ysjItW7ZMJSUl7J0HIOH4fD5T6/X29ppaDwCi5fV6dejQobDv1dfX64c//GHEtQ4dOiSv18vfoUgoMQ2nvve974U8t9ls+u53vzvqGDOE+zoA4sfsX3QZGRmm1gOAaB08eNDUetXV1SoqKjK1JgBMRG1trbZu3arGxsaw7wcCAZWXl6u8vFxFRUVav369iouL49wlAIzM7D09zd5zFACideLECdPrzZo1y9SawETENJzau3evKWMAnFnMXq5q6tSpptYDgGh5PB5T67W3t5taDwAmoqqqSo899ljEsw4aGxv14IMP6qabblJpaWmMuwOAyKSnp4/4ns1mUzAYjPh1iXAKgPVGumlovI4fP044hYRit7oBAMlnypQpYV/PzMyUw+EI+57D4VBmZmbY9winAFjN6TT3fp6UlBRT6wHAeNXW1kYVTA3w+Xx67LHHVFtbG6POACA6o+19PFIANdLr0uklswDASiPNnJo6darOOeecsO+dc845I15HO378uGm9AWaI6cypkS5QRzsGwJklNzd32Gs2m01dXV0jHtPf36+urq6wd66xES0Aqw1dXtRut4fsxTKWoeNZ5xtAIggGg9q6deu492nx+XzaunWr7rzzTvagAmC56upqU+sdOnRICxcuNLUmAEQj3N7HixYt0qxZs/T222+PeMxll12mI0eOaM+ePSHvmb0iCDBRMQ2nHn74YVPGADjzjXZH2njGAUA8Dd3DwO12h/1DYSRDx5u9JwIAjMfBgwcnvFxMY2OjqqurVVJSYlJXADA+3d3dptbr7Ow0tR4ARGvoihuZmZnau3evKisrRzymvb1dL774orFC0eAbxUdazQiwCsv6ATBdNBdsI8HeLACsNnTZ0WjPc0PHZ2VlTbAjAJi4nTt3mlJnpDt3ASCehs50nyg+rwGwWmFhYcjzrq4u9ff3G89tNpsKCgo0ffp0FRQUhMxkH1ihaLCioqLYNgxEKaYzpwBMTh0dHabW83g8w34hA0A8zZw509R6M2bMMLUeAETL6/WqoqLClFoVFRXyer0sWQrAUmefffaYYxwOh7GU/OALvOGY/fkPAKJ17rnnhn3d6XTq0ksv1VVXXaX09HTj9Z6eHr388st699135ff7hx03Z86cmPUKjAfhFADT9fb2mlpvvPsgAIBZ8vLy5Ha7R1yjOzMzU0VFRcbeUo2NjSPus5eTk6O8vLxYtgsAY2praxt1OeXs7GyVlpbK5XLJ6/WqqqpqxBuQgsGg2tvbCacAWGr69OljjhkrkBqMm4kAWC0tLS3s61OnTtXs2bPldIZe2nc6nZo1a5YOHDgQdunmwUEWkAgIpwCYbqRfnuPF3iwAEkF+fv6I4VRXV1fEm3ATTAFIBCMFTTNnztQVV1yhsrKykAsefr9fFRUV2rZtm+rq6oYdx0x3AFYz+6Kr2X/XAkC0RrpZu7GxUVu2bDFuJkpPT1dPT4/27ds36n55Zt9MDkwU4RQA05kdJvFHAYBEUFtbm1B1AGAiwl2cKCsr0w033DBs823p9J24F154oRYtWqQtW7YM24ibme4ArBbJXsUpKSlyOBzq7+9XX1/fqGM9Hg83FQGw1FjX1zo6OrRr166I63F9DYnGbnUDAJJPc3OzqfWamppMrQcA0WpsbIxqGZjR9Pf3h11iAQCsNH369BGDqcFSUlK0YcOGYctnjbZEIADEw/Hjx0d9Pz09XUVFRZo6daqKiorGnGnF5zUAyYbPa0g0CTVzqqurS++9954+++wzHTt2TB6PR16vN+qLQTabTc8++2yMugQwFrNnBdTV1emiiy4ytSYAROPgwYMRjRvYYHss1dXVKioqmmhbAGCakpKSMYOpASkpKZo7d64aGhqM12w2W6xaA4CInDp1atT3e3p6VFNTY1o9AIg1s2/Wbm5u5u9QJJSECKf6+/v1m9/8Ri+88IIpy0GQAgPW6urqMrXeaOvlAkA8tLS0RDQu0s8gZs8wBYBoDQ2TDh48qL6+vogCKp/PF/E+ewAQLz09PabWY28W4MyyefPmEfcIPlOZfR566qmnkm5pP7fbrY0bN1rdBsbJ8nCqr69P9913n8rLy61uBYBJMjMzTa2XlZVlaj0AiJbTae5HpkhnJwBArAwN0xsaGrRlyxZt2LBh1HNUX1+fnnzyyZBZUwCQCFwul6n1xlr2D0Bi8Xg8Ee09N5n19PSYHuQDE2F5OPXcc8+FDaZmzJihwsJCuVwuORyO+DcGYNzM/hCfbHd1ADjzjLX0QWZmpoqKioxl/RobG0edRVpYWGh2iwAQlXCfryorK3X//ffriiuuUFlZWUgw7/f7tXv3br355puqq6sbduxYG3YDQKyZHU5lZGSYWg9AbLndbqtbMF0gEFBHR8ew1+12u9LS0mS320P+7szMzFQgEFBvb68CgcCw47Kzs2W322Pac7wl4899MrE0nOrp6dHLL78c8trVV1+tq6++Wnl5eRZ1BWCi6uvrTa3HRrQArDbSDM6ZM2eOeBG3oqJC27ZtC3sRNzs7O2a9AkAkRjoP1dXVacuWLcrOzlZpaanS09PV09OjqqqqsBdHBnBhAIDV+vr6TK1nxrYTAOInWZd227RpkzEjzG63KxAIKBAIyOv1Kjs7WykpKcbSzEPDqoHxkpSbm6vvf//7lnwPwEgsDacqKirk9/uN5xs2bNCf//mfW9gRADOYvWHjyZMnTa0HANE6ceLEsNdKS0t18803h13+yul06sILL9SiRYv06KOPav/+/cPqzZs3L2b9AsBYcnNzjdme4XR0dGjXrl0R1bLb7crJyTGzPQCI2uDrS4lYDwDGY9WqVfrtb38r6fRnrqlTpxp/nw6+caivry8kpJ82bZqam5uNcGrVqlXxaxqIkKXz+E6dOmU8zs/PJ5gCksRIFzlsNtuwzbcjeW+kegAQL+FC8urqanV3d0uSvF6vGhsbdezYMTU2Nsrr9UqSuru7dejQoWHHhgu7ACCeXC6XFi9ebEqtsrIy05fTAoBomT2Dk9AdQCJYuXKlsUqH3+9Xd3e3br75Zl1wwQXDluiz2+264IILdPPNN6u7u9sI2Z1Op1asWBH33oGxWDpzanCaO3fuXAs7AWCmkZaJGS1kGu09/igAkIj8fr82bdqk7OzssEtdjfS6pBHDeACIp2XLloXd/zday5cvn3gzADBBZm8PkZuba2o9ABgPu92udevW6amnnpJ0erbUli1b9PnPf17//M//rH/9139VZ2ensrKy9P/+3//Ttm3btGXLlpDr7uvWrUu6vaaQHCwNpwZfcHY4HBZ2AsBM06ZNG7aE1URMnTrVtFoAMB5nnXXWiO+NFECNtjcL5zUAiaCkpERFRUUT2t+zqKiIGw0BJITW1lZT67W1tZlaDwDGa8mSJWptbdWLL74o6fSEjx07dujtt982xnR1demf/umfht38/cUvflFLliyJa79ApCyNTM8991zjsdl71ACwTlZWlqn1RpqJBQDxMm3aNFPrFRYWmloPAMbDZrNp/fr1Sk1NHdfxqampWr9+PbNBASSEiQTt4TQ0NJhaDwAmYs2aNfr6179uLPEnnV6FaCCMGvxYOr2U39e//nWtWbMm7r0CkbJ05tTZZ5+t4uJi1dbW6tChQ2pvb2f5LiAJZGZmmlovIyPD1HoAEK309HRT66WlpZlaDwDGq7i4WFdeeaVxJ240rrzyShUXF8egKwCIXnNzs6n1WlpaTK0HABO1ZMkSXXjhhdqxY4f+8Ic/qL29fdiY3NxcrVq1SitWrGApPyQ8y/+FXn/99ZKkQCCgX/7ylxZ3A8AMZodJZoddABCt8c4qGAnhFIBEUVtbq9dff31cx77++uuqra01uSMAGB+v12tqve7ublPrAYAZ7Ha7Vq1apbvvvlvf+973jGtwGRkZ+t73vqfvf//7WrVqFcEUzgiW/yu96KKL9MUvflGS9NZbb+lXv/qVxR0BmCizl+Eze5lAAIiW2RtiM1McQCIIBoPaunWrfD7fuI73+XzaunXrsL0NAAAAEHt5eXlKSUmRJKWkpCgvL8/ijoDoWLqs34D169fL5XLpueee0/PPP69PP/1UV111lRYtWsTFG+AMZPYFCi54ALCay+VSSkqK+vr6Rhxjs9lks9mGrfU9VEpKilwuVyzaBICoHDx4cMQ9WjIzMzV79mw5nU75/X4dOXJEXV1dw8Y1NjaqurpaJSUlsW4XAEZl9oob3CQJAEBsJUQ4JUnXXnutFixYoB/96Ec6fPiw/v3f/13S6SmJGRkZUW2ya7PZjOMBxN+JEydMr3feeeeZWhMAouH1ekcNpqThG9COpK+vT16vl4AKgOV27tw57LUZM2ZozZo1KisrC9lw2+/3q6KiQm+88Ybq6+tDjnn77bcJpwBYbqRwKiMjQz09PQoEAsPeczgcSktLC7uEH8vLAwAQWwkTTr399tv65S9/OewDQXd3N+v8AmeYmpqahK4HANGqrq42td6hQ4e0cOFCU2sCQDS8Xq8qKipCXlu4cKG+8Y1vKCUlRV6vV6dOnZLP51Nqaqpyc3N14YUXatGiRXr88cf12WefGcdVVFQQugOwnMfjCft6d3e3zj//fF155ZWqr69Xe3u7cnJyNGPGDL322muqqqoKe1x7e3ss2wUAYNJLiHDqscce0xtvvGF1GwBM0traamq9trY2U+sBQLQIpwAkm7a2tpDZnvn5+dqwYYOOHDminTt3qrKyMmSWgd1uV1lZmZYtW6ZvfOMbuueee9TS0iLp9MzR9vZ2wikAlmpubh7xvX379mnfvn1KTU01lisda7+90eoBAICJszyceu2118IGU2lpaZo2bZpcLpccDocFnQEYr3DLJUxEf3+/qfUAIFpjXbyIVk9Pj6n1ACBaHR0dIc8vueQS/fjHPx5xD6pAIKDy8nKVl5erqKhIF198sV555RXjfY/Ho8LCwpj2DACjGWsJZun0Z7pIP9f5/f6JtgQAAEZhaTjl8/n0q1/9KuS1Sy65RFdffbXmzp1rUVcAJmrw/gRmSElJMbUeAEQrIyPD1HrsYQDAakPDqTfeeCPiC7aNjY3DZhQMrQcA8ZaRkWHqUnxmf/4DAAChLA2n9u7dq66uLuP5l7/8ZV1//fUWdgTADKmpqQldDwCilZOTk9D1ACBaQ4OoaGeIDh0fyYwFAIil4uLiEWd/jsfMmTNNqwUAAIazNJyqq6szHmdnZ2vt2rUWdgPALGaHScycAmA1zmsAkk1aWtqo72dnZ6u0tFQul0ter1dVVVWjzo7iZiIAVjv//PP14YcfmloPAADEjqXh1OB9aebNm8feUkCSGOtih9X1ACBaZi/Dl5WVZWo9AIhWfn5+2NdnzpypK664QmVlZSFLNfv9flVUVGjbtm0hNxkOKCgoiFmvABCJ6dOnm1pvxowZptYDAAChLA2n8vLyjMfp6ekWdgIgkdlsNqtbADDJZWdnm1qPcAqA1aZNmzbsNbfbrdtuu00ZGRlqbW1VXV2durq6lJmZqZkzZ+rCCy9UaWmp7rnnHnk8npBjzzrrrHi1DsAEmzdvHvbf8ZkuGAyaWu+hhx5Kur9F3W63Nm7caHUbAABIsjicGnwXSmtrq4WdADBTd3e3qfUG700HAFYYbSmr8ejs7DS1HgCYwePx6N5775XP55PX6x32fkZGhlJSUpLugjYwGXk8HrW3t1vdRkLjXAcAQGxZGk7NmTNH06dPV0NDgw4ePCiv1yuXy2VlSwBMYHY4Fe7iCADEU0NDg6n16uvrtXDhQlNrAkA02trawr4+2sXq0T7jtbe387cccAZxu91WtxATfr/flJsbMzMzQ5Y2TRbJ+nMHAJyZLP9Ne/XVV+vRRx9VX1+ffvOb32jdunVWtwRggsxeTmHw/nQAYIXjx48ndD0AiJbZM0I9Ho8KCwtNrQkgdpJ1abdgMKh/+Zd/UWNj47hrFBUV6c4770y6Jf0AAEg0dqsbuPzyy3XJJZdIkn73u99p27ZtFncEYKIcDkdC1wOAaPX09CR0PQCIVm9vr6n1fD6fqfUAYDxsNpvWr1+v1NTUcR2fmpqq9evXE0wBABAHlodTkvStb31LX/jCFxQMBvUf//Ef2rx5s/bt28dsCeAMZbebe2ohnAJgNUJ3AMkmLS3N1HrjvRAMAGYrLi7WTTfdFPV5KTU1VTfddJOKi4tj1BkAABjM8mX9vve97xmPMzIy1N3drY8++kgfffSR0tPTNW3aNGVkZER114rNZtN3v/vdWLQLIAIpKSkJXQ8AomX2PirsywLAatnZ2SHP7Xa78vPz1dTUNOaxU6ZMUUtLS8jNhOxjAiCRlJaW6tvf/ra2bt0a0RJ/RUVFWr9+PcEUAABxZHk4tXfv3hHf6+np0bFjx+LYDQAzTJkyxdR6BQUFptYDgGhlZmYmdD0AiFZubm7Ic6fTqZaWloiObWlpkdPpDFnKLycnx8z2AGDCiouLdeedd6q6ulo7d+5URUVFSKhut9tVVlam5cuXa+7cuSzlBwBAnFkeTgFIPt3d3abW83q9ptYDgGgFg8ER38vOzlZHR0fErwNAIhi69100e0YFAoFh43t6epgVCiDh2Gw2lZSUqKSkRF6vV3fffbc6OzuVlZWlTZs2cd4CAMBClodTZs+wAGA9s2c81tTUmFoPAKLV2dk54nsjBVCjBVOj1QOAeKirqxv1fZvNpvz8fKWlpam3t1ctLS2jBvX19fXKy8szu00AMI3L5TL2/XQ4HARTAABYzPJw6uGHH7a6BQAm6+rqMrUeMw8AWM3s8xrhFACrjXVeS0tLU2ZmpoLBoDIzM9XV1TVsttVgnNcAAAAARMPycApA8hm4G80sTienKgDWGrw/QSLWA4BojbX3XU9PT1Sz17OysibaEgAAAIBJxG51AwCSj9vtNrVedna2qfUAIFoZGRmm1uMiLgCrzZw509R6M2bMMLUeAAAAgORGOAXAdMycApBsCgoKTK2Xn59vaj0AAAAAAIAzScJf8e3u7lZ7e7uxJnpmZqZycnJMv4MZgHm8Xq+p9bq7u02tBwDRmjp1qqn1pkyZYmo9AIhWVVWVqfX279+viy++2NSaAAAAAJJXQoZT5eXl2rlzpw4cOKCTJ0+GHXPWWWdp3rx5Wr58uS644IL4NghgVMFg0OoWAMBUeXl5ptZj5hQAq9XX15tar66uztR6AAAAAJJbQoVTFRUV+s///E8dP358zLEnT57UyZMn9c4776iwsFDf/OY3VVZWFocuR/bkk0/q5ZdfNp5PnTpVDz/8cMTHV1ZWaseOHTp48KBaWlrkdDpVUFCgxYsXa/Xq1azjjjOG2XupsDcLgGRDiA8g2dhsNqtbAAAAAHAGSZhw6sknn9Qrr7wyrmOPHz+uH/7wh7rqqqv09a9/3eTOIlNdXT3u/ru7u/Xoo4/qvffeC3m9t7dXXV1dqqmp0SuvvKK1a9fqK1/5ihntAjFVWFiogwcPmloPAKw0sLxwotYDgGiZfePb9OnTTa0HAAAAILklRDj1+OOP6/XXXx/2usvl0jnnnKPCwkJjj6nu7m4dP35cx44dG7avzcsvvyy/368bb7wxLn0P8Pv9+tnPfjauu6D9fr/uu+8+7dmzx3ituLhYs2fPVl9fn6qqqtTa2qr+/n798pe/VH9/v7761a+a2T5gutbWVlPrtbS0mFoPAKJ17NgxU+vV1NTowgsvNLUmAETD7OVFWa4UAAAAQDQsD6c+/vjjYcHUueeeq2uuuUaf+9zn5HA4wh7X39+vTz/9VM8//7wOHz5svP7666/rggsuiOsFnxdeeEE1NTWSpGXLlumdd96J+Njnn3/eCKZSUlJ066236tJLLzXe9/v9evbZZ/W73/1OkvTcc89p/vz5mj9/vonfAWCuwf9NJmI9AIgW5zUAyWakPaIyMzPV09Oj/v7+Ye85HA6lp6eHnf1ZX1+v8847z/Q+AQAAACQnu9UNPPPMMyHPv/rVr+qee+7RkiVLRgympNN/GC1ZskT33nuvrr322pD3nn766Zj0Gk59fb1+/etfSzodTEWz71V7e7teeukl4/mGDRtCgilJcjqdWr9+vT7/+c9LOr1HxdD/nwGJpqenJ6HrAUC0PB5PQtcDgGg1NTWFfb2rqytsMCWdvkFwpGVJT506ZVpvAAAAAJKfpeFUTU1NyB17a9as0XXXXRd1nbVr12rNmjXG87q6OmMmUywFg0H97Gc/U19fnzIzM3XDDTdEdfyOHTvU29srSSoqKtIVV1wx4tj169cbmwwfOHBAR44cGX/jQIylpKQkdD0AiNZ4lu4dTSAQMLUeAETLbh/9T8GsrCwtXbpUl112mZYuXaqsrKxRx492YyEAAAAADGVpOHX06FHjsdPp1PXXXz/uWtdff72czv9ZpTAe4c3vf/977d+/X5L0ta99TTk5OVEdv2vXLuPxypUrjfApnClTpmjhwoXG8w8//DDKboH4cblcCV0PAKI11kXcaHERF4DVpk2bNur7nZ2dOnz4sA4ePKjDhw+rs7NzQvUAAAAAYDBLw6nW1lbj8bx585SZmTnuWpmZmZo3b57xvK2tbSKtjampqclYXu/888/XqlWrojre5/PpwIEDxvMFCxaMeczgMQP7VAGJyOfzmVqvr6/P1HoAYDWzZ2IBQLTy8/PHHNPc3KzGxkY1NzePOTYvL8+MtgAAAABMEpaGU4NnQ5jxx8zgGrGeafHYY4/J6/XK6XTq5ptvHnXWUzgNDQ3GhSmbzaZZs2aNecycOXOMx/X19VF9PSCezA6nzK4HANGK9vf8WMyeiQUA0SIkBwAAAGAlS6+MDL5bb6SNdaMxuEYkdwKO17vvvqtPPvlEkvSlL31JM2fOjLpGQ0OD8djtdis1NXXMY6ZMmWI87uzsZDN1JKxI/j1Hgz2nAFjN7XYndD0AiFZaWpqp9cz+/AcAAAAguTnHHhI7paWlcjqd8vv9OnTokAKBwLjvJO7v71d1dbWk0/tXlZaWmtmqoaOjQ0888YQkqaioSNdcc8246gxesz03NzeiY4aO6+zsjOriViTLceTm5hr7YHBXN8aruLjY2I/NrHr8ewRgpfz8fFP3s8zLy+O8BsBS6enpY47JzMyUzWZTMBgc82ZCl8vFeQ1AwhuYDW+z2ThnAUgKnNdwJrM0nMrKytLSpUv1/vvvq6OjQ9u3b9fq1avHVWv79u1G4HPRRRcpKyvLzFYNTz75pDFj6eabbx73jI6enh7jcaR3GQ4dN7hGJG655ZYxxzzyyCMqKCiQw+FQYWFhVPWBAXPmzDE1nJozZw7/HgFYyuwP+fyeBWC1jo6OMcdEs7pFfn4+5zUACW/gM53dbuecBSApcF7DmczyOPUv//Ivjbv2nnrqqXFd0N6/f7+eeuopSafvALz++utN7XHA7t279fbbb0uSVqxYoYULF4671uA9dJzOyDLCoePYhweJqq6uLqHrAUC02traTK3X2tpqaj0AAAAAAIAziaUzpySpsLBQd9xxh+677z55vV794Ac/0Je+9CVdffXVYy410dPTo5deekkvvPCCfD6f0tLS9Pd///cqKioyvc+enh49+uijkqTs7Gx97Wtfm1C9wbOg/H5/RMcMHRftuu6PPPLImGMGlg7s7+/XqVOnoqoPDDh58qSp9ZqamnT8+HFTawJANLq7u02t5/V6Oa8BsNTgZcbN0NXVxXkNQMILBALG/3LOApAMOK8hXqZOnWpsB2SWmIZTe/fujWicw+HQ+vXr9cwzz6i7u1vPPfecXnjhBX3uc5/Tueeeq2nTpikjI0PS6YtDJ06c0KFDh/Tpp58as4cyMzN1/fXXy+l0au/evZo/f76p38uzzz5rhDVf+9rXJryR+eDgLdIZUEPHRbJO/GAFBQVRjR84uSG2Nm/ebCwVmSza29tNrdfY2Ki77rrL1JpWc7vd2rhxo9VtAIhQTk6O6uvrTauXm5vL71kAlpro3zNDZWdnc14DkPCCwaDxv5yzACQDzms4k8U0nPre97437mN9Pp/++Mc/6o9//GNE47u6uvTYY49JOr0B3LPPPjvurz3U4cOH9eqrr0qSFixYoJUrV0645uA9sSJdKmjouFjtq4X48ng8poc5yYj/HwGwUk5Ojqn1zL4oDADRinb/2kjquVwuU2sCAAAASF6WL+sXCwOJsVlqamqMmk1NTaPO4Bg8A6a1tTVk7LXXXqsLL7xQkjR9+vSQY3w+35jL9DU1NRmPs7KyuLCVJJLx5+j3+6PaQHssmZmZEe/NdqZIxp87kMzM3iOKPacAWM3sPT3r6+uVl5dnak0AAAAAySu5rvbGwYkTJ3TixImIxvr9fh08eNB4Pji4mj59umw2m4LBoILBoI4ePap58+aNWu/w4cPG4xkzZkTZORJVsi7t9q1vfcu0Wvfee69ptQBgPMzem6Wjo8PUegAQLTNvJJLMP08CAAAASG4xDaduueWWWJY/o6WmpmrevHnav3+/pNP7c40VTu3bt894vHDhwpj2B0zU/PnzI953bjQLFiwwoRsAmJi0tDRT60W7byQAmC0lJSXs65mZmfJ6vWH3LLDb7XK5XGGDrZHqAQAAAEA4MQ2nzNibKRGsXLky4u9l+/bt+ulPfypJmjp1qh5++OERxy5dutQIp7Zv364vf/nLI45tampSZWVlyLFAIrvpppv0d3/3dxOu881vftOEbgBgYs455xwdOnTItHpnn322abUAYDxG2r92tBlVgUBgxPezs7NN6QsAAADA5GC3uoHJbMWKFcad2A0NDXrzzTdHHPv0008bdy/OmzdPc+bMiUuPwHg5nU4tW7ZsQjWWLVuWdHtNATgzmb1cFctfAbBaX1+fqfV8Pp+p9QAAAAAkN8IpC+Xk5Ojqq682nj/xxBN67733Qsb4/X49/fTTevfdd43X1q1bF7cegYlYu3atSktLx3VsaWmp1q5da3JHADA+g/eQNIOZs7AAYDxaWlpMrdfa2mpqPQAAAADJjSkJFrv22mu1f/9+7dmzRz6fTw888IB+/etfa/bs2err69O+fftC/tBbu3at5s+fb2HHQHRuvfVW/epXv9I777wT8THLli0jmAKQUEZb5mo8mDkFwGo2my3s64WFhfqzP/szFRcX6/jx4+rq6lJmZqYKCwtVW1ur1157TcePH49ztwAAAACSDeGUxZxOp+644w79/Oc/1/vvvy9JqqmpUU1NTcg4h8Oh6667Ttdcc40VbQITsnbtWl1zzTV6/PHH9dlnnykYDA4bY7PZtGDBAt14440s5Qcg4djt5k42H+miMADES25ubtjXT506pRdffFHNzc3D3psyZcqIM6Ty8vLMbA8AAABAkuMKcALIyMjQ7bffrssvv1w7duzQgQMH1NbWJofDoYKCAi1evFirV6/WzJkzrW4VGDen06m//uu/liQdPXpUDz30kHw+n1JTU3Xbbbdp1qxZ1jYIAKNITU1VT0+PafXS09NNqwUA4zHS3xb9/f1hgylJampqGrHejBkzTOkLAAAAwORAOGWylStXauXKleM6tqysTGVlZeY2BCSgWbNmyeVyyefzyeVyEUwBSHjhZnxORCAQMLUeAAAAAADAmcTcNWoAAACSkJmzpiTJ6/WaWg8AonX48GFT6x05csTUegAAAACSG+EUAADAGMyeOWV2PQCI1mhL9I3HqVOnTK0HAAAAILkRTgEAAIzB5XKZWi8jI8PUegAQLafT3BXeU1JSTK0HAAAAILkRTgEAAIyhpKQkoesBQLRmzpxpar0ZM2aYWg8AAABAciOcAgAAGEN/f39C1wOAaJ111lkJXQ8AAABAciOcAgAAGMOxY8cSuh4ARKunp8fUer29vabWAwAAAJDcCKcAAADG4PP5TK3HRVwAVuvo6DC1nsfjMbUeAAAAgORGOAUAADAGu93cj0xm1wOAaJkdTnV2dppaDwAAAEBy48oIAADAGAinACSbtrY2U+u1traaWg8AAABAcuPKCAAAwBgCgYCp9YLBoKn1ACBaZi/Dx8wpAAAAANEgnAIAABiD2eFUf3+/qfUAIFpmn9f8fr+p9QAAAAAkN8IpAACAMZh9EdfsegAQLbOXF3U6nabWAwAAAJDcCKcAAADGYPYyfCzrB8BqGRkZptZLT083tR4AAACA5EY4BQAAMAazZxiYXQ8AouVyuUytZ3bYBQAAACC5cWUEAABgDKmpqQldDwCilZmZaWo9wikAAAAA0SCcAgAAGAMzpwAkm1OnTiV0PQAAAADJjSsjAAAAY/D5fKbW6+vrM7UeAESrqqrK1Hr79+83tR4AAACA5EY4BQAAMAazwyTCKQBWa2lpSeh6AAAAAJIb4RQAAAAAAAAAAADihnAKAABgDA6Hw9R67DkFwGq5ubkJXQ8AAABAcuPKCAAAwBgCgUBC1wOAaJ111lmm1ps6daqp9QAAAAAkN8IpAACAMfj9/oSuBwDRSk9PT+h6AAAAAJKb0+oGAABActm8ebM8Ho/VbZiqv7/f9HqbNm0ytabV3G63Nm7caHUbACLkdJr7p2BKSoqp9QAAAAAkN8IpAABgKo/Ho/b2dqvbSHj8/wiAlbKzs02tl5WVZWo9AAAAAMmNcAoAAJjK7XZb3YLpOjs7TZ095XA4ku5CbjL+3IFk1tLSYmq91tZWU+sBAAAASG6EUwAAwFTJuLSb1+vVP/zDP5hW75577pHL5TKtHgBE6+jRo6bWO3LkiKn1AAAAACQ3u9UNAAAAJDqzgySCKQBW6+7uTuh6AAAAAJIb4RQAAEAEbrrpJlPq3HzzzabUAYCJSEtLM7Veenq6qfUAAAAAJDfCKQAAgAgsWrRIdvvEPjrZ7XYtXLjQpI4AYPyKiooSuh4AAACA5EY4BQAAEAGbzaa///u/n1CNv//7v5fNZjOpIwAYv5ycnISuBwAAACC5EU4BAABEqLi4WLfeeuu4jr311ltVXFxsckcAMD5erzeh6wEAAABIboRTAAAAUSgtLdXGjRs1ZcqUiMZPnTpVGzduVGlpaYw7A4DI+Xw+U+v19vaaWg8AAABAcnNa3QAAAMCZpri4WJs2bVJ1dbV27typ8vLyYWMuuOACLV++XHPnzmUpPwAJx+xwqq+vz9R6AAAAAJIb4RQAAMA42Gw2lZSUqKSkRF6vV3fffbc6OzuVlZWlTZs2yeVyWd0iAMRNMBi0ugUAAAAAZxCW9QMAAJggl8slh8MhSXI4HARTABJeRkaGqfUyMzNNrQcAAAAguRFOAQAAAMAkk5OTY2o9t9ttaj0AAAAAyY1wCgAAAAAmmYKCAlPrTZkyxdR6AAAAAJIb4RQAAAAATDLHjx83tV5jY6Op9QAAAAAkN8IpAAAAAJhkqqqqTK23f/9+U+sBAAAASG6EUwAAAAAwyXR2dppar6Ojw9R6AAAAAJIb4RQAAAAATDIOh8PUek6n09R6AAAAAJIb4RQAAAAATDJTpkwxtV5BQYGp9QAAAAAkN8IpAAAAAJhk3G63qfVycnJMrQcAAAAguRFOAQAAAMAk09zcnND1AAAAACQ3wikAAAAAmGS6u7tNrdfV1WVqPQAAAADJjXAKAAAAADAhNpvN6hYAAAAAnEEIpwAAAABgksnMzEzoegAAAACSG+EUAAAAAEwyeXl5ptbLzc01tR4AAACA5EY4BQAAAACTzNSpU02td9ZZZ5laDwAAAEByc1rdAAAAAAAkss2bN8vj8Vjdhqn8fr+p9d555x198MEHpta0mtvt1saNG61uAwAAAEhKhFMAAAAAMAqPx6P29nar20hoXV1dVrcAAAAA4AxCOAUAAAAAo3C73Va3EBOdnZ3q7++fcB2Hw6GsrCwTOkosyfpzBwAAABIB4RQAAAAAjCJZl3bz+/36u7/7uwnX2bx5s5xO/rQEAAAAEDm71Q0AAAAAAOLP6XRq2bJlE6qxbNkygikAAAAAUSOcAgAAAIBJau3atSotLR3XsaWlpVq7dq3JHQEAAACYDAinAAAAAGASu/XWW6OeQbVs2TLdeuutMeoIAAAAQLJj/QUAAAAAmOTWrl2ra665Ro8//rg+++wzBYPBYWNsNpsWLFigG2+8kaX8AAAAAEwIf1EAAAAAAOR0OvXXf/3XkqSjR4/qoYceks/nU2pqqm677TbNmjXL2gYBAAAAJA2W9QMAAAAAhJg1a5ZcLpckyeVyEUwBAAAAMBXhFAAAAAAAAAAAAOKGcAoAAAAAAAAAAABxQzgFAAAAAAAAAACAuCGcAgAAAAAAAAAAQNwQTgEAAAAAAAAAACBuCKcAAAAAAAAAAAAQN4RTAAAAAAAAAAAAiBvCKQAAAAAAAAAAAMQN4RQAAAAAAAAAAADihnAKAAAAAAAAAAAAcUM4BQAAAAAAAAAAgLghnAIAAAAAAAAAAEDcEE4BAAAAAAAAAAAgbginAAAAAAAAAAAAEDeEUwAAAAAAAAAAAIgbwikAAAAAAAAAAADEDeEUAAAAAAAAAAAA4oZwCgAAAAAAAAAAAHFDOAUAAAAAAAAAAIC4IZwCAAAAAAAAAABA3BBOAQAAAAAAAAAAIG4IpwAAAAAAAAAAABA3hFMAAAAAAAAAAACIG6fVDQAAAAAAAAAAJm7z5s3yeDxWt4E4GfhZezwebdq0yeJuEC9ut1sbN260uo0JI5wCAAAAAAAAgCTg8XjU3t5udRuIs2AwyM8dZxzCKQAAAAAAAABIIjYFlaWg1W0AMFGnbArKZnUbpiGcAgAAAAAAAIAkkqWgbkvrsboNACZ6qDddHUkUTtmtbgAAAAAAAAAAAACTBzOnAAAAAADApLR582ZjM3kkv4Gftcfj0aZNmyzuBvHidru1ceNGq9sAAAxBOAUAAAAAACYlj8fDBvKTUDAY5OcOAIDFCKcAAAAAAMCkZlNQWQpa3QYAE3XKpmAS7c0CAMmGcCoKHo9H+/fvV3V1tWpqanTixAm1traqp6dHDodDmZmZOvvsszV//nytWLFC+fn5UdWvrKzUjh07dPDgQbW0tMjpdKqgoECLFy/W6tWrNWPGjBh9ZwAAAAAATF5ZCuq2tB6r2wBgood609VBOAUACYtwKgo//elP9cknn4R9r7+/Xz6fT62trdq9e7f++7//W1/+8pd17bXXym63j1q3u7tbjz76qN57772Q13t7e9XV1aWamhq98sorWrt2rb7yla+Y9v0AAAAAAAAAAADEG+HUOGVnZ2vmzJmaMmWK0tPT1dvbqxMnTqi6ulr9/f3q6+vTc889pxMnTui2224bsY7f79d9992nPXv2GK8VFxdr9uzZ6uvrU1VVlVpbW9Xf369f/vKX6u/v11e/+tV4fIsAAAAAAAAAAACmI5yKwvz583XRRRdp0aJFKiwsDDumra1NTz75pN59911J0ttvv60lS5bo4osvDjv++eefN4KplJQU3Xrrrbr00kuN9/1+v5599ln97ne/kyQ999xzmj9/vubPn2/mtwYAAAAAAAAAABAXo683hxD/+3//b61Zs2bEYEqScnNz9a1vfUsLFy40XnvjjTfCjm1vb9dLL71kPN+wYUNIMCVJTqdT69ev1+c//3lJUjAY1DPPPDORbwMAAAAAAAAAAMAyhFMxYLPZtHLlSuP50aNHw47bsWOHent7JUlFRUW64oorRqy5fv162WynN3E8cOCAjhw5Ylq/AAAAAAAAAAAA8UI4FSNut9t47PV6w47ZtWuX8XjlypVG+BTOlClTQmZjffjhhyZ0CQAAAAAAAAAAEF+EUzFSV1dnPJ46deqw930+nw4cOGA8X7BgwZg1B48Z2KcKAAAAAAAAAADgTEI4FQMtLS168cUXjecXX3zxsDENDQ0KBoOSTi8DOGvWrDHrzpkzx3hcX18/8UYBAAAAAAAAAADizGl1A8mit7dXp06d0qeffqrf/e53am9vlyTNmDFDX/7yl4eNb2hoMB673W6lpqaO+TWmTJliPO7s7JTH4wlZPnAszc3NY47Jzc2Vw+GQJNntZJeInYFlLG02G//WACQFzmsAkg3nNUwGoy2vDyA5TLbfY5zXgOSXLOc1wqlxqqqq0ne/+91Rx3zuc5/Tt771LblcrmHvdXZ2Go9zc3Mj+ppDx3V2dkYVTt1yyy1jjnnkkUdUUFAgh8OhwsLCiGsD0Ro4gdrtdv6tAUgKnNcAJBvOa5gMkuHCDoDRTbbfY5zXgOSXLOc1wqkYyMzM1E033aRLL710xDE9PT3G40hmTYUbN7gGAAAAAAAAAADAmYBwapzy8vJ05ZVXSpKCwaB6enrU0NCgI0eOqKurSw8++KC2bdumm2++WdOnTx92vM/nMx47nZH9GIaOG1wjEo888siYYwZmZ/X39+vUqVNR1Z+oH/3oR+ro6Ijr14R1Bpa+bG1t1U033WRxN4iX7Oxs/cM//IPVbQAxEQgEjP89fvy4xd0AwMRxXsNkMPDvHEDymmy/xzivAcnPivPa1KlTje2AzEI4NU7Tpk3TN7/5zWGvt7S06Nlnn9X27dv12Wef6a677tI///M/65xzzgkZN3gWlN/vj+hrDh0X6YyrAQUFBVGNj/cvM4/HYwQWmDyCwaDa2tqsbgNxEgwG+aCMpBUMBo3/5d85gGTAeQ2TwcC/cwDJa7L9HuO8BiS/ZDmvEU6ZLD8/X7feeqtcLpdeffVVdXV16YEHHtCPf/zjkDVf09PTjceRzoAaOm5wjWRiU1BZ4hcpkEw6ZVNQbMoKAAAAAAAAgHAqZtatW6ft27fL6/Wqvr5en376qS666CLj/aysLONxpLNGho4bXCOZZCmo29LYTwtIJg/1pquDcAoAAAAAAACAJPvYQzAeaWlpOu+884zn+/fvD3l/8D5UHo8notlTTU1NxuOsrCy53W4TOgUAAAAAAAAAAIgfwqkYyszMNB53dHSEvDd9+nTZbKdnEQSDQR09enTMeocPHzYez5gxw5wmAQAAAAAAAAAA4ohwKoYGL8M3dAm+1NRUzZs3z3i+d+/eMevt27fPeLxw4cKJNwgAAAAAAAAAABBnhFMx0tHRoQMHDhjPw810Wrp0qfF4+/bto9ZrampSZWVl2GMBAAAAAAAAAADOFIRTEers7Ix4bCAQ0H/+53+qr69PkpSSkqKLLrpo2LgVK1YoLS1NktTQ0KA333xzxJpPP/20AoGAJGnevHmaM2dONO0DAAAAAAAAAAAkBMKpCO3YsUPf+c53tGPHDnV3d4847tixY7r33nv13nvvGa998YtfVHZ29rCxOTk5uvrqq43nTzzxRMhxkuT3+/X000/r3XffNV5bt27dRL4VAAAAAAAAAAAAyzitbuBMcujQIT388MNyOByaPn26pk+frszMTNlsNnV0dKimpkbHjx8POeZP//RPdd11141Y89prr9X+/fu1Z88e+Xw+PfDAA/r1r3+t2bNnq6+vT/v27VNra6sxfu3atZo/f37MvkcAAAAAAAAAAIBYIpyKUEpKivG4v79ftbW1qq2tHXG8y+XSddddp//1v/6X7PaRJ6g5nU7dcccd+vnPf673339fklRTU6OampqQcQ6HQ9ddd52uueaaCX4nAAAAAAAAAAAA1iGcitAXvvAFLVy4UJWVlTp48KDq6urU1NSkrq4uSVJGRoZyc3M1a9YsLVq0SBdffLHS09Mjqp2RkaHbb79dl19+uXbs2KEDBw6ora1NDodDBQUFWrx4sVavXq2ZM2fG8lsEAAAAAAAAAACIOcKpKAws5XfllVfGpH5ZWZnKyspiUhsAAAAAAAAAACARjLzeHAAAAAAAAAAAAGAywikAAAAAAAAAAADEDeEUAAAAAAAAAAAA4oZwCgAAAAAAAAAAAHHjtLoBAACS1ebNm+XxeKxuA3Ey8LP2eDzatGmTxd0gXtxutzZu3Gh1GwAAAAAAnFEIpwAAiBGPx6P29nar20CcBYNBfu4AAAAAAACjIJwCACDGbAoqS0Gr2wBgok7ZFJTN6jYAAAAAADgjEU4BABBjWQrqtrQeq9sAYKKHetPVQTgFAAAAAMC42K1uAAAAAAAAAAAAAJMH4RQAAAAAAAAAAADihnAKAAAAAAAAAAAAcUM4BQAAAAAAAAAAgLghnAIAAAAAAAAAAEDcEE4BAAAAAAAAAAAgbginAAAAAAAAAAAAEDeEUwAAAAAAAAAAAIgbp9UNAAAAAAAAWKlTNj3Um251GwBM1Cmb1S1YivMakHyS7bxGOAUAAAAAACa1oGzqSLILPgAmN85rABId4RQAAAAAAJjUbAoqS0Gr2wBgok7ZFJzE4QznNSD5JNt5jXAKAAAAQEQ2b94sj8djdRuIk4Gftcfj0aZNmyzuBvHidru1ceNGq9uIuywFdVtaj9VtADDRQ73pk3rmEOc1IPkk23mNcAoAAABARDwej9rb261uA3EWDAb5uQMAAAAwFeEUAAAAgKiwTAyQfJJtmRgAAAAkNsIpAAAAAFFhmRgg+STbMjEAAABIbHarGwAAAAAAAAAAAMDkQTgFAAAAAAAAAACAuCGcAgAAAAAAAAAAQNwQTgEAAAAAAAAAACBunFY3AAzVKZse6k23ug0AJupkc20AAAAAAAAA/z/CKSScoGzq4EI2AAAAAAAAAABJiXAKCcemoLIUtLoNACbqlE1BQmcAAAAAAAAAIpxCAspSULel9VjdBgATPdSbzoxIAAAAAAAAAJIku9UNAAAAAAAAAAAAYPIgnAIAAAAAAAAAAEDcEE4BAAAAAAAAAAAgbginAAAAAAAAAAAAEDeEUwAAAAAAAAAAAIgbwikAAAAAAAAAAADEDeEUAAAAAAAAAAAA4sZpdQMAACS7Ttn0UG+61W0AMFGnbFa3AAAAAADAGYtwCgCAGAvKpg4uZAMAAAAAAACSCKcAAIg5m4LKUtDqNgCYqFM2BQmdAQAAAAAYF8IpAABiLEtB3ZbWY3UbAEz0UG86MyIBAAAAABgnu9UNAAAAAAAAAAAAYPIgnAIAAAAAAAAAAEDcEE4BAAAAAAAAAAAgbginAAAAAAAAAAAAEDeEUwAAAAAAAAAAAIgbwikAAAAAAAAAAADEDeEUAAAAAAAAAAAA4sZpdQMAAAAAziydsumh3nSr2wBgok7ZrG4BAAAAkwjhFAAAAICoBGVTBxeyAQAAAADjRDgFAAAAICo2BZWloNVtADBRp2wKEjoDAAAgTginAAAAAEQlS0HdltZjdRsATPRQbzozIgEAABA3dqsbAAAAAAAAAAAAwORBOAUAAAAAAAAAAIC4IZwCAAAAAAAAAABA3BBOAQAAAAAAAAAAIG6cVjcAAAAAAABgpU7Z9FBvutVtADBRp2xWtwAAGAXhFAAAAAAAmNSCsqmDC9kAAABxQzgFAAAAAAAmJbfbbXULiCOPx6NgMCibzcbPfhLhZw0AiYlwCgAAAAAATEobN260ugXE0aZNm9Te3i632627777b6nYAAJjU7FY3AAAAAAAAAAAAgMmDmVNIOGxECyQfNqIFAAAAAAAAMIBwCgmHjWgBAAAAAACA8ePmbyD5JNvN34RTSBhsUDm5sBHt5MTPGgAAAACA2OPmbwCJjnAKCYONaCcXNqIFAAAAAAAwFzeFTi7c/D05JcvPmnAKAAAAAAAAAJIAN39PLtz8jTOZ3eoGAAAAAAAAAAAAMHkQTgEAAAAAAAAAACBuWNYPAIAY65RND/WmW90GABN1srk0AAAAAADjRjgFAECMBWVTBxeyAQAAAAAAAEmEUwAAxIzb7ba6BcSRx+NRMBiUzWbjZz+J8LMGAAAAACB6hFMAAMTIxo0brW4BcbRp0ya1t7fL7Xbr7rvvtrodAAAAAACAhGW3ugEAAAAAAAAAAABMHoRTAAAAAAAAAAAAiBvCKQAAAAAAAAAAAMQN4RQAAAAAAAAAAADixml1AwAAAADOLJ2y6aHedKvbAGCiTtmsbgEAAACTCOEUAAAAgKgEZVMHF7IBAAAAAONEOAUAAAAgIm632+oWEEcej0fBYFA2m42f/STCzxoAAADxQDgFAAAAICIbN260ugXE0aZNm9Te3i632627777b6nYAAAAAJBG71Q0AAAAAAAAAAABg8iCcAgAAAAAAAAAAQNwQTgEAAAAAAAAAACBuCKcAAAAAAAAAAAAQN4RTAAAAAAAAAAAAiBvCKQAAAAAAAAAAAMQN4RQAAAAAAAAAAADihnAKAAAAAAAAAAAAceO0uoEzzcmTJ1VRUaG9e/eqtrZWTU1N6unpUXp6ugoKCjRv3jwtW7ZM8+fPj7p2dXW1tm/frs8++0wtLS2SpPz8fC1YsEArV67U3Llzzf52AAAAAAAAAAAA4opwKkJHjhzRf/zHf6i6ujrs+11dXerq6lJNTY22bdumBQsW6P/+3/+rKVOmjFnb7/frF7/4hV577TUFg8GQ9+rr61VfX6833nhDf/7nf67169fL6eTHBgAAAAAAAAAAzkykHBFqaGgYFkwVFRWpuLhYbrdbXV1dOnDggJqbmyVJn332me666y59//vf17Rp00at/bOf/Uxvv/228XzatGkqKSmRJB08eFAnTpxQMBjUK6+8Iq/Xq1tuucXk7w4AAAAAAAAAACA+CKeiVFhYqNWrV+uyyy5Tfn5+yHuBQEDbt2/XE088od7eXrW2tuonP/mJfvCDH8hms4Wt94c//MEIpmw2m77+9a/rz//8z2W3242ar776qp566ikFg0G99dZbmj9/vlasWBHbbxQAAAAAAAAAACAGCKcilJeXp1tvvVWXXXaZERwNZbfbtXr1amVlZem+++6TdHrm0+7du3XBBRcMG9/X16fnnnvOeP6lL31JV1111bCaV111ldra2vTCCy9Ikn71q1/p0ksvZXk/AAAAAAAAAABwxgmfsmCY+fPna+XKlSMGU4P9yZ/8iebOnWs8/+STT8KO++ijj4xlADMyMnTttdeOWPOrX/2qXC6XJOnUqVMj1gQAAAAAAAAAAEhkhFMxct555xmPT506FXbMrl27jMef//znlZaWNmK9tLQ0XXLJJcbzDz/80IQuAQAAAAAAAAAA4otwKkYG7zEVCATCjvnss8+Mx/Pnzx+z5sKFC43He/bsmUB3AAAAAAAAAAAA1iCcipGamhrjcUFBwbD3u7u71draajyfM2fOmDVnz55tPG5paVF3d/cEuwQAAAAAAAAAAIgvwqkYaGpqCpnZVFZWNmxMQ0NDyPMpU6aMWXfomKE1AAAAAAAAAAAAEp3T6gaS0ZNPPmks5TdlyhRddNFFw8Z0dHQYj10ul1JTU8esm5aWJpfLJa/XK0nq7OyMqq/m5uYxx+Tm5srhcEiS7HayS8TOwNKXNpuNf2sAkgLnNQDJhvMagGTDeQ1AsuG8hjMZ4ZTJtm/frj/+8Y/G83Xr1iklJWXYuJ6eHuNxJMHU4LED4dTgGpG45ZZbxhzzyCOPqKCgQA6HQ4WFhVHVB6Ix8AvTbrfzbw1AUuC8BiDZcF4DkGw4rwFINpzXcCYjTjXRoUOH9B//8R/G80svvVTLli0LO7avr8947HRGnhEOHuvz+cbRJQAAAAAAAAAAgHWYOWWSkydP6kc/+pEROp1zzjm6+eabRxw/eDaV3++P+OsMHhvNjCvp9KyoseTm5kqS+vv7derUqajqA9EYWPoyEAjo+PHjFncDABPHeQ1AsuG8BiDZcF4DkGw4ryFepk6damwHZBbCKRO0trbq7rvvVltbmyRp2rRp+sd//EdlZGSMeEx6errxOJoZUIPHDq4RiYKCgqjGD5zcgFgIBoPG//JvDUAy4LwGINlwXgOQbDivAUg2nNdwJmNZvwnq6OjQD37wA504cUKSlJeXp02bNikvL2/U47Kzs43HXq83ooCqt7fX2G9KkrKyssbZNQAAAAAAAAAAgDUIpyagu7tbP/zhD1VbWyvpdOC0adMmnXXWWWMeO3369JDnTU1NYx4zdMzQGgAAAAAAAAAAAImOcGqcenp6dO+99+rw4cOSpIyMDN11112aOXNmRMdnZGSEzK46cuTImMcMHpOfnz/qsoEAAAAAAAAAAACJiHBqHHw+n/71X/9V+/fvlySlpaXpzjvv1Jw5c6Kqs2DBAuPxZ599Nub4vXv3Go8XLlwY1dcCAAAAAAAAAABIBIRTUfL7/frxj3+sPXv2SJJSUlK0ceNGlZaWRl1r6dKlxuP3339/1H2nfD6f3n///bDHAgAAAAAAAAAAnCkIp6IQCAT0k5/8RJ9++qkkyeFw6Pbbb1dZWdm46i1ZskQFBQWSpK6uLv36178ecex///d/q6urS5I0depUXXTRReP6mgAAAAAAAAAAAFYinIpQMBjUI488og8++ECSZLPZdNttt2nJkiXjrpmSkqLrrrvOeP6b3/xGr7zyigKBgPFaIBDQK6+8ohdeeMF4be3atXI6neP+ugAAAAAAAAAAAFYh4YjQ73//e+3YscN4XlhYqKqqKlVVVUV0/De/+c2wr69evVp79+7V22+/rWAwqC1btujVV19VSUmJJOngwYM6ceKEMX7lypVasWLFBL4TAAAAAAAAAAAA6xBORai9vT3keWNjoxobGyM+fqRwSpL+5m/+RhkZGXr99dcVDAZ14sSJkEBKOj1T68/+7M/0ta99LbrGAQAAAAAAAAAAEgjhVAJwOp268cYbddlll+kPf/iD9u7dq5aWFklSfn6+5s+fr9WrV2vu3LkWdwoAAAAAAAAAADAxhFMRWrt2rdauXRvTrzF37lwCKAAAAAAAAAAAkNTsVjcAAAAAAAAAAACAyYNwCgAAAAAAAAAAAHFDOAUAAAAAAAAAAIC4IZwCAAAAAAAAAABA3BBOAQAAAAAAAAAAIG4IpwAAAAAAAAAAABA3hFMAAAAAAAAAAACIG8IpAAAAAAAAAAAAxA3hFAAAAAAAAAAAAOKGcAoAAAAAAAAAAABxQzgFAAAAAAAAAACAuCGcAgAAAAAAAAAAQNwQTgEAAAAAAAAAACBuCKcAAAAAAAAAAAAQN4RTAAAAAAAAAAAAiBvCKQAAAAAAAAAAAMQN4RQAAAAAAAAAAADihnAKAAAAAAAAAAAAcUM4BQAAAAAAAAAAgLghnAIAAAAAAAAAAEDcEE4BAAAAAAAAAAAgbginAAAAAAAAAAAAEDeEUwAAAAAAAAAAAIgbwikAAAAAAAAAAADEDeEUAAAAAAAAAAAA4oZwCgAAAAAAAAAAAHFDOAUAAAAAAAAAAIC4IZwCAAAAAAAAAABA3BBOAQAAAAAAAAAAIG4IpwAAAAAAAAAAABA3hFMAAAAAAAAAAACIG8IpAAAAAAAAAAAAxA3hFAAAAAAAAAAAAOKGcAoAAAAAAAAAAABxQzgFAAAAAAAAAACAuCGcAgAAAAAAAAAAQNwQTgEAAAAAAAAAACBuCKcAAAAAAAAAAAAQN4RTAAAAAAAAAAAAiBvCKQAAAAAAAAAAAMQN4RQAAAAAAAAAAADihnAKAAAAAAAAAAAAcUM4BQAAAAAAAAAAgLghnAIAAAAAAAAAAEDcEE4BAAAAAEJ4vV719/dLkvr7++X1ei3uCAAAAEAycVrdAAAAAADAesFgUAcPHtTOnTtVWVmpQCAgSers7NR3vvMdlZWVadmyZSopKZHNZrO4WwAAAABnMsIpAAAAAJjkamtrtXXrVjU2NoZ9PxAIqLy8XOXl5SoqKtL69etVXFwc5y4BAAAAJAuW9QMAAACASayqqkoPPvhgSDCVnZ2tlJQUSVJKSoqys7ON9xobG/Xggw+qqqoq7r0CAAAASA7MnAIAAACAUWzevFkej8fqNmKiv79fnZ2dxnO73a60tDTZbDb5/X5Jkt/vl81mk8vlUm9vrwKBgHw+n376058qKytLDofDqvZjyu12a+PGjVa3AQAAACQlwikAAGCqZL6IO5qB79nj8WjTpk0WdxN/XMRFMvN4PGpvb7e6jbgIBALyer3yer3Ga8FgcMTz+uBgCwAAAAAiRTgFAABMNZku4oYTDAYn9fcPJCO32211CzHh9/vV1dUl6fSMqaysLNlstjGPCwaD6uzsVCAQkCRlZmbK6Uy+Py2T9ecOAAAAJILk+wsCAABYiot5kxM/dySzZJ0V+Pjjj6u8vFyS9PWvf10XXnhhxMd+/PHHevLJJyVJJSUluvHGG2PRIgAAAIAkRTgFAABMlawXcQEgmXi9XlVUVEiSsrOzVVZWFtXxixcvVnZ2tjo6OlRRUSGv1yuXyxWLVgEAAAAkIbvVDQAAAAAA4qutrc1Ylq+0tDTqZfmcTqdKS0slnd6niuVMAQAAAESDcAoAAAAAJhmfz2c8Hu+Mp/T0dONxb2/vhHsCAAAAMHkQTgEAAADAJJOammo89nq946rR09NjPE5LS5twTwAAAAAmD/acAiy2efNmeTweq9uIu4Hv2ePxaNOmTRZ3E39ut5t9eQAAgGVyc3Nlt9sVCARUVVUlv98f1dJ+fr9fVVVVkiS73a6cnJxYtQoAAAAgCRFOARbzeDyTeo3+YDA4qb9/AAAAK7hcLpWVlam8vFwdHR2qqKjQhRdeGPHxu3fvVkdHhySprKxs3EsDAgAAAJicCKcAi7ndbqtbgAX4uQMAAKstW7ZM5eXlkqRt27Zp0aJFSklJGfM4n8+nN99803i+fPnyWLUIAAAAIEkRTgEWY2k3AAAAWKGkpERFRUVqbGxUXV2dtmzZog0bNowaUPX19enJJ59UXV2dJKmoqEhz586NV8sAAAAAkoTd6gYAAAAAAPFns9m0fv16paamSpIqKyt1//3365NPPpHf7w8Z6/f79fHHH+v+++9XZWWlJCk1NVXr16+XzWaLe+8AAAAAzmzMnAIAAACASaq4uFg33XSTHnvsMfl8PmMGVXZ2tkpLS5Wenq6enh5VVVUZe0xJp4Opm266ScXFxRZ2D2C8Nm/eLI/HY3UbcTfwPXs8Hm3atMnibuLP7XazegsAIGEQTgEAAADAJFZaWqpvf/vb2rp1qxobGyVJHR0d2rVrV9jxRUVFWr9+PcEUcAbzeDxqb2+3ug3LBIPBSf39AwCQCAinAAAAAGCSKy4u1p133qnq6mrt3LlTu3fvVjAYNN632WxavHixli9frrlz57KUH3CGc7vdVrcAC/BzBwAkEsIpAAAAAICk07MJgsGgbDbbsHBq4H0AZz6WdgMAAFYjnAIAAACASa62tjZkWb+hAoGAysvLVV5ezrJ+AAAAACbMbnUDAAAAAADrVFVV6cEHHwwJprKzs7V06VJddtllWrp0qbKzs433Ghsb9eCDD6qqqsqKdgEAAAAkAWZOAQAAAMAkVVtbq8cee0w+n0+SNHPmTF1xxRUqKyuT0/k/fy76/X5VVFRo27Ztqqurk8/n02OPPaZvf/vbzKACAAAAEDVbkEXDEUZ/f79OnDhhdRsAAAAAYiQYDOpf/uVfjBlTZWVluuGGG5SSkjLiMX19fdqyZYsqKyslSUVFRbrzzjuNPakAAACssHnzZnk8HqvbiDuPx2PsF+p2u61uJ+7cbjf7KMbJtGnT5HA4TK3JzCkAAAAAmIQOHjxoBFMzZ84cM5iSpJSUFG3YsEH333+/6urq1NjYqOrqapWUlMSjZQAAgLA8Ho/a29utbsMywWBwUn//ODMRTgEAAADAJPTOO+8Yj6+44ooxg6kBKSkpuvzyy/Xkk09Kknbu3Ek4BQAALDUZZw2Bn/uZjnAKAAAAACYZr9eriooKSVJ2drbKysqiOn7x4sXKzs5WR0eHKioq5PV65XK5YtEqAADAmFjaDTjz2K1uAAAAAAAQX21tbQoEApKk0tJSOZ3R3bfodDpVWloqSQoEAiwjAwAAACAqhFMAAAAAMMn4fD7j8XhnPKWnpxuPe3t7J9wTAAAAgMmDcAoAAAAAJpnU1FTjsdfrHVeNnp4e43FaWtqEewIAAAAweRBOAQAAAMAkk5ubK7v99J+DVVVV8vv9UR3v9/tVVVUlSbLb7crJyTG9RwAAAADJi3AKAAAAACYZl8ulsrIySVJHR4cqKiqiOn737t3q6OiQJJWVlY17aUAAAAAAkxPhFAAAAABMQsuWLTMeb9u2TX19fREd5/P59OabbxrPly9fbnpvAAAAAJIb4RQAAAAATEIlJSUqKiqSJNXV1WnLli1jBlR9fX168sknVVdXJ0kqKirS3LlzY94rAAAAgORCOAUAAAAAk5DNZtP69euVmpoqSaqsrNT999+vTz75ZNgeVH6/Xx9//LHuv/9+VVZWSpJSU1O1fv162Wy2uPcOAAAA4MxmCwaDQaubQOLp7+/XiRMnrG4DAAAAQIxVVVXpsccek8/nM17Lzs5WaWmp0tPT1dPTo6qqKmOPKel0MHXTTTeptLTUipYBAAAAxNG0adPkcDhMrUk4hbAIpwAAAIDJo7a2Vlu3blVjY+OYY4uKirR+/XoVFxfHoTMAAAAAViOcQtwQTgEAAACTSzAYVHV1tXbu3KmKigoFAgHjPbvdrrKyMi1fvlxz585lKT8AAABgEiGcQtwQTgEAAACTl9frVXt7u3p7e5WWlqacnBy5XC6r2wIAAABggViEU05TqwEAAAAAzngul4swCgAAAEDM2K1uAAAAAAAAAAAAAJMH4RQAAAAAAAAAAADihnAKAAAAAAAAAAAAcUM4BQAAAAAAAAAAgLhxWt3AmSYQCKi2tlaHDh0y/u/YsWPq7++XJM2fP1///M//PK7alZWV2rFjhw4ePKiWlhY5nU4VFBRo8eLFWr16tWbMmGHidwIAAAAAAAAAABB/hFNR+PDDD/Xv//7v6u3tNbVud3e3Hn30Ub333nshr/f29qqrq0s1NTV65ZVXtHbtWn3lK18x9WsDAAAAAAAAAADEE+FUFLq7u00Ppvx+v+677z7t2bPHeK24uFizZ89WX1+fqqqq1Nraqv7+fv3yl79Uf3+/vvrVr5raAwAAAAAAAAAAQLwQTo1DTk6Ozj33XM2dO1fnnnuudu/erVdeeWVctZ5//nkjmEpJSdGtt96qSy+91Hjf7/fr2Wef1e9+9ztJ0nPPPaf58+dr/vz5E/9GAAAAAAAAAAAA4oxwKgoXXHCBfvrTn2rKlCkhrx88eHBc9drb2/XSSy8Zzzds2BASTEmS0+nU+vXr1dTUpPfee0/BYFDPPPOMfvCDH4zrawIAAAAAAAAAAFjJbnUDZ5Lc3NxhwdRE7Nixw1gmsKioSFdcccWIY9evXy+bzSZJOnDggI4cOWJaHwAAAAAAAAAAAPFCOGWhXbt2GY9XrlxphE/hTJkyRQsXLjSef/jhhzHtDQAAAAAAAAAAIBYIpyzi8/l04MAB4/mCBQvGPGbwmIF9qgAAAAAAAAAAAM4khFMWaWhoUDAYlCTZbDbNmjVrzGPmzJljPK6vr49VawAAAAAAAAAAADFDOGWRhoYG47Hb7VZqauqYxwze76qzs1MejycmvQEAAAAAAAAAAMSK0+oGJqvOzk7jcW5ubkTHDB3X2dkpt9sd8ddsbm6O6Gs4HA5Jkt1OdgkAAAAAAAAAAMxFOGWRnp4e43Eks6bCjRtcIxK33HLLmGMeeeQRFRQUyOFwqLCwMKr6AAAAAAAAAAAAY2FqjEV8Pp/x2OmMLCMcOm5wDQAAAAAAAAAAgDMBM6csMngWlN/vj+iYoeMinXE14JFHHhlzzMDSgf39/Tp16lRU9QEAAAAAAAAAQHKZOnWqsR2QWQinLJKenm48jnQG1NBxg2tEoqCgIKrxgUAgqvEAAAAAAAAAAABjYVk/i2RlZRmP29raIjpm6LjBNQAAAAAAAAAAAM4EhFMWmT59uvHY4/FENHuqqanJeJyVlSW32x2T3gAAAAAAAAAAAGKFcMoi06dPl81mkyQFg0EdPXp0zGMOHz5sPJ4xY0asWgMAAAAAAAAAAIgZ9pyySGpqqubNm6f9+/dLkvbu3at58+aNesy+ffuMxwsXLoxpf3a7XdOmTYvp1wAAAAAAAAAAAInNbjd/nhPhlIWWLl1qhFPbt2/Xl7/85RHHNjU1qbKyMuTYWLLZbHI4HDH9GgAAAAAAAAAAYPJhWT8LrVixQmlpaZKkhoYGvfnmmyOOffrppxUIBCRJ8+bN05w5c+LSIxAL/f39am5uVnNzs/r7+61uBwAmjPMagGTDeQ1AsuG8BiDZcF7DmY5wykI5OTm6+uqrjedPPPGE3nvvvZAxfr9fTz/9tN59913jtXXr1sWtRyAW2tradMstt+iWW25RW1ub1e0AwIRxXgOQbDivAUg2nNcAJBvOazjTsaxflO699161tLSEvDb4P/5Dhw5p48aNw477zne+o/z8/GGvX3vttdq/f7/27Nkjn8+nBx54QL/+9a81e/Zs9fX1ad++fWptbTXGr127VvPnzzfvGwIAAAAAAAAAAIgjwqko1dXV6dSpUyO+39vbq2PHjg173e/3hx3vdDp1xx136Oc//7nef/99SVJNTY1qampCxjkcDl133XW65pprJtA9AAAAAAAAAACAtQinEkBGRoZuv/12XX755dqxY4cOHDigtrY2ORwOFRQUaPHixVq9erVmzpxpdasAAAAAAAAAAAATQjgVpYcffjhmtcvKylRWVhaz+gAAAAAAAAAAAFazW90AAAAAAAAAAAAAJg/CKQAAAAAAAAAAAMQN4RQAAAAAAAAAAADixhYMBoNWNwEAAAAAAAAAAIDJgZlTAAAAAAAAAAAAiBvCKQAAAAAAAAAAAMQN4RQAAAAAAAAAAADihnAKAAAAAAAAAAAAcUM4BQAAAAAAAAAAgLghnAIAAAAAAAAAAEDcEE4BAAAAAAAAAAAgbginAAAAAAAA8P+1d+dhVVX7/8DfzDMyKIPggKIhqKiZkqTiWGqlZVcaSE2tJ+cGq2s3f06ZZn2vOTbcnMqyRL2V5pccEEcUB0JkEhAZRBEZDxymM/z+4Dn7ezZnROGA8H49T8+z9zlrr70OdtbZe332+iwiIiIik2FwioiIiIiIiIiIiIiIiEzGsqUbQETUGuzbtw/79+8HALz00kuYNm1aC7eIiKh9uHfvHhYsWAAA6NSpE7Zu3drCLSIiY6hfK+3bt09rmRUrViA5ORkAsHz5cgQFBZmkbUTUNkgkEkRFRSE+Ph537tyBVCqFUqkEAMybNw9hYWFNfk72W0RERKbD4BQREREREREREbUaBQUFWL58OYqLi1u6KURERNRMGJwiIiIiIiIi0mP+/PkoLCwEAGzZsgUeHh4t3CKitu27774TAlPW1tbo168f3NzcYG5evzqFj49PSzaPiIiImgCDU0RERERERERE1CqUlJQgMTERAGBlZYUvvvgC3t7eLdwqIiIiamoMThERERERERERUauQlZUlbAcEBJg0MLVixQqTnYuIiKi9M2/pBhAREREREREREQFAZWWlsO3q6tqCLSEiIqLmxOAUERERERERERG1CnK5XNg2MzNrwZYQERFRc2JaP6J2RKFQICYmBufOnUNOTg6kUilcXFzQrVs3hIWF4YknnoCZmRlWrFiB5ORkAMDy5csRFBSks87CwkJER0fj2rVruHfvHioqKuDo6AgPDw8EBwdj9OjR6Nixo9FtVCqVuHDhAi5evIjMzEyUlpYCAFxcXODv74+hQ4di6NChjbpJuX79Ok6cOIG0tDSUlZXBwcEBXl5eCA0NRVhYGGxsbIyui6gtWrJkCXJycgAAixYtwlNPPWXUcd9++y1OnDgBABg/fjzmzJmjs2xeXh5Onz6NxMRE3L9/HxUVFbC3t4enpyeCg4Mxbtw4uLm56T2ftr6ppKQEJ0+exKVLl3D//n2Ul5fDzs4Ou3btwgcffIDs7OxGf64tW7bg9OnTAIBJkyZhxowZRh2nT0ZGBo4dO4akpCSUlJTA1tYWHh4eGDp0KMaMGQMnJyfExMRg27ZtAICRI0di/vz5euuUyWQ4c+YMLl26hFu3bqGsrAyWlpZwcXFBQEAAQkND0b9//0a1Mzc3FzExMUhMTERRURGqqqrg5OQEb29vDBgwQGirsUpKShAVFYUrV66gsLAQAODu7o7+/ftj/Pjx6Ny5c6PaR2QKEokEMTEx+Pvvv5Gfn4/y8nJYWVnB1dUVQUFBGDVqFHr27Klx3I0bN7B8+XJhUPWdd97BsGHD9J5r3bp1uHr1KgDAz88Pa9asgaWl9ls0qVSKU6dOISEhAbm5uSgvL4dcLoeTkxN8fHzQp08fhISEoEuXLnrPqVQqcenSJcTFxSE9PR2lpaWQyWRwdnaGn58fhgwZguHDh8PCwsKYP1eTaoq23bt3DwsWLAAAdOrUCVu3bgUAZGZm4tixY0hJSUFRURGsrKzg5eWFJ554AhMnToStra3eutRpew0wfN1MRLolJSVh5cqVGq+fOnUKp06dEr3W8Drp5s2bSEhIQFpaGvLy8lBWVgaZTAZHR0d4enoiKCgI48aNM+q+1Jh74a1btwptmjdvHsLCwlBZWYlTp07h4sWLuHv3LsrKyqBQKLBz5044ODg06m9BRI+GadOmCdv79u0DUH/fd/z4caSkpKC4uBiWlpbw8vLCkCFD8PTTT8Pe3t7o+lvreFtj78uJ9GFwiqidKCoqwvr160X5u4H6H7vCwkJcvnwZgwcPxsKFC42u8+DBgzhw4ADq6upEr5eVlaGsrAzp6en4/fff8Y9//ANTpkwxWN+dO3fw1VdfabQRAAoKClBQUIBz586hR48eePfdd+Hp6am3Prlcju+++w4nT54UvV5aWorS0lKkpqbir7/+wpIlSwx/WKI2bPjw4fjpp58AAGfOnDEqiFNXV4cLFy4I+yNGjNBZbufOnYiOjoZCoRC9J5FIIJFIkJGRgUOHDiEiIgLPPPOM0e2+dOkStm3bJkr9om7MmDHYsWMHAODkyZNGfS6pVIqLFy+K6ngYSqUSe/bsweHDh6FUKoXX6+rqIJFIkJmZiaioKLz33nuNqjc9PR2bNm1CQUGB6PW6ujpUVVXhzp07OHnyJPr3749FixbB2dlZb31yuRy7d+/G0aNHNf6dSkpKUFJSguTkZPz++++YMWMGwsLCDLYxLi4OX3/9tca/T15eHvLy8nDs2DHMmjUL/fr1M+5DE5lAVFQUfvnlF0ilUtHrdXV1kEqluH37No4dO4awsDC8+eabokBS7969MXXqVGFw4j//+Q969+6tc9AgKipKCEzZ2Nhg0aJFOgNTR48exd69e7X2d6rv6PXr1xEZGYmPP/4YAwYM0FpPdnY2tm7dilu3bmm8V1RUhKKiIly+fBm//fYbVzQRbgAAMsRJREFUlixZAl9fX631NIfmaptSqURkZCQOHDgg6odra2uRmZmJzMxMREdHY9myZQavLYmo9Vm6dCkyMzO1vqe6L71x4wb++OMPvPzyy5g8eXKTtyE1NRUbN25EUVFRk9dNRI+Offv2aVxv1NTUCNcbf/31F9577z307t3bYF2tfbxNnaH7ciJ9GJwiagckEglWrVqFO3fuCK95enqiV69esLS0xO3bt5GRkYHLly/j66+/NqrO7du346+//hL2bW1tERQUBBcXF5SWliIpKQnV1dWoq6vDzz//jNLSUsycOVNnfXl5eVixYgXKy8uF17p27Yru3bsDAG7duiXM7Lh58yY++eQTrFy5Uu9T91u2bMG5c+eEfQcHBwQFBcHR0RFFRUVISkpCXl4e1q5di8cff9yoz03UFj311FP4+eefoVQqce3aNZSXlxsMZsTHxwsXn15eXlovsKurq7FmzRqkpaUJr3l6eqJHjx5wcHBARUUF0tLSUFJSgtraWuzYsQNSqRQvvviiwTanpaUhMjJSmDXQp08fODk5oaysTBjYHD58OPbs2YPa2lpcv34d9+7dg4eHh956z507h5qaGgD1A80POzD7ww8/4M8//xT21fvKsrIyJCUlobi4GOvWrcPEiRONqjM5ORlr164V2mlmZgZ/f3/4+PhAJpMhPT1dCFpdu3YNy5Ytw+rVq3X+myoUCvzP//wPLl++LLzm6OiIwMBAUX8pk8lQWVmJbdu2QSqV6m3v1atXsWHDBmEGiZmZmbCgeXV1NVJSUlBSUoJvv/0Wb7zxhlGfm6i57dq1C0eOHBH2nZyc0Lt3b7i4uKCurg5ZWVnIzc2FUqnEyZMnUVJSgn/+858wN/+/TOkvvvgirl27htTUVFRWVmLz5s1Yvny5qAxQP0vxxx9/FPanT58OHx8fre3asWMHoqKihH1zc3P07NkT3t7esLKyQnl5OW7duiXMTqytrdVaT3JyMj7//HNUVVUBACwsLODv7w8vLy9YWFigsLAQqampqKurQ35+Pj755BN8+umnJglQNWfbIiMjsX//fgBA9+7d0bVrV1hYWODWrVvCAM29e/fwxRdf4PPPPxfNyrK3t8fTTz8NADh9+rTQvhEjRsDOzk7jXIZmABORbm5ubsL3LT8/H4mJiQAAHx8f9O3bV1S2V69ewvb9+/cBAFZWVvD19YWXlxfs7e2hVCpRWlqK9PR0SCQSyOVy4WGspgxQ3b17F7t27YJUKoWdnR369OkDV1dXVFZWIiUlpcnOQ0St25EjR4TrDS8vL/j7+8PS0hK5ublCAL24uBhr1qzBypUrhbEubR6F8TYVY+7LifRhcIqoHdi1a5cQmLKyssLbb7+N4cOHi8pkZWVhw4YNuHDhAqysrPTWd/78edEPZVhYGGbOnCmaniyVSrF9+3acOXMGQP0PdZ8+fTB06FCN+mQyGTZu3Cj8UHbo0AELFy7USEeVkJCATZs2QSKRoKysDBs3btSZ/ub06dOiwNQzzzyDiIgIWFtbC6+VlJRg8+bNuH79Oo4ePar3MxO1Ze7u7ggMDERSUhLkcjnOnz9vcAaTKu0dAJ0zkr7//nshMOXt7Y233npLIzWKQqHA8ePHsXv3btTV1WHfvn3o27evwafJIiMjoVAoEB4ejsmTJ4v6AdXTZQ4ODnjyySdx6tQpKJVKxMTEiFIvaBMdHS1sjx49Wm9ZQxITE0WBqaeeegpz5swR9ZXV1dXYsWMHYmJi8N///tdgnRUVFdi0aZMQmPL29sbixYvRo0cPUbkzZ87g22+/RW1tLe7cuYOvv/4aH330kdY6Dx06JApMTZkyBdOmTRP9TUtLS7F161YkJCQAAH788Uf06tVLNDikIpFI8PXXXwuBqa5du+Kdd94RDSIrFAocOnQIP//8s2iAnqilREdHC4EpOzs7TJ8+HSNHjtS4xrh+/Tq2bNmC4uJi/P333zh06JBokNPc3BwLFy7EBx98AKlUipSUFPz222+ioHtdXR02btwo9FWDBw/GuHHjtLbr6NGjosDUk08+iddff13rbKycnBycOHFCa7ri0tJSbNiwQRRcee211+Dq6qpR7vvvv0dcXBykUim++uorrF+/XiO41pSas20lJSU4cOAAPD09sXjxYvj7+4vej42NxaZNmyCXy5GTk4OzZ89i5MiRwvuOjo6YPXs2gPqgu6qN06ZNM/iwAxE1jre3t/B9U6UYBgB/f3/hdW2GDh2KQYMGoW/fvqJ7PRWFQoHTp09j+/btqKmpwS+//IInn3yyyb7Dv//+O+RyOZ5++mm89tprohShMpmsWftPImo99uzZo3O8LTU1FV999RWKi4tRVVWFLVu2YN26dVrHsh6F8TZ1xtyXE+nDX0miNi4vL0/4wQLqc2I3/KEE6tc5WLZsGezs7PT+gCgUCvz888/CfkhICObOnauRN9fe3h4LFizA4MGDhdf27NmjkS4KqB9EVa0LY2FhgY8//ljrOinBwcFYunSp8ERrVlaWKACl3sa9e/cK+2FhYZg1a5bGzYqrqyv++c9/olu3bpDJZDo/M1F7oJ6WT73P0EYqlSI+Pl7rsSopKSlCAMvT0xOrV6/WmrPf3Nwc48ePx5tvvgmg/vureuJMH7lcjvDwcEydOlXjglk9wD527FhhOyYmRmsfpJKTkyM81WZnZ2dwrRhDfvnlF2F74MCBWLBggUZfaWtri7lz52Lw4MFGXbwfOXIExcXFAOqDb8uWLdMITAH1s8YWLVok7F+5ckXIC65OKpXiwIEDwv5zzz2HV199VeNv6uLigg8//FBYZ0cul4t+C9QdPnwYZWVlAOpvfpYtW6Yxu8Hc3ByTJ09GeHg4+19qcVVVVUKQ1NLSEp988gnGjBmj9Wa8b9+++OSTT4R+5o8//hCCxSqdOnUS+jSg/qY9IyND2N+zZ4/wdKqrqyvefvttre2qqKgQnvIHgHHjxuHdd9/VmSawa9eueOONNxAcHKzx3t69e4Xv5YQJE7BgwQKN4A9Q/11/7733hFkKOTk5ohSuzaE526Zac2blypUagSmgPtinPgtU23UlEbVuc+bMwaBBg7QGpoD6a46wsDDMnTsXQP01TFM+mCiXyzF69GjMnj1bY+06S0tLBqeI2gmZTIb58+drHW8LCAjAv/71L+H6MScnR/Swp8qjMN7WkLH35US68FeSqI1TX2/pscceQ2hoqM6ynTp1wnPPPae3PtVCjED9xfasWbN0LpZoZmaGOXPmCD9uBQUFuHbtmka548ePC9vjx4+Hn5+fzvP7+/uL1oDRdmORkJAg5Pu2trbG66+/rrM+Q+8TtRdDhw4VburT09Nx9+5dnWVjY2OFQEqvXr3g5eWlUebw4cPC9vTp0w2mCQwLCxNSWiUkJEAikegt7+rqalRKlsceewxdunQBUJ/2RVsfpKI+a2rYsGEaAwyNkZubi/T0dGF/xowZOgcnzMzMMHPmTIMLzyqVSlF/OXXqVL0L4A4ZMgQDBw4U9rX1l2fPnkV1dTWA+kBSeHi4zvqsrKxETy4nJSUhPz9fo43qvzsvvfQSOnTooLPO559/Hp06ddL5PpEpnDx5UkhTOn78eK0zAtX5+voKs2skEgn+/vtvjTKhoaFC4F4ul2PTpk2orq5GfHy8MBPKzMwM8+fP19k/Hj9+XJip06lTJ73pWvQpLy8XHjpwcXHBa6+9pre8ubk5Xn75ZWHf0AMLD8MUbXvhhRf0ptsbNWqUsK1r3RoievSFhIQI13aqWVlNwcrKChEREU1WHxE9mvr06aP34cYuXboIqUsB4MSJExplHoXxtoaMvS8n0oXBKaI2Tv1JeW1PcDRkqMz169eF7YEDB8LFxUVveTc3N9Gi3ElJSaL3q6qqRAMB6gMEuqin2srMzBQGVrWdY+DAgXByctJbX79+/bhGALV79vb2orXXzp49q7Os+nva+gy5XC5cGNvZ2Rm9pptqZpVSqRStU6VNSEiIaF0QfdQvsNUDUOpkMplokFP9mAeh3g/5+/sbzNft4eGBgIAAvWVu376N0tJSAPUDtOqpp3RR7y+1zZxS79NDQ0N1PnWs4u/vj65du2o9vmEbLSwsdKZ8VLG0tNT70ASRKajPBDX0/6yK+vonqampWsvMnj1bWEz67t272LZtG7Zt2yYskj1p0iStT66qqNJoAvV90oM+fXrt2jVhhuKQIUMMfs+B+gcPVOkBdX2+pmCKtoWEhOh938fHRzivRCIRAoJE9OjJzs5GTEwMIiMj8cMPP2D79u3Cfzt37hQGeXNycvTOpm+M4OBgODo6NkldRPTo0pZNpCH1+zdtY1mPwnhbQ425LyfShmtOEbVhSqVSmL4LQGs6k4Y8PT3h5OSkc9aCauFooH5GgjEee+wxXLlyReN4oP4GQnVjYGtri27duhmsr3v37rCxsUFNTQ0UCgWys7NFbVE/h6F1a4D6J078/f0RFxdn1OchaquGDx+O2NhYAPVPo7/00ksaZYqKioQgh4WFhdanw7Kzs4U0V5aWlti5c6dR51e/cFYtbq2LtlR2uowYMQI//fQT6urqcPnyZUgkEo2gdVxcnNDvde3a1aj+Uh/1xV+Nrcvf31/vwtnqfVvnzp0NBt4BcT9dWlqK4uJiUTBevZ2N6dNVKcka9ukN2+jg4GCwPmP6aaLmdOPGDWH7+PHjOHXqlMFjVDO0G26rs7Ozw6JFi/D//t//g1wuF6Wg69atG1599VW951CffaktLaqx1D9fTk4Otm/f3qjjKysrUV1d/VCzSXVp7rbZ29vrnWEK1F8HOjg4oLa2FkD9QI6dnV2j2kFELUu1dqdqnWVD5HI5pFJpkwSVGnNNSkRtlzH3NF27doWtrS2qq6uhUCiQk5MjOu5RGG9riH0gPSwGp4jaMKlUKlrLw9DNuYq7u7vO4JRqEcXG1Ke+2GzDetXrc3d3N5jWCqifMdCxY0fcvn3bYJ3GttHYckRt2YABA4Tg9J07d5CRkaERWDl79qzw1P+AAQO0pqMqKSkRtiUSiWhBV2OpUmzpYihNoDpHR0eEhITgzJkzkMlkOH36NCZNmiQqo56KTv1psQf1IP2Qu7u70XUamwrPxcUFVlZWQhpGiUQiCk49SJ3q5dj/0qOuurpaNFNG1+xKffT1V7169cI//vEP0Rp01tbWWLx4sd4FpqVSqRAsASDMwHoQ6n1yamrqA82EqqysbJbgVHO3reEaDbqo/1twHTyiR4dSqcTXX3+NmJiYRh9bXV3dJMGpxlyTElHbZcw9jZmZGdzd3YWxLPV7p4b7rXW8rSH2gfSwGJwiasMaTr81JlUKAL2DD+p1GjtIoUq9AkAjVcqD1NeYOtXL6dMcAy5EjxpLS0sMGzZMCCadOXNGIzilnvpOV+oCqVT60G2Ry+V63ze2P1MZO3as0Pbo6GhRcEp9LSorKyujUjIYopo51pi2GuqHHqRvU9WrCk41dX/J/pcedaborxquu+bj42Mw1WfDa7iH+Z6Y4jM+qOZumzGDMET06Dpx4oQoMDVgwACEhobCz88P7u7usLGxEQWf58+fj8LCQgBosrR+jb0mJaK2ydh7n6YeHzP1eFtD7APpYTE4RdSGNfzxqa2tNeoHSX1QVV+dhnLPaquvYZqUB6mvMXXq+yzqGnNuorZs+PDhQnDq/PnzmDFjBszN65eozMnJEdK5NVyjSp36xWy3bt3wxRdfNHOrDevTpw98fHxw+/Zt5ObmimaFnTx5UpgNNmTIkCZ5ilb9b6A++0EfQ/3Qg/RtDevV1l+qBocfpL9k/0uPuoYDCTt27GjStUPy8/Oxa9cu0WtZWVn47bff8OKLL+o8ruH12sOk1VP/jNOnT8ezzz77QPU0h9bcNiJq/Q4dOiRsT5s2TWtKanVcU46ImktNTY1RaYGbenzM1ONtRE3NvKUbQETNx97eXrQwoa41ERrSV059yq6hNWFU7t27J2w3XCNFvb7i4mJhgFgfhUIhOre+Oo1to7F/G6K2rnfv3vDy8gIAlJWVCTOKAOD06dPCdkhIiM6npNQXbi0tLW2Wdj6IMWPGCNuq1F1KpVL0xK16mYeh3g8Z278UFxcbXaexfVtZWZkwawpomv5S9cRxU9XH/pdakoODA6ysrIT9puyzZDIZNm/eLNzgq8+WioyMREZGhs5j7e3tRX2s+rVUY7XWPhlo3W0jotbt/v37whpTDg4OmDJlit7yUqnUYNpoIqIHZcy9j1KpFN3zNcW9lKnH24iaGoNTRG2YmZmZaMFD9YW1dbl3755G3lt1fn5+wrb6Itb6qJdTPx6on1WhmpVRVVUlzMrQJzs7WxjoMTc311jUUf0cxnxmpVKpd4CIqL156qmnhG1VKjylUolz584Jrw8fPlzn8d27dxcGe8vKynD37t1mamnjjBw5UmjXuXPnUFNTg8TERCHY4unpiaCgoCY5V/fu3YVtY/sXQ+XU+7bbt2+joqLCYJ1paWnCtouLi2i9qYbtVC+rj74+XX0/Pz/fqJRdxv6WEDUX9fSlxn4PjLFv3z5kZmYCqE/tt3LlSowcORJAfSq6TZs26X2KtVevXsL29evXH7gdzfX5mkJrbhsRtW7qa9Z17txZ7zp+QP26dsYMzBIRPQhjxp5yc3OFGZyGxrJa63gbUVNjcIqojQsMDBS2z549a7C8+noy2vTt21fYjo+PR1lZmd7yxcXFiI+P13o8UD9FuGfPnsK+MYvZqi9W7u/vr5HmRn1wOT4+3uAA7vXr1/nkPpEa9TWXLl26hJqaGiQnJwvfE3d3d1Hf0pC1tbXou65KE9jSnJycMGTIEAD1F+exsbGi/mTUqFFNtj6J+t8nIyPDYIDu/v37SElJ0VvGx8dHmGWgUChEM9l0Uf982gJv6v9O58+fN5iCMDMzE9nZ2VqPB+oHh1RtlMvlBn935HK5KOhJ1BIGDRokbB89erRJBi+Tk5Px+++/C/vz5s1Dhw4dMGvWLHh6egIA7t69ix07duisY8CAAcL2iRMnRLMgG2PAgAHCTPobN27g1q1bD1RPc2jNbWtIfSZbc63BRUTGU79mMyaF8tGjR5uzOUTUzhkaSwOAU6dOCds9e/bUGMt6FMbbiJoag1NEbdzo0aOF7dTUVMTGxuose//+fVHebm369+8PDw8PAEBdXZ3GOgrqlEolduzYIdzAe3p6ol+/fhrlxo4dK2z/9ddfooHPhm7evInjx48L++PGjdMoExwcDHd3dwD1uXL37Nmjs77a2lr88MMPOt8nao+8vLyEJ/arq6tx6dIl0cX28OHDDQZxJk+eLGxHRUWJ0gMa0pypndT7myNHjuDSpUsA6p8KCwsLa7LzdO3aVbgRUCqV2LVrl94Bb0PvA/WDMOrtP3DggN5UgJcvX8bVq1eFfW395VNPPSXccJSUlGD//v0665PJZKKB9KCgIFGaMqD+7zhq1Chhf//+/Xpn4x46dOih0pURNYVx48bBwcEBQP16UJGRkUYfW15eDoVCIXqtoqICmzdvFr7TzzzzDAYOHAigfpBg4cKFQkAmJiYGFy5c0Fr3mDFjhO9nYWGh3msufdzc3ITZrkqlElu3bjVqViNQHwjX9x1+WK25bQ2pr0VmKA0rETU/Dw8P4Xo0JycHBQUFOsueP39edE1ERNTUkpKSdF7TAUBeXh6ioqKEfW3p5B+F8TaipsbgFFEb5+vrK0rRtXXrVq1Pst+6dQurV6+GVCoVrb3QkLm5OV599VVh/9y5c/jmm2800tJUVVVh27ZtiIuLE16LiIgQphSrGz58uDBVWCaTYc2aNVrT11y7dg2fffaZ8OPr5+eH0NBQrW0MDw8X9qOjo7Fr1y6NJ+pKS0vx+eefIzs722AaCKL2Rj1tX3R0NC5evKj1PV0CAwNF6avWrVuH//73vzpTWNXW1iIuLg7r16/H559//pCt1y0oKAje3t4A6vs91UyEAQMGaKS8e1ivvPKKsH316lWtg67V1dX45ptvEBcXp7fvVZk4caLQTolEglWrVmmdaXDu3Dls3LhR2H/88ce1znazt7fH1KlThf3ffvsNv/zyC2QymahcaWkp1q9fL6SrsLCwEP0WqJs0aZKQm7y0tBSrV6/G7du3RWUUCgUOHTqEvXv3sv+lFmdvb48ZM2YI+/v378eWLVt05vpXKpVITU3F999/j3nz5mlcX/znP/8RZpp26dIFERERovd79+4t+t599913WmdwOzo64rXXXhP2jx07hg0bNuic7Z2bm4udO3ciISFB472XX34Zrq6uAOrTtXz88cday6kUFRXh8OHDeOedd3D+/Hmd5ZpCa26bui5dugjb+h72IiLTcHZ2Fh6mUiqV+Pe//438/HxRGYVCgaioKGzevBnm5uZGXWsRET0IS0tLbNmyRet4240bN7BmzRrh3rNLly6ibCUqj8J4G1FT42gAUTswc+ZMpKeno6CgALW1tdi0aRP27duHXr16wdLSEvn5+bhx4waUSiVCQkJQXl6O5ORkANA6O2LYsGFISUkRUnVFR0cjNjYWQUFB6NChA8rKynD9+nXRD+jEiRMxdOhQre2ztLTE4sWLsWLFCpSXl6O0tBSrVq1Ct27dhPVQbt26JXrCo0OHDli8eLHOQc2wsDDEx8cLgwdHjhzBqVOnEBQUBCcnJxQVFSEpKQl1dXXw8PDA4MGDceTIkcb/cYnaqGHDhmH37t2Qy+Wii1c/Pz/RAJ0+b731FkpLS5GQkACZTIa9e/fi4MGD8Pf3R8eOHWFlZYXKykoUFBQgNzdXuFjv0aNHs3wmlTFjxmjMqNT25NrD6t+/PyZMmID//d//BQCcPn0aly5dEvWVSUlJqKqqgqOjIyZOnIh9+/YB0N73AvWD1YsWLcLatWtRU1OD/Px8fPTRR/D394evry9kMhnS09NFaQS9vb0xd+5cne187rnnkJqaiitXrgAADh48iGPHjiEoKAgODg6i/lIlIiJCtB6OOmdnZ8ydOxdffvklFAoFsrOz8d577yEgIADe3t6orq5GSkqKsFZERETEA88IIWoqYWFhKCgowIEDBwDUf1/Pnj2L7t27o3PnzrC1tUV1dTWKi4tx69YtnbN7YmJihGsPKysrLFq0SJQOTuXFF19EQkIC0tLSUFFRga1bt2LZsmUa3/2nn34aubm5Qjqq2NhYXLx4ET179oS3tzesra1RXl6OrKwsYf08bSk83dzc8MEHH2Dt2rWQSCTIz8/HmjVr4ObmBn9/fzg7O0Mmk0EikSA3N9ekMxpbc9vUhYSECE8THz16FFlZWfDz8xP9+44fPx5eXl4t0j6i9ig8PByffvoplEolsrKy8P777yMgIAAeHh6orq5GamqqcL3x8ssv48SJE0JfSUTUlFT3NJs2bUJkZCT8/f1hYWGB3NxcYQ1SALC1tcX8+fN1jmU9CuNtRE2J/5cRtQPOzs5Yvnw51q9fLzxhf/fuXY01UAYPHoy5c+fis88+E16zt7fXWufs2bPh4uKCgwcPoq6uDlVVVbh8+bJGOSsrK7z00kt44YUX9LbR19cXq1atwsaNG5GVlQWg/ulZbVOO/fz88O677xq8+V+4cCGsra2FvL6VlZWiJ0uA+jVclixZwjVPiBpwdnZGcHCwRgoUY2ZNqVhZWWHp0qWIjIzE4cOHUVNTg5qaGiQlJek8xsLCQmfQo6mEhYWJZge5urqK1pxpSjNnzoS5uTmOHDkCpVKpta90dXXF+++/L1qgVlffC9TPSlu2bBk2b96MgoICKJVKpKena12Et1+/fli8eDGcnZ111mdubo4lS5Zg9+7dOHr0KBQKBSQSida0FPb29pg5c6bBFIiDBw/GO++8g2+++QZSqRRKpRIpKSmidbWsrKzwxhtvoH///gxOUasQHh6OLl26YPfu3SgpKYFCocDNmzdx8+ZNnceoBh4AzTWkXnnlFZ2LSJubm2PhwoX44IMPUFVVhevXr+OPP/4QpURVmTNnDjp37oxff/0VVVVVUCgUOr/zZmZmsLGx0dnWdevW4ZtvvkFiYiKA+vR0Da+N1HXo0MEkwZbW3DaV/v37IzQ0VLhm1PZv8PjjjzM4RWRC/fr1w+zZs7Fz507I5XLI5XIkJSWJrjXNzMwwdepUvPDCCzhx4kQLtpaI2rKJEydCIpHg4MGDuHPnDu7cuaNRxtXVFe+++67BhzEfhfE2oqbC4BRRO9GxY0esXbsWJ0+exLlz55CbmwupVAoXFxd069YNYWFhGDJkCMzMzFBRUSEcp2+AdOrUqRgxYgROnDiBhIQE3Lt3D1KpFPb29vD09ERwcDDGjBmDjh07GtXGzp07Y+3atbhw4QIuXryIjIwMYS0BVdqGkJAQDB061OB6N0D9EyLz58/HyJEjcfz4caSlpaGsrAwODg7w8vLCk08+idGjR3OBRyIdRowYIQpOmZubN3pqvyrN5oQJE3Dq1CkkJiYiLy8PEokEMpkM9vb26NixI7p27YqgoCAMGjRIbyClKTg7OyMgIECYETZy5EhhcLmpmZmZYcaMGRg2bBiOHTuGpKQklJaWwtbWFh4eHhg6dCjGjBkDJycnYcYqoL/vBerTgm3YsEGYjXXr1i2Ul5fDwsICLi4uCAgIQGhoKIKDg41qp4WFBWbNmoVx48bh5MmTSExMRFFRkTCrq3Pnzhg4cKDQVmOEhISgd+/eiIqKwpUrV1BYWAgzMzO4ubmhX79+GD9+PHx9fbnmFLUqw4YNwxNPPIFz584hISEBmZmZKC8vR3V1NWxsbODm5gYfHx/06dMHAwcOFNZdk8vl2Lx5s/AUa3BwMCZNmqT3XB4eHpgzZw42b94MAPj111/Rr18/rQMWEydOxPDhwxETE4OEhAShHwUAJycn+Pj4IDAwEMOGDRNSl2rTqVMnLFu2DDdu3EBsbCxSUlJQVFSEiooKWFhYwMnJCV5eXujZsyf69++PoKCgZusfH6W2qSxatAiPP/44zp49i+zsbJSXl4tmlRKR6Y0fPx4BAQE4fPgwkpKSUFJSAmtra7i5uaFv374YNWoU/Pz8WrqZRNQOhIeHY+DAgTh+/Lgwc9PCwgJeXl4YMmQInnnmGYP3eSqtfbyNqKmYKQ2tvk1E7UpNTQ1mzpwJuVwOGxsb7N69W2veWiKiR1V1dTXeeustVFdXw8zMDBs3bmwVT4Zt2rRJyFH+zjvvYNiwYS3cIiIiIiIiItJm2rRpwrYqPTsRNQ5HnIlI5OLFi8ICiD169GBgiojanPPnzwuzGwIDA1tFYKq6ulo0S61nz54t2BoiIiIiIiIioubFUWciElRUVODXX38V9hubvouIqLVTKpWIiooS9seNG9eCrfk/P//8M6RSKQCgV69e8PT0bOEWERERERERERE1HwaniNqJDRs24MKFC6itrdX6fmpqKpYtW4bCwkIAgJubG4YPH27KJhIRNbuoqCjcunULQP36JkOGDGn28+3fvx9FRUVa3y8rK8O3334rCphNnjy5WdtERERERERERNTSLFu6AURkGhkZGYiNjYWtrS38/PzQqVMnWFtbo7KyEllZWbh7965Q1sLCAvPmzYOdnV0LtpiI6OFlZGTg7NmzkMlkyM7ORlpamvBeeHg4LC2b91KovLwc+/fvR2RkJHx9feHr6wsHBwfU1dXh7t27yMzMhEwmE8qPHDmy2QNmREREREREREQtjcEponamuroaKSkpSElJ0fq+q6sr5s+fj/79+5u4ZURETS8vLw9HjhzReD0kJAQjRowwWTuUSiVyc3ORm5ur9X0LCwtMmDABERERJmsTEREREREREVFLYXCKqJ1Yvnw54uLikJKSgoKCAkgkEkgkElhYWMDZ2Rndu3fHgAEDMHLkSFhbW7d0c4mImpyVlRU6d+6MsLAwTJgwwSTnfP755+Hr64vExETk5OSgrKwMEokEtbW1cHR0hKenJwIDAzF69Gh4eXmZpE1ERERERERERC3NTKlUKlu6EURERERERERERERERNQ+mLd0A4iIiIiIiIiIiIiIiKj9YHCKiIiIiIiIiIiIiIiITIbBKSIiIiIiIiIiIiIiIjIZBqeIiIiIiIiIiIiIiIjIZBicIiIiIiIiIiIiIiIiIpNhcIqIiIiIiIiIiIiIiIhMhsEpIiIiIiIiIiIiIiIiMhkGp4iIiIiIiIiIiIiIiMhkGJwiIiIiIiIiIiIiIiIik2FwioiIiIiIiIiIiIiIiEzGsqUbQERERERERK3b/PnzUVhYCAAIDAzEihUrmvwcMTEx2LZtm7C/fPlyBAUFNfl5AGDr1q04deqUsL9v375mOQ8REREREWnHmVNERERERERERERERERkMpw5RURERERERI+UpKQkrFy5UtifN28ewsLCWq5BRERERETUKJw5RURERERERERERERERCbD4BQRERERERERERERERGZDINTREREREREREREREREZDIMThEREREREREREREREZHJMDhFREREREREREREREREJmPZ0g0gIiIiIiJqLaRSKa5fv46ioiLU1tbC1dUVnTt3hr+/f5Oep7CwEJmZmSgrK0NlZSUcHR3h7u6OPn36wN7evsnOI5PJkJKSgsLCQpSVlcHBwQFeXl4ICAiAtbV1k50nNzcXOTk5KCoqgrm5OVxdXdGnTx+4ubk12TlMqaSkBOnp6bh//z7q6urg7OwMf39/dOnSpaWbRkRERETUJjA4RURERERE7V5xcTF++OEHxMXFQSaTabzv7e2N5557DmPHjgUArFixAsnJyQCATp06YevWrQbPIZfLceLECURFRSEvL09rGQsLCwQHB+OVV15Bt27dDNaZlJSElStXCvvz5s1DWFgYZDIZ9u/fj+PHj6O8vFzjOBsbG0yaNAkvvvjiQwWprl69isjISGRmZmp9Pzg4GDNmzICvr+8Dn0Pd/PnzUVhYqPH6tm3bsG3bNq3HBAYGYsWKFUbVn5+fjz179iA+Ph5yuVzjfR8fH7z++usYNGhQo9pNRERERERiDE4REREREVG7lpSUhPXr16OqqkpnmTt37uC7777D9evXsWDBgkafIz8/H1988QVu376tt5xcLsfVq1cRHx+PiIgIPPfcc40+V1FREb788kudASMAqKmpwcGDB5GcnIylS5fCzs6u0ef56aef8Mcff0CpVOosk5CQgH/961/46KOPEBgY2OhzmNKFCxewbds2VFdX6yxz+/ZtrFu3DtOnT8ezzz5rwtYREREREbUtDE4REREREVG7lZ6ejnXr1qGmpkb0ure3N3x8fGBpaYnCwkLcvHkTSqUS58+fb3SquoyMDHz22WeoqKgQve7h4QFfX1/Y29ujoqICGRkZQhmlUokff/wRtbW1mDp1qtHnqq6uxrp165CdnQ0AsLOzg7+/P5ydnVFVVYX09HRIJBKhfGpqKnbv3o233367UZ/pwIED+P333wEAZmZm6NGjBzp27AgzMzPcvn0bubm5Qtmqqips2LABGzZsgKOjY6POYypJSUnYuHGjMFtK9e9vY2OD+/fvIyMjQzST6scff0TPnj3Rp0+flmoyEREREdEjjcEpIiIiIiJql2pra7FlyxZRYKpbt25488030bt3b1HZ+/fvY9euXYiLi8Off/4JBwcHo84hkUjw5ZdfigJTgwcPRnh4uEbaPoVCgdOnT2PXrl2QSqUAgH379iEwMNDoIEhkZCQkEgkcHR0RERGBkSNHwsLCQnhfLpfj0KFD2Lt3rzDjKTo6Gs8++6zRqfdycnKQkpICABg9ejTCw8Ph6uoqKnPjxg1s2LABRUVFAICysjL89ttviIiIMOocuqxatQpyuRzp6enYuHGj8HpERARCQkK0HmNM2sJ///vfkMvl6NOnD2bMmIEePXqI3r9//z62bt2KpKQkAP8XPPzss88e4tMQEREREbVf5i3dACIiIiIiopYQFRWFO3fuCPvdu3fHypUrNQJTANCxY0e8//77CAsLg1Kp1JgFpcv27dtRXFws7E+dOhUffvih1vWkzM3NERYWhlWrVsHW1hZAfRDkhx9+MPozqQJTq1evxujRo0WBKaB+TaspU6Zg8uTJotdjYmKMPkdFRQWUSiUiIiLw9ttvawSmAKB3795YunSp6PynT5+GQqEw+jzauLu7w8PDAy4uLqLXnZ2d4eHhofW/hmW1kUgkeOKJJ7Bs2TKNwBRQ/++/dOlSeHp6Cq9lZGToXDuMiIiIiIj0Y3CKiIiIiIjaHaVSiWPHjgn75ubmmD9/Puzt7XUeY2ZmhtmzZ6Njx45GnePu3buIjY0V9gcOHIjw8HCDx3Xt2hWvvvqqsJ+ZmYm0tDSjzgkAs2bNgo+Pj94yU6ZMgZWVlbCfnJxsdP0AEBwcjOeff15vma5du4pmM5WWliI/P79R5zGVDh06YP78+bC01J1cxNraWiOo19i/GxERERER1WNwioiIiIiI2p2srCwUFBQI+wMGDNA6m6khGxsbPPPMM0ad4/jx40LqPABGBaZURo8eDRsbG2H/ypUrRh3XqVMnDBs2zGA5e3t7BAQECPvZ2dmithrSMEijy8CBA0X7qrWwWpuxY8fqDUyqNPw8t27daqYWERERERG1bQxOERERERFRu3Pjxg3Rvq71irQxtqxqfSKgPmikLV2cLtbW1ujZs6ewb+zMqf79+8Pc3LjbvM6dOwvbdXV1qK6uNuo4Gxsbo9fAajiDq7y83KjjTG3AgAFGlXN3dxcFDVvr5yEiIiIiau105ywgIiIiIiJqo3JyckT7fn5+Rh/r4eEBBwcHVFZW6ixTU1ODrKwsYd/Lywv37t1rVBtV604BQGFhoVHHGErnp67hTKGqqirY2dkZPM7Ly0tjLavGnKM1auzfraamBkDr/TxERERERK0dg1NERERERNTuSCQS0b67u3ujjnd3d9cbnCotLYVCoRD2ExMTsWDBgsY1Uk1FRYVR5YxJTafSMMAkk8lazTlMrTGfSX1dKrlc3hzNISIiIiJq85jWj4iIiIiI2h2pVCraN2bGUGPKGxtMMpaxKfeMTen3MMzMzJr9HKZmir8bERERERH9H16BExERERFRu6M++wVo/AwYQzOAOKOGiIiIiIhIN6b1IyIiIiKidsfBwUG0X1FRATc3N6OPNzQzytHRUbT/5JNP4t133zW+gURERERERG0YZ04REREREVG707FjR9F+Xl6e0cfW1taisLBQbxlnZ2fRfsM1roiIiIiIiNozBqeIiIiIiKjd8ff3F+0nJycbfWxqaioUCoXeMo6OjvD29hb2b968afAYMl5bXPeKiIiIiKg9YXCKiIiIiIjanYCAAFhYWAj7Z86cMbiOlMrJkyeNKtevXz9hWyqV4u+//25UG0m3hmuGGftvR0RERERErQODU0RERERE1O44OzvjiSeeEPYLCwtx+PBhg8elpaXh/PnzRp1j7Nixohk+v/76K+rq6hrfWNJgb28v2i8tLW2ZhhARERER0QNhcIqIiIiIiNql559/XhQ8+uWXX3D69Gmd5bOysvDFF19AqVQaVX/37t1FAbCsrCxs3rwZtbW1RrdRqVTiypUrKCsrM/qY9sDT01M08y0pKakFW0NERERERI1labgIERERERFR2+Pv74+JEyfizz//BAAoFAps2bIF586dw4gRI+Dr6wsLCwsUFhYiLi4OMTExkMvl8PT0hL29PbKysgye480330RmZiaKiooAABcuXEBeXh5eeuklDBkyRCM9naodubm5iIuLw9mzZ3Hnzh1s2LABHTp0aNo/wCPMysoK/v7+SEtLA1AfnPrmm28QGhqKjh07igJX1tbWcHFxaaGWEhERERGRNgxOERERERFRu/Xaa6+hoKAAly9fFl6Lj49HfHy81vLW1tZYvHgx9uzZY1T9HTp0wIcffojPPvtMmP2Ul5eHr776CtbW1vDz80OHDh1gbW2NqqoqlJWVITc3FzU1NQ//4dq4CRMmCMEpAIiOjkZ0dLRGucDAQKxYscKELSMiIiIiIkOY1o+IiIiIiNotS0tLvPfee3j22Wdhbq7/9sjT0xOffvop/P39Ran5bG1t9R7n5+eHdevW4bHHHhO9Xltbi7S0NGGG1JUrV5CRkaERmLKysoKVlVUjP1nbN2zYMEyaNKmlm0FERERERA+AM6eIiIiIiKhds7S0xPTp0zFq1CjExMTg2rVruH//Pmpra+Hm5gZvb2889dRTCAkJgbW1NQCgsrJSON7e3t7gOdzd3bF69WpcvnwZf/75J1JTUyGXy3WWt7GxQZ8+fTB48GCEhobCwcHh4T9oGzRjxgyEhobi1KlTyMjIwL1791BVVQWZTNbSTSMiIiIiIj3MlMau5ktERERERESQyWSYPn26EAAZMmQIlixZ0qg6qqurcePGDdy/fx8VFRWQyWSws7ODi4sLfHx80LlzZ63rUREREREREbUFvNshIiIiIiJqhPT0dNHMHD8/v0bXYWtri/79+zdls4iIiIiIiB4ZXHOKiIiIiIioEU6cOCHa9/f3b6GWEBERERERPZoYnCIiIiIiIjJScnIyzpw5I+y7uLigb9++LdgiIiIiIiKiRw+DU0RERERE1G5VVFRgw4YNuH37tsGyf//9N9avXw/1ZXvHjh0LCwuL5mwiERERERFRm8M1p4iIiIiIqN1SKBSIjY1FbGwsAgICMGjQIPTo0QMuLi6wtLRERUUFsrKyEBcXh8TERNGxPj4+mDJlSss0nIiIiIiI6BHG4BQRERERERGA1NRUpKamGlW2Y8eOWLJkCaytrZu5VURERERERG0Pg1NERERERNRuWVpaws7ODlVVVUaVNzMzw9ChQ/HGG2/A1dW1mVtHRERERETUNpkp1ROmExERERERtTN1dXVITExEUlISsrKyUFBQAIlEgtraWlhbW8PR0RFeXl4IDAzE0KFD0aVLl5ZuMhERERER0SONwSkiIiIiIiIiIiIiIiIyGfOWbgARERERERERERERERG1HwxOERERERERERERERERkckwOEVEREREREREREREREQmw+AUERERERERERERERERmQyDU0RERERERERERERERGQyDE4RERERERERERERERGRyTA4RURERERERERERERERCbD4BQRERERERERERERERGZDINTREREREREREREREREZDIMThEREREREREREREREZHJMDhFREREREREREREREREJsPgFBEREREREREREREREZkMg1NERERERERERERERERkMgxOERERERERERERERERkckwOEVEREREREREREREREQmw+AUERERERERERERERERmQyDU0RERERERERERERERGQyDE4RERERERERERERERGRyTA4RURERERERERERERERCbz/wGD3+tOpkdKxQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 483, "width": 851 } }, "output_type": "display_data" } ], "source": [ "import seaborn as sns\n", "\n", "sns.boxplot(x = cdc['genhlth'], y = bmi).set(\n", " xlabel='genhlth', ylabel='bmi', title = 'Boxplot of BMI by genhlth')\n", "plt.show(); " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that the first line above is just some arithmetic, but it's applied to all 20,000 numbers in the `cdc` data set. That is, for each of the 20,000 participants, we take their weight, divide by their height-squared and then multiply by 703. The result is 20,000 BMI values, one for each respondent." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "

Exercise 5

\n", "What does this box plot show? Pick another categorical variable from the data set and see how it relates to BMI. List the variable you chose, why you might think it would have a relationship to BMI, and indicate what the figure seems to suggest.\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, let's make some histograms. We can look at the histogram for the age of our respondents with the command" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABtEAAAOUCAYAAADU8hzuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AADOQ0lEQVR4nOz9eZiWdd0//r9mYRl2hnVENkVUNkkRVBAQUNJyS80yrcw773K9vb3VyvLuW5rprWW2UGmpleaSW2TmAgKuaIgooCyyw7AM67AMwyy/P/x5fea6ZoaZgYFrBh6P4/A4zvO83ufrfM3Me4x4+n6fGeXl5eUBAAAAAAAAJGSmuwEAAAAAAABoaIRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAABArTz44IORkZGR9A9wcCsuLo4//elPcdFFF8WRRx4Zubm5kZWVlfTvif/6r/9Kd5sAALBHstPdAAAAAND4vPrqq3HRRRfFihUr0t0KAADsE1aiAQBAAzVlypRKK79++MMf7nXdqlaUPfjgg3tdFzh4vPHGGzF27FgBGgAABzQr0QAAgEZtyZIl0bt376Rrr7zySowePTo9DcEBrrS0NC655JLYtWtX0vV27drF4MGDIzc3N2m718GDB+/nDgEAoH4I0QAAAIBae+6552LRokVJ12688cb40Y9+FM2aNUtTVwAAUP9s5wgAANTK17/+9SgvL0/6Bzj4TJw4Mel8wIAB8dOf/lSABgDAAUeIBgAAANTajBkzks5PP/30pO0bAQDgQCFEAwAAAGptxYoVSee9evVKTyMAALCPCdEAAACAWtuyZUvSeYsWLdLUCQAA7FtCNAAAAKDWdu7cme4WAABgv8hOdwMAAMDBZe3atTFr1qxYvHhxbNmyJYqKiiInJydatWoVhx56aPTu3Tv69u0b2dkN6/+ubNiwIaZPnx6rV6+OdevWRXZ2dnTq1Cm6desWJ554YuTk5NTr80pLS+Ott96KRYsWRX5+fkREdO7cOQYOHBif+cxnIjNz//03kR999FG8//77sWLFiti+fXu0aNEiBg0aFOPGjavx3s2bN8eHH34Y8+fPj40bN8bWrVujZcuW0b59+zj00ENj6NCh0bp1633+NaxZsybeeuutWLx4cWzdujVat24dRx55ZAwfPrzWz1+3bl1Mnz49Pv7449i6dWvk5uZGz549Y/To0Q1qNVZRUVG89dZbsXLlyli7dm0UFxdHp06dokuXLjF06NDo1KlTulusV+maY8XFxfHaa6/FsmXLYvXq1ZGVlRV5eXkxePDgGDBgQL0/L1VJSUm88847sWzZsli3bl1s2bIlcnNzo1OnTnHsscdG796993kPAAAHvHIAAKBBeuWVV8ojIumf//3f/93rug888EClug888MAe3VdbO3bsKP/5z39ePnjw4Eo1qvqnRYsW5SeffHL57bffXv7xxx9XqlfV96au/yxevLjGvktKSsp/97vflQ8bNqw8MzOz2lrNmzcvHz9+fPnzzz9f6+9JdTZu3Fh+3XXXlXfu3Lna53Xt2rX8Rz/6Ufm2bdsS940aNSppzNe+9rUan/W1r30t6Z5Ro0YlPtuxY0f5nXfeWd67d+8qe6g4tqKSkpLyF154ofyqq64q79+/f3lGRsZufw5ZWVnlQ4cOLf/zn/9cvmvXrjp/v6qaCxV/tlOnTi0fO3ZstT+/Fi1alF911VXlGzZsqPYZr7/+evn48ePLs7Kyqv35f/Ob3ywvKCioc//16eWXXy4/44wzynNycqr9fmdkZJQff/zx5b/+9a9r9f1evHjxXv2e1ce/s1Lt7zmWasWKFeXf+MY3ytu2bVvtMw877LDye++9N+l5PXv2rJfvzcsvv1x+zjnnlLdp02a3X3efPn3Kf/SjH5UXFhbu9dcMAHCwsp0jAACwT7311lvRr1+/uO666+K9996r1T3bt2+PV199Nb773e/G5Zdfvm8brMYbb7wRAwYMiP/8z/+M6dOnR1lZWbVji4qK4oUXXojTTz89xo0bF8uXL9+jZz733HNx1FFHxc9//vNYu3ZtteNWr14dt9xySxxzzDHx4Ycf7tGzdmfOnDkxaNCguPHGG2Px4sW1vu+dd96JvLy8GD9+fPzqV7+KOXPmRHl5+W7vKS0tjbfffjsuueSSGDBgQMydO3dv24+IiLKysvjv//7vGD16dEyaNKnan9/27dvjV7/6VRx77LExb968SjVuuOGGGDFiRLzwwgtRWlpaZY2ioqK47777YsCAAfHRRx/VS/91kZ+fH5/97Gdj3Lhx8c9//jN27NhR7djy8vJ455134sorr4x+/frF1KlT92Oney/dc+yBBx6Io48+Ov74xz/G5s2bqx23aNGiuOaaa+LEE09MrCTdW/Pnz49x48bFuHHj4plnnqn0brpUCxcujFtuuSUOO+ywePrpp+ulBwCAg40QDQAA2GemT58ep556ap2CmIbgqaeeirFjx+5RIDJp0qQ48cQTY/bs2XW67+mnn45zzz031qxZU+t7Fi5cGCNHjoyPP/64rm1Wa+7cuXHyySfHggUL6nzvmjVrYt26dXv87Hnz5sWwYcPitdde2+Man7rsssvi5z//eY0By6eWLFkS48ePj4KCgoj4JGz62te+FnfddVeta6xevTrGjBkT69ev3+O+6+rDDz+ME044IV544YU637tgwYI47bTT4rHHHtsHne0b6Zxjv/rVr+Ib3/hGFBYW1vqef//73zFy5Mi9nhNTp06NE044ISZNmlTne9etWxfnn39+/OxnP9urHgAADkYN6yUDAADAAaO4uDi+/vWvx9atW5Ou9+jRI84///w4/vjjo3v37tGqVavYuXNnFBYWxpIlS2LOnDnx6quvxowZM6oNLzp16hTnnXdeRHyykuj5559P+nzkyJE1vvepZcuWVV6fOnVqXHDBBZVWLrVt2zYuvPDCGD9+fHTr1i127doVS5YsiWeffTaeeeaZKCkpSYxduXJlnHLKKfHBBx9E165dd9tHRMR7770XF154YezatSvpert27eJLX/pSnHrqqdGtW7coLS2NZcuWxT//+c944oknoqioKAoKCuKLX/xivbyTbceOHXHuuefGxo0bIyKiefPmcf7558f48eOjR48e0aJFi1i1alXMmDEjlixZsttaTZs2jeHDh8eQIUOif//+0a1bt2jTpk00adIkCgsLY+HChfHWW2/Fk08+GRs2bEjct3Xr1rjwwgvjvffe2+N3d/3iF7+IBx98MCIiMjIy4swzz4yzzjorjjjiiGjVqlXk5+fHCy+8EPfdd18UFRUl7lu6dGncdNNN8Yc//CF+8pOfxF/+8pdEjc9//vOJGq1bt47Vq1fHCy+8EL///e+TauTn58cNN9wQf/zjH/eo97pYt25djBkzJlavXp10PSsrK84666w455xzonfv3tGsWbNYuXJlvPTSS/Hoo48mfr4Rn/yefvnLX47c3Nw49dRTKz2jZcuWid+1Tz355JNJ50OGDImePXtW2WO/fv329Mur0f6cY88991xcffXVla7n5eXFl7/85Rg9enTk5eXF9u3bY/HixfH3v/89nn322SgtLY2FCxfGN77xjT3+OqdNmxannXZaFBcXJ13/9N+lw4YNi0MOOSRatmwZmzZtig8++CCeffbZmDx5cmJsWVlZXH/99dGzZ89KP08AAHYjjVtJAgAAu9HY34n2zDPPVBr/ne98p9bvJFq9enX5HXfcUX7ZZZftdlxV72x65ZVXavWMVBs3bizv3r17pXpnnHFGeX5+frX3zZw5s/zoo4+udN/48ePLy8rKdvvMXbt2VfmuuM997nPlq1evrva+BQsWlA8dOjQxPvWdX3vyTrSK/4wePbpW742r6LnnnisfM2ZM+eOPP16+devWWt2zbdu28u985zuV3mv1n//5n7W6v6rfk09r9ezZs/ztt9+u9t4PP/ywPC8vr9L7syZOnFienZ1dHhHlvXr12m2NuXPnlnfp0iWpRmZmZvmKFStq1f/eOPPMMyt97X379i3/97//Xe09a9asKT/rrLMq3ZeXl1e+bt26Wj13T/79UV/SMcc2bdpU3q1bt0pf96WXXlq+ZcuWau+bMWNG+RFHHFHt72ht/n2+Zs2aSnO0bdu25ffff395SUnJbu+dMmVK+SGHHJJ0b5s2bcqXLVtWq68bAIDycivRAACgEXn88cfrvE1gqqVLl9ZTN7uXur3cqaeeGrfffnut7+/SpUvceOON9d3Wbt1xxx2V3md2xhlnxDPPPBNNmjSp9r7BgwfH5MmTY8SIEUlbK77wwgvx7LPPxjnnnFPtvX/6058qvStu/Pjx8fTTT+/2mX369IkXX3wxRo0aFbNmzdrtO9vqavTo0fH8889H8+bN63Tf6aefHmeccUad7mnRokXcfvvt0aVLl7juuusS1//0pz/FT37yk8jNza1TvYhPtmLs2rVrvPbaa3HooYdWO+6oo46K+++/Pz73uc8lrpWWlsYXvvCFKCkpiby8vHj99dfjkEMOqbbG0UcfHffff3+ceeaZiWtlZWXx8MMP79P5+8ILL8TEiROTrvXq1SteeeWV3fbbuXPnePLJJ+P888+PZ599NnE9Pz8/br311rjnnnv2Vcv1Ih1z7O67746VK1cmXfvGN74Rf/jDH3Z737HHHhuTJ0+Ok046KZYvX75Hv6PXXHNN0jvVOnToEJMnT45BgwbVeO+oUaPi9ddfj6FDhya2wNyyZUv83//9X9x777117gUA4GAkRAMAgEbkww8/jA8//DDdbdRKahj1+c9/Pk2d1M6OHTvivvvuS7rWoUOHeOihh3YbZn2qa9eu8cADD8SoUaOStqG85557dhuiTZgwIem8devW8cc//rFWz2zbtm088MADcfzxx0dpaWmN42ujVatW8dBDD9U5QIv4ZNvDPXXttdfGAw88EO+//35EfPLzePbZZ+PSSy/do3q///3vdxugfeqMM86Io48+Oun36tNtNe+7777dBlKf+vznPx9HHXVU0jv0pk6duk9DtF/84heVrv3xj3+sVb/Z2dnxwAMPxJFHHpn0frE//vGP8aMf/SjatGlTr73Wp/09x0pKSuL+++9PutajR49ah1CHHnpo/OpXv4qzzz67zv0uXLgwnnjiiaRrf/jDH2oVoH2qV69ecc8998RXvvKVpBo/+tGPol27dnXuCQDgYJOZ7gYAAIADU2qoU17N+80aimeeeSbWr1+fdO2mm26Kjh071rrGySefXOkvy6dOnRoLFy6scvxHH30U//73v5OuXX755bUKQj71mc98Zo/+gr46l1xySfTo0aPe6tVWRkZGpa/jzTff3KNagwYNSloZVpPTTz+90rVjjjkmaYVaTVJXR82cObPW99bVypUr41//+lel559yyim1rtG+ffu4+eabk64VFhbG448/Xi89NkR7MsdefvnlpJVgERE33HBDte9UrMpZZ50Vxx57bO0b/f/7xS9+kbR67aSTTtqj3/UvfelLkZeXlzjfvn17TJkypc51AAAORkI0AABgn+jWrVvS+cMPPxwlJSVp6qZm06ZNSzrPysqKSy65pM51LrvsskrXXn311SrHvv7665WuXXzxxXV+5p7csz9q1VX37t2TzmfMmLFHdc4777w6je/fv3+918jPz99n8/21116rFErvyYq9iy++OJo2bZp0rbq5eqCo6xxL/R3NysqKL33pS3V+7p78XqUGpRdddFGda0REZGZmxujRo5Oupf77DgCAqgnRAACgEfnf//3fKC8v36t/Hnjggf3S69ixY5PO33nnnfjsZz8bs2bN2i/Pr6vUFSkDBw6Mrl271rnO2LFjIysra7e1PzV9+vSk89atW8cxxxxT52eOGDGizvdUpUmTJnu0YqY6y5cvj1/+8pdx6aWXxpAhQ6J79+7Rtm3byMrKioyMjEr/XH755Un3V9xqsC6GDRtWp/GdOnXaJzW2bNlSpxq1VdV8GjduXJ3rdOjQIYYMGVJj7YZsX8+x1N/Ro446qk6rUz9V19/RVatWVVrBmvqzqovUrU0by7bAAADp5p1oAADAPnHeeefF4YcfHh9//HHi2qRJk2Lw4MExePDg+PznPx+jR4+OE044oU5bo+0rCxYsSDrf0zApJycnjj766Jg9e3bi2vz586scu3jx4qTzAQMG7NE7nzp16hRdu3aN1atX1/neinr27LlH70JL9e6778aNN94YkydP3qttPDdu3LhH91Xcuq42WrVqVelaXQPUqmps3bo1cnNz61SnNlLn6mGHHbbH77c69thj44033kicL1y4MMrKyiIzs2H/N7f7a46l/o7W5X1kFQ0cODAyMjJq3eu7775b6doJJ5ywR8+uSurWtQAAVK1h/6kYAABotJo0aRJ/+9vfon379pU+e++99+LWW2+NcePGRdu2beMzn/lMXHvttfH000/Htm3b9nuvxcXFsX379qRrqSs36iL13ur+on7Tpk1J51WtZqqtPVkdk2pPg5iKbr311jj++ONj0qRJe/0evK1bt+7Rfa1bt67T+KqCy/qoUfF9VvUpdT7V51wtLy+PzZs373G9/WF/zrH6+h1t3rx5nf5jgYKCgj16Tm3taUANAHCwsRINAADYZwYPHhwzZsyIb33rW/Hiiy9WOaa0tDTee++9eO+99+Lee++NFi1axLnnnhs33XRTDBw4cL/0WdVfKLdp02aP67Vt2zbpfMOGDVWOS/0L+roGNxXtTb+f2tsVgT/5yU/iBz/4QZWfZWRkROfOnaN79+7Rrl27aN68eTRr1ixpzNKlS+Pf//73XvXw6bMaQo19JXW+1udcjfhkvlYVfjcE+3uO1ffvaG2D4X29UmzXrl37tD4AwIFCiAYAAOxTvXv3jhdeeCGmT58eDz30UEycODFWrFhR7fjt27fHww8/HI888khceeWVcdddd1X6i/ADRerXVVxcvMe19ube+vDhhx/GD3/4w0rXP//5z8dll10WJ598cnTo0GG3NR544IH4xje+sY86pLFLxxxr1qxZlJSUJM731+9oVWM/+9nP1tvWt507d66XOgAABzohGgAAsF8MGzYshg0bFr/5zW9i0aJFMW3atHjttdfi9ddfj3nz5lXalq28vDx+9atfxYoVK+LJJ5/cp+9oqmrVzZYtW/a4Xup2eNW9Fyt1+8S9eebe3Fsf7rzzzkqrWx544IH4+te/XusaDX0bwYYidb7W51yNqH6+pls65li7du2StpjdX7+jVf0M7rjjjj1+JxsAAHvGO9EAAID97rDDDouvf/3rcf/998eHH34Yq1ativvvvz9GjBhRaewzzzwTDz/88D7tp2nTptGiRYukaytXrtzjeqn3Vrc1Xup7zBYtWrRHzyspKYlly5bt0b31oaysLP7xj38kXfvyl79cp3AjYt+/B+pAkTqf6nOuZmRkVLnFY7qla47V1+/oihUr6rQSrap3HPr9AADY/4RoAABA2nXt2jUuu+yyePXVV+OJJ56Ipk2bJn0+YcKEfd7DEUcckXT+7rvv7lGdoqKi+PDDD5Ou9e3bt8qxgwcPTjpfuHDhHq10+fDDD6OoqKjO99WXFStWVPoL/q985St1rjNjxoz6aumAljpXFy1atMer+FK/53369Nmnqz73VLrmWOrv6MyZM+v8zD2578gjj6x0bU//nQQAwJ5reH8yBgAADmrnn39+XHnllUnX3n777UrbuH2qqr/wT90asjZOOumkpPMPPvgg1q5dW+c6kydPTnqHUlW1P3XCCScknZeXl8fEiRPr/MxnnnmmzvfUp6q+T4cddlidauzYsSPeeOON+mrpgJY6n8rLy2PSpEl1rrNx48ZKoVJ1czXd0jXHUn9HCwoK4vXXX69TjYi6/44OGDAgunbtmnTt5ZdfrvNzAQDYO0I0AACgwRk7dmzSeWlpaaxfv77KsanbMEZ88pfldTVy5Mik85KSkvjzn/9c5zp/+MMfKl07+eSTqxw7YsSIaNWqVdK13/3ud3V6XnFxcTz44IN1uqe+lZaWVrqWGiTW5C9/+Uva3+vWWIwYMSIyMjKSrj3wwAN1rvOXv/wldu7cmXQt9fegoUjXHBs/fnyl73Vdf0c3bNgQf/vb3+p0T0TEaaedlnT+4osvVlrlCgDAviVEAwAAGpzUv9iPiEph06eqen/TqlWr6vzMc845p9J7iH7605/Ghg0bal3jjTfeiKeffjrp2imnnBKHH354leNbtWoVF198cdK1V199Nf7617/W+pl33XXXHr+nqb506tSp0rW6bD23YcOG+OEPf1iPHR3YDjnkkDjjjDOSrv3jH/+IadOm1brGpk2b4rbbbku61qZNm7jgggvqpcf6lq451rt37xg/fnzStb/85S91Wo32ne98Z48C4uuuuy4pwCsvL4+rr766ykARAIB9Q4gGAADsE48++miVYVhtPPbYY0nnXbt2rTZEa9KkSfTq1Svp2muvvVbnZzZv3jwuv/zypGsFBQVx6aWX1mrFy9q1a+PrX/96pa0k/+u//mu3911zzTXRpEmTpGvf/OY349VXX63xmY8//njccsstNY7b13r16hW5ublJ137xi1/U6vtWVFQUX/nKV/Yo+DyYXXvttZWuXXrppbF69eoa7y0tLY1vfOMbsWbNmqTrl112WbRu3breeqxP6Zxj119/fdJ5eXl5fOELX4iPPvqoxnvvvvvuuO+++/bouYMHD45zzz036dqkSZPi29/+dp1X4X1qy5Yt8ac//WmP7gUAOBgJ0QAAgH3iW9/6VvTo0SO+//3vx/vvv1+re3bt2hW33HJLPP7440nXa1odM2zYsKTzRx55JJ599tm6NRwRN954Y/Ts2TPp2t///vc477zzdvt+tPfffz/GjBkTCxYsSLr+2c9+Ns4888zdPvPoo4+O733ve0nXtm3bFuPGjYvvf//7lYKOiIjFixfHf/7nf8aXvvSlKC0tjaZNm0b37t1r+vL2mczMzPjc5z6XdG3mzJnx1a9+dbdbay5cuDBOO+20+Ne//hUREdnZ2fu0zwPJqaeeGuecc07StUWLFsWYMWPivffeq/a+goKCuOCCCyqtmDzkkEPi+9///j7otH6kc46NGzcuvva1ryVdW7t2bRx//PHxs5/9LDZt2lTpnjlz5sR5550X//M//xMREbm5udG+ffs6P/vee++NvLy8pGv33XdfjB49utL77KpTXl4e06dPj+uuuy66d+8eP/rRj+rcBwDAwcr/QwEAAPaZtWvXxm233Ra33XZbHHbYYTFixIg49thjo0+fPtG+ffto2bJl7NixI5YvXx7vvPNOPPbYY7Fs2bKkGu3bt4+bbrppt8+5+OKLk1av7dq1K84555zIy8uLfv36RZs2bSIzM/m/IZwwYUKlLeLatm0bf/7zn+OUU05J2jLt73//e0ybNi2+/OUvx6mnnhrdunWLXbt2xZIlS+LZZ5+NZ555Jnbt2pVUq3PnzvHggw9Wep9SVW6++eaYMmVKTJ06NXGtuLg4brvttrj99ttjwIAB0a1btygtLY1ly5ZVWgHzox/9KJ5//vlYvnx54lptnlufvvvd78bDDz8cZWVliWt//etf47XXXovLLrssTjzxxOjUqVNs3bo1Fi9eHP/85z/j6aefjuLi4oiIyMnJiWuuuSbuuOOO/dp3Y3b//ffH22+/nbTC6sMPP4zjjz8+zj777Dj77LOjd+/e0axZs1i1alW89NJL8de//rXSFqWZmZnxpz/9qdJKr4YmnXPsnnvuiXfeeSfmzp2buLZ169a4/vrr4zvf+U4MGjQo8vLyYseOHbFo0aJYvHhx0v2/+c1v4qabboqNGzcmrtXmd7Rbt27xzDPPxKhRo6KoqChx/fXXX48hQ4bESSedFKeeemocd9xx0aFDh2jRokVs2bIlNm3aFPPmzYuZM2fGq6++GitWrEjcW9XWmAAAVE2IBgAA7BeLFi2KRYsW1WkrsZycnHjkkUeiW7duux13xhlnxNixY2PSpElJ1/Pz8yM/P7/Ke+66664q/zL55JNPjr/97W/x5S9/OekvrTdt2hQTJkyICRMm1Nj3oYceGv/617+iS5cuNY6N+GRLyueeey4+97nPJQVpERFlZWXx/vvvV7ua78orr4ybbropnnvuuaTrLVq0qNWz68vRRx8dP/nJT+I73/lO0vXly5fX+C6qrKysePjhh2Pz5s37sMMDT4cOHWLy5Mkxfvz4WLp0aeJ6SUlJPPnkk/Hkk0/WWKNZs2bx5z//OcaOHbsvW60X6Zxj7dq1i1deeSXGjBkTc+bMSfps165du10Vdscdd8SFF14YN9xwQ9L12v6ODh06NKZNmxbnnXdeUlAe8cl7GN94441afhUAANSV7RwBAIB9Ym/frdS/f/+YMmVKfPazn61xbGZmZjz++OOVtrfbU+ecc05MmjQpjj766DrfO27cuHjzzTejf//+dbqvZcuW8dJLL8Vtt90WOTk5NY5v165d/O53v4tf/epXERGVwoG2bdvW6fn14aabbor/7//7/yqt+tud3NzcmDhxYqV3P1E7Rx55ZLz55pu1+j1J1bdv33jxxRdr3C61IUnnHOvcuXO89dZbcd1110VWVlaN4/Py8uLpp5+OG2+8MSL27nf0+OOPj3fffTe+8pWv1OrZ1Wnbtm184Qtf2OP7AQAONkI0AABgn1i0aFFMmjQprr/++hg6dGg0adKkxnsyMzNjzJgx8eCDD8asWbNi6NChtX5ebm5uPP300zFjxoy46aabYty4cdG9e/cqt3KsjZNOOik++OCD+P3vfx/Dhg3bbY3mzZvH+PHj4/nnn4+XXnopDj300Do/L+KTFWnf+973YtGiRXHvvffG2LFjo3fv3pGTkxPNmjWL7t27x+c+97n49a9/HUuXLo3LL788cW9BQUFSrXbt2u1RD3vrlltuiWnTpsVpp5222+3qOnbsGNdff33MmzcvTj/99P3Y4YEnLy8vnn/++Xj55ZfjjDPO2G0Im5GREUOGDIlf//rXMWfOnBg5cuR+7LR+pHOOtWrVKn72s5/FggUL4vbbb4+TTz45evToEU2bNo2cnJw47LDD4rzzzosHH3wwFi9enAj2i4uLo7CwMKlWXX9HO3bsGH/5y19i3rx5ceWVV8bhhx9eq/t69uwZl112WTzxxBOxevXquPPOO+v0XACAg1lGeXl5ebqbAAAADnxFRUUxf/78WLRoUaxatSoKCwtj165d0apVq2jfvn0ceeSRMXDgwGjZsmW6W63S+vXr46233oo1a9bEunXrIjs7Ozp16hTdunWLE088cb9vn1jRmjVromvXrknXnnzyybSvOCkoKIjXXnstVqxYEZs2bYpmzZpF165do3///jF48OA9CjepWVFRUbz55puxYsWKWLduXRQXF0enTp2iS5cuMXTo0OjcuXO6W6w3jWWOTZ8+PU444YSkazNmzIhjjz12r+quWLEiZs6cGQUFBbF+/frYuXNntG7dOtq2bRuHHXZYHH300dGxY8e9egYAwMFMiAYAANDIPfLII/GVr3wl6dqyZcuie/fuaeoIqOgnP/lJ3HzzzYnzZs2aRWFhYa1W6AIAkD4N4z/JAgAAYI99+l60Tx1yyCECNGggSkpK4re//W3SteOOO06ABgDQCAjRAAAAGrHf//738eabbyZd+9rXvpamboBUt9xySyxfvjzpmt9RAIDGQYgGAADQADzxxBOxdOnSOt3zyCOPxLXXXpt0LTMzMy6//PL6bA2IiIceeijWrVtXp3vuuuuu+OlPf5p0rU2bNpW2XwUAoGESogEAADQAjz32WPTp0yfOPffcePTRR2PDhg1Vjtu1a1dMnTo1zj777PjKV74SRUVFSZ/feOON0atXr/3QMRxcfvnLX0bPnj3jkksuiYkTJ0ZhYWGV44qKiuK5556LUaNGxQ033BCpr6K/8847o2XLlvujZQAA9lJGeeqf5gAAANjvzj///HjyySeTrvXq1St69OgR7dq1i+Li4li/fn3MmTMntm/fXmWNYcOGxauvvupdS7APDBkyJGbMmJE4z8jIiD59+kS3bt2ibdu2sX379igoKIg5c+ZEcXFxlTW+8IUvVPo9BwCg4cpOdwMAAABUbcmSJbFkyZJajf385z8ff/3rXwVosJ+Ul5fHggULYsGCBbUa/x//8R/xm9/8Zh93BQBAfbKdIwAAQAMwdOjQaNu2bZ3v6927d/z+97+PZ599Nlq1arUPOgMiIkaMGBEtWrSo832DBg2KJ554Iu677z4hNwBAI2M7RwAAgAaiuLg4Xn311Xj99dfj3XffjSVLlsSqVati69atUVxcHK1bt47c3Nzo1q1bDB8+PEaPHh1jx46N7GybjMD+sH379pgyZUq8/vrrMWvWrFiyZEnk5+fH9u3bY9euXdG2bdvIzc2Nnj17xsknnxynnHJKnHzyyZGRkZHu1gEA2ANCNAAAAAAAAEhhO0cAAAAAAABIIUQDAAAAAACAFEI0AAAAAAAASCFEAwAAAAAAgBRCNAAAAAAAAEghRAMAAAAAAIAUQjQAAAAAAABIkZ3uBmBvlZeXR1lZWbrboApZWVkREVFaWprmTqD2zFsaI/OWxsi8pTEyb2mMzFsaI/OWxsi8pTE6EOdtZmZmZGRk1Fs9IRqNXllZWaxZsybdbZAiMzMzunbtGhER69atE3TSKJi3NEbmLY2ReUtjZN7SGJm3NEbmLY2ReUtjdKDO2y5duiTCwfpgO0cAAAAAAABIIUQDAAAAAACAFEI0AAAAAAAASCFEAwAAAAAAgBRCNAAAAAAAAEghRAMAAAAAAIAUQjQAAAAAAABIIUQDAAAAAACAFEI0AAAAAAAASCFEAwAAAAAAgBRCNAAAAAAAAEghRAMAAAAAAIAUQjQAAAAAAABIIUQDAAAAAACAFEI0AAAAAAAASCFEAwAAAAAAgBRCNAAAAAAAAEghRAMAAAAAAIAUQjQAAAAAAABIIUQDAAAAAACAFEI0AAAAAAAASCFEAwAAAAAAgBRCNAAAAAAAAEghRAMAAAAAAIAUQjQAAAAAAABIIUQDAAAAAACAFEI0AAAAAAAASCFEAwAAAAAAgBRCNAAAAAAAAEghRAMAAAAAAIAUQjQAAAAAAABIkZ3uBgCAxqOoqCiWLl2a7jaoIDMzM9avXx8REQUFBVFWVpbmjnavZ8+e0bx583S3AQAAAFAjIRoAUGtLly6NMWPGpLsNGrHJkyfHkUceme42AAAAAGpkO0cAAAAAAABIIUQDAAAAAACAFLZzBAD23DMXRvTJTXcXNGQLN0Sc81i6uwAAAACoMyEaALDn+uRG9O+c7i4AAAAAoN7ZzhEAAAAAAABSCNEAAAAAAAAghe0c62DLli0xb968WLhwYSxbtizWrFkTGzdujKKiosjKyoqWLVtGjx49ol+/fjFq1KjIzd39O2LWrl0bV111VZ166NKlS/zyl7+s9fgVK1bEK6+8ErNmzYr169dHSUlJ5ObmxhFHHBGjRo2KgQMH1un5EZ98H6ZMmRJvv/12rF27NrZt2xZt27aN7t27x/Dhw+Okk06K7GxTCwAAAAAAaLwkHXXwm9/8Jt59990qPystLY3i4uLYuHFjzJo1K/72t7/FOeecE+edd15kZqZnwd9TTz0VTzzxRJSWliZdz8/Pj/z8/Jg2bVoMHz48Lr/88sjJyalVzRkzZsSECRNiy5YtSdcLCgqioKAgZs6cGc8991xce+21ccghh9Tb1wIAAAAAALA/CdH2UOvWrePQQw+Njh07RvPmzWPnzp2xZs2aWLhwYZSWlsauXbviiSeeiDVr1tRqtVlOTk6MHDmyxnFt2rSpVX+PPfZYPPnkk4nz9u3bx1FHHRVNmjSJxYsXx/LlyyMi4vXXX4+tW7fGd77zncjKytptzVmzZsVdd92VCOWaNWsWAwYMiDZt2sSaNWviww8/jPLy8li8eHH8+Mc/jttuu63G1XgAAAAAAAANkRCtDvr16xfHHXdcDBw4MLp27VrlmE2bNsVDDz0Ur7/+ekRETJs2LYYMGRInnHDCbmu3atUqLrvssnrp84MPPkgK0M4666z40pe+lLTF4muvvRYTJkyIXbt2xaxZs+Lpp5+O888/v9qahYWFcc899yQCtIEDB8a1116bFOotWbIk7rzzzigoKIj169fHr371q7jlllvq5WsCAAAAAADYn9Kzz2AjddZZZ8Wpp55abYAWEdGuXbu45pprYsCAAYlrL7300v5oL+GRRx5JHJ900klx8cUXV3pH2YgRI+JrX/ta4nzixImVtmis6Nlnn41t27ZFxCfvZbvxxhsrrYrr1atX3HTTTYkVbbNnz45Zs2bt9dcDAAAAAACwvwnR9oGMjIwYPXp04nzJkiX77dkLFy6Mjz/+ONHHxRdfXO3YU089NfLy8iIiYseOHTFt2rQqx5WUlMSkSZMS5xdeeGE0a9asyrE9e/aMUaNGJc5feOGFOn8NAAAAAAAA6SZE20cqrtLasWPHfnvuO++8kzgeNGhQdOzYsdqxGRkZSYFXxXsrmjt3bmIVWk5OTgwbNmy3PVQMEGfNmhVFRUW1aR0AAAAAAKDBEKLtIytWrEgcd+rUab89d86cOYnjfv361Ti+f//+ieN58+bFrl27Ko2ZPXt24rhv377RpEmT3dbs06dPYqXarl27Yv78+TX2AQAAAAAA0JBk1zyEutqwYUNMnDgxcX7CCSfUeE9paWm8//778fHHH0dhYWE0adIkWrduHYcffnj06dOnxuDqUytXrkwc9+7du8bxFceUlZVFfn5+9OjRY69qZmdnR48ePWLBggWJ+wcNGlTjfQAAAAAAAA2FEK2e7Ny5M9atWxczZ86Mv//977F58+aIiOjWrVucc845Nd6/YcOGuPXWW6v8rGXLljF+/Pg455xzonnz5tXW2Lx5c2LbxYjarYBr2rRptGnTJrZs2RIRnwReqSHaqlWrEse72x6yog4dOiSFaAAAAAAAAI2JEG0PffTRR3HLLbfsdsxnPvOZuOaaayInJ2evnrVt27Z46qmn4q233oobb7wxDjnkkCrHFRYWJp23bdu2VvXbtWuXCNG2bt1a6fOK19q1a1frmlXdX1vr16+v1TOysrIiIiIz086kDU3Fn4mfD42FeVsz3xf2VmZmpnmEf9/SKJm3NEbmLY2ReUtjZN7SGJm3tSNE2wdatmwZ//Ef/xHDhw+vcWxOTk4MGzYsBg8eHL169Yrc3NzIzs6OzZs3x4IFC+Kll16KDz74ICI+WRH2k5/8JH7yk59EmzZtKtUqKipKOm/atGmt+q04LrVG6rX6qlmTb3/72zWOmTBhQnTo0CGysrKia9eudX4G+0/nzp3T3QLUmXlbtdr8Rw6wOx07dvS/2yTx71saI/OWxsi8pTEyb2mMzFsaI/O2ekK0PdS+ffsYP358RESUl5dHUVFRrFq1KhYvXhzbtm2LX/ziF/Hyyy/HN7/5zWpXjrVv3z5+97vfVblFY4cOHaJDhw5xwgknxMsvvxz33XdflJeXx9q1a+ORRx6Jb33rW5Xu2bVrV9J5dnbtfrwV37dWXFxc6fOK1/akZmpfAAAAAAAADZ0QbQ916dIlLrvsskrXN2zYEI8++mhMmTIl5syZEzfffHP88Ic/jJ49e1Ya26RJk6SwqTrjxo2LdevWxdNPPx0REVOmTIkvfelLlbZWTK1VUlJSq5VjFUOuqsY3bdo0du7cmahZGxVr1uZrTDVhwoQax3z69ZeWlsa6devq/Az2rczMzMR/wbB27dooKytLc0dQM/O2ZgUFBelugUauoKAgVq9ene42SDP/vqUxMm9pjMxbGiPzlsbIvKUxOlDnbadOnRKvgaoPQrR6lpubG1dccUXk5OTE888/H9u2bYt77rkn7r777r3aV/Tcc8+N5557LoqLi6OsrCzef//9GDlyZNKY1BVtxcXFtQrRKq40q2pVXPPmzRMhWlUr1fakZk06dOhQp/EHyi/4gaqsrMzPiEbHvK2a7wl7y+8WqcwJGiPzlsbIvKUxMm9pjMxbGiPztnreFrePXHTRRZGTkxMREStXroyZM2fuVb3mzZvHEUcckThfuXJlpTGtW7dOOt+8eXOtam/atClx3KpVq0qfV7xWceze1AQAAAAAAGjIhGj7SLNmzeLII49MnM+bN2+va1bcvrGwsLDS523bto2WLVsmzmuzxWFxcXFs2bIlcd6tW7dKYyq+062223itX79+tzUBAAAAAAAaMiHaPlQx0Koq9KqrT7dUjPgkpKtKxcBqyZIlNdZcvHhx4jgzMzPy8vJ2W7Pi+OqUlpbGsmXLqrwfAAAAAACgMRCi7UP1vaVhxQCrffv2VY7p379/4njOnDk11pw7d27i+Mgjj4wmTZpUGjNgwIDE8fz586OkpGS3NT/++ONE4NekSZPo27dvjX0AAAAAAAA0JEK0faSwsDDmz5+fON/b1Vjvv/9+0haJFcOyio4//vjE8QcffJB0T1WmTJlS5b0V9evXL1q0aBERETt27Ijp06fXuuagQYOiefPmux0PAAAAAADQ0AjRamnr1q21HltWVhZ/+MMfYteuXRHxyWqs4447LmlMSUlJjSu6PrVly5a47777EufdunWL3r17Vzm2T58+cfjhhyf6ePjhh6ut+/LLL0d+fn5EROTk5MTIkSOrHJednR1jx45NnD/++ONRXFxc5dhly5YlhWjjx4+v9vkAAAAAAAANlRCtlqZOnRrf/e53Y+rUqbF9+/Zqxy1dujRuv/32eOONNxLXzjzzzGjdunXSuA0bNsTVV18dzz77bKxbt67KWuXl5fHuu+/Gd7/73VizZk1ERGRkZMQll1wSmZnV/+guuuiixPFrr70WDz/8cKXA7o033ogHH3wwqcc2bdpUW/Occ85JvOMtPz8/7rzzzkrveVu6dGnccccdiWf1798/Bg8eXG1NAAAAAACAhio73Q00Jh9//HH8+te/jqysrDjkkEPikEMOiZYtW0ZGRkYUFhbGsmXLYvXq1Un3DBs2LC644IIq661fvz4efvjhePjhh6NTp07Ro0ePaN26dWRnZ8eWLVtiwYIFsXHjxqR7vvKVr8Sxxx672z4HDhwYX/jCF+Kpp56KiIhnn302pk2bFkcffXQ0adIkFi1aFMuXL0+MHzRoUJx77rm7rdm6deu49tpr44477ojS0tJ4//3344orroiBAwdGmzZtYs2aNTF37twoLy+PiIjc3Ny4+uqrd1sTAAAAAACgoRKi1VKTJk0Sx6WlpbF8+fKkICpVTk5OXHDBBXHGGWfsdtXYp9atW1ftirSIT0Kp//iP/4ghQ4bUqt8LL7wwmjRpEn/729+itLQ0Nm7cmLQ67lMnnXRSXH755ZGVlVVjzcGDB8f1118fEyZMiMLCwti5c2f8+9//rjSud+/ece2110Zubm6tegUAAAAAAGhohGi1dNppp8WAAQPigw8+iAULFsSKFSuioKAgtm3bFhERLVq0iHbt2kWvXr1i4MCBccIJJ0Tz5s2rrdepU6e46667Yv78+TF//vxYvnx5FBYWRmFhYRQXF0dOTk60b98+Dj/88Bg8eHAMHTo0srNr/+PKyMiI8847L4YNGxaTJ0+OWbNmxfr166O0tDTatWsXffv2jVGjRsWgQYPq9H0YMmRI/PznP49XXnkl3n777Vi7dm1s27Yt2rZtG927d4/hw4fH8OHD69QrAAAAAABAQyPpqINPt3AcP378XtfKyMiIHj16RI8ePWLcuHH10F3VDj300PjqV79arzXbtGkTZ599dpx99tn1WhcAAAAAAKChqHmfQQAAAAAAADjICNEAAAAAAAAghRANAAAAAAAAUgjRAAAAAAAAIIUQDQAAAAAAAFII0QAAAAAAACCFEA0AAAAAAABSCNEAAAAAAAAghRANAAAAAAAAUgjRAAAAAAAAIIUQDQAAAAAAAFII0QAAAAAAACCFEA0AAAAAAABSCNEAAAAAAAAghRANAAAAAAAAUgjRAAAAAAAAIIUQDQAAAAAAAFII0QAAAAAAACCFEA0AAAAAAABSCNEAAAAAAAAghRANAAAAAAAAUgjRAAAAAAAAIIUQDQAAAAAAAFII0QAAAAAAACCFEA0AAAAAAABSCNEAAAAAAAAghRANAAAAAAAAUgjRAAAAAAAAIIUQDQAAAAAAAFII0QAAAAAAACCFEA0AAAAAAABSCNEAAAAAAAAghRANAAAAAAAAUgjRAAAAAAAAIIUQDQAAAAAAAFII0QAAAAAAACCFEA0AAAAAAABSZKe7AQDSp6ioKJYuXZruNhqMzMzMWL9+fUREFBQURFlZWZo7angWL16c7hYAAAAAYL8QogEcxJYuXRpjxoxJdxsAAAAAAA2O7RwBAAAAAAAghRANAAAAAAAAUtjOEYD/55kLI/rkprsLGrLJiyOu+Ve6uwAAAACAfU6IBsD/0yc3on/ndHdBQ7ZwQ7o7AAAAAID9wnaOAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAApstPdAAAAB7CdJUmnixcvTlMjNCSZmZmxfv36iIgoKCiIsrKyasf27Nkzmjdvvr9aAwAAgAQhGgAA+87yLUmnl112WZoaobGaPHlyHHnkkeluAwAAgIOQ7RwBAAAAAAAghRANAAAAAAAAUtjOEQCA/eeZCyP65Ka7CxqyhRsiznks3V0AAACAEA0AgP2oT25E/87p7gIAAACgRrZzBAAAAAAAgBRCNAAAAAAAAEghRAMAAAAAAIAUQjQAAAAAAABIIUQDAAAAAACAFEI0AAAAAAAASCFEAwAAAAAAgBRCNAAAAAAAAEghRAMAAAAAAIAUQjQAAAAAAABIIUQDAAAAAACAFEI0AAAAAAAASCFEAwAAAAAAgBTZ6W4AqD9FRUWxdOnSdLcRERGZmZmxfv36iIgoKCiIsrKyNHdEVRYvXpzuFgAAAAAAGiQhGhxAli5dGmPGjEl3GwAAAAAA0OjZzhEAAAAAAABSCNEAAAAAAAAghe0c4UD2zIURfXLT3QUN2eTFEdf8K91dAAAAAAA0OEK0OtiyZUvMmzcvFi5cGMuWLYs1a9bExo0bo6ioKLKysqJly5bRo0eP6NevX4waNSpyc+sWXnzwwQcxderUWLBgQWzYsCGys7OjQ4cOccwxx8SYMWOiW7dude55xYoV8corr8SsWbNi/fr1UVJSErm5uXHEEUfEqFGjYuDAgXWuuWXLlpgyZUq8/fbbsXbt2ti2bVu0bds2unfvHsOHD4+TTjopsrNNrQahT25E/87p7oKGbOGGdHcAAAAAANAgSTrq4De/+U28++67VX5WWloaxcXFsXHjxpg1a1b87W9/i3POOSfOO++8yMzc/a6Z27dvj9///vfxxhtvJF3fuXNnbNu2LZYtWxb//Oc/44tf/GKce+65te73qaeeiieeeCJKS0uTrufn50d+fn5MmzYthg8fHpdffnnk5OTUquaMGTNiwoQJsWXLlqTrBQUFUVBQEDNnzoznnnsurr322jjkkENq3SsAAAAAAEBDIkTbQ61bt45DDz00OnbsGM2bN4+dO3fGmjVrYuHChVFaWhq7du2KJ554ItasWRNXXXVVtXVKSkrirrvuitmzZyeude/ePXr37h27du2Kjz76KDZu3BilpaXx17/+NUpLS+P888+vsb/HHnssnnzyycR5+/bt46ijjoomTZrE4sWLY/ny5RER8frrr8fWrVvjO9/5TmRlZe225qxZs+Kuu+5KhHLNmjWLAQMGRJs2bWLNmjXx4YcfRnl5eSxevDh+/OMfx2233Vbn1XgAAAAAAAANgRCtDvr16xfHHXdcDBw4MLp27VrlmE2bNsVDDz0Ur7/+ekRETJs2LYYMGRInnHBCleOffPLJRIDWpEmTuOKKK2L48OGJz0tKSuLRRx+Nv//97xER8cQTT0S/fv2iX79+1fb5wQcfJAVoZ511VnzpS19K2mLxtddeiwkTJsSuXbti1qxZ8fTTT+82nCssLIx77rknEaANHDgwrr322mjTpk1izJIlS+LOO++MgoKCWL9+ffzqV7+KW265pdqaAAAAAAAADdXu9xkkyVlnnRWnnnpqtQFaRES7du3immuuiQEDBiSuvfTSS1WO3bx5c/zjH/9InH/9619PCtAiIrKzs+Piiy+Ok046KSIiysvL45FHHtltnxU/P+mkk+Liiy+u9I6yESNGxNe+9rXE+cSJEytt0VjRs88+G9u2bYuIiC5dusSNN96YFKBFRPTq1StuuummxIq22bNnx6xZs3bbKwAAAAAAQEMkRNsHMjIyYvTo0YnzJUuWVDlu6tSpsXPnzoiIyMvLi3HjxlVb8+KLL46MjIyIiJg/f34sXry4ynELFy6Mjz/+ONHHxRdfXG3NU089NfLy8iIiYseOHTFt2rQqx5WUlMSkSZMS5xdeeGE0a9asyrE9e/aMUaNGJc5feOGFap8PAAAAAADQUAnR9pGKq7R27NhR5Zh33nkncTx69OhESFaVjh07Jq1ue/vtt2usOWjQoOjYsWO1NTMyMpICr4r3VjR37tzEKrScnJwYNmxYtTUjIilAnDVrVhQVFe12PAAAAAAAQEMjRNtHVqxYkTju1KlTpc+Li4tj/vz5ifP+/fvXWLPimE/fo5Zqzpw5iePdvTetqprz5s2LXbt2VRpT8Vl9+/aNJk2a7LZmnz59EivVdu3alfR1AgAAAAAANAZCtH1gw4YNMXHixMT5CSecUGnMqlWrory8PCI+WRHWq1evGusedthhieOVK1dWOabi9d69e9dYs+KYsrKyyM/P3+ua2dnZ0aNHjxp7BQAAAAAAaKiy093AgWLnzp2xbt26mDlzZvz973+PzZs3R0REt27d4pxzzqk0ftWqVYnjNm3aRNOmTWt8RsWtGbdu3RpbtmxJ2jZy8+bNiW0XI6peAZeqadOm0aZNm9iyZUtEfBJ4VQzAUnvd3faQFXXo0CEWLFiQqFlX69evr3FMu3btIisrKyIiMjPlwRG+DwDAgSczM9OfcWgQKs5Dc5LGwrylMTJvaYzMWxoj87Z2hGh76KOPPopbbrllt2M+85nPxDXXXBM5OTmVPtu6dWviuF27drV6Zuq4rVu3JoVohYWFSZ+3bdu21nU/DdEq9lVfvVZVsybf/va3axwzYcKE6NChQ2RlZUXXrl3r/IwDUW3CRwCAxqRjx47+rEeD07lz53S3AHVm3tIYmbc0RuYtjZF5Wz0h2j7QsmXL+I//+I8YPnx4tWOKiooSx7VZhVbVuIo1qjrfk7qpNVKv1VdNAAAAAACAhkyItofat28f48ePj4iI8vLyKCoqilWrVsXixYtj27Zt8Ytf/CJefvnl+OY3vxmHHHJIpfuLi4sTx9nZtfsxpI6rWCMiYteuXbsdX50mTZpUWzP12p7UTO2rNiZMmFDjmE9Xu5WWlsa6devq/IwDUUFBQbpbAACoVwUFBbF69ep0twGRmZmZ+C90165dG2VlZWnuCGpm3tIYmbc0RuYtjdGBOm87deqUeA1UfRCi7aEuXbrEZZddVun6hg0b4tFHH40pU6bEnDlz4uabb44f/vCH0bNnz6RxFVdqlZSU1OqZqeNSV4VVDK4+HV+blWMVQ66qxjdt2jR27txZp14r1kztqzY6dOhQp/EHyi/43vJ9AAAONGVlZf6MQ4NjXtIYmbc0RuYtjZF5S2Nk3lbP2+LqWW5ublxxxRVx+umnR0TEtm3b4p577qk0AZs3b544rmr1V1VSx1WsUdX5ntRNrZF6rb5qAgAAAAAANGRCtH3koosuipycnIiIWLlyZcycOTPp81atWiWON23aVKuaqeMq1oiIaN26ddL55s2b61w3tWbqtT3ptaqaAAAAAAAADZkQbR9p1qxZHHnkkYnzefPmJX1e8T1pW7ZsqdUKr4rvu2rVqlW0adMm6fO2bdtGy5YtE+e1eU9YcXFxbNmyJXHerVu3SmMq9lrbd26tX79+tzUBAAAAAAAaMiHaPlQx0CosLEz67JBDDomMjIyIiCgvL48lS5bUWG/RokWJ4+qCqYrXa1Nz8eLFiePMzMzIy8vbbc2K46tTWloay5Ytq7FXAAAAAACAhkqItg/tbkvDpk2bRt++fRPnc+fOrbHehx9+mDgeMGBAlWP69++fOJ4zZ06NNSs+98gjj4wmTZpUGlPxWfPnz4+SkpLd1vz4449j586dERHRpEmTpK8TAAAAAACgMRCi7SOFhYUxf/78xHlVq7GOP/74xPGUKVN2W6+goCA++OCDKu+truYHH3yQtK1iVSo+t7qa/fr1ixYtWkRExI4dO2L69Om1rjlo0KBo3rz5bscDAAAAAAA0NEK0Wtq6dWutx5aVlcUf/vCH2LVrV0R8shrruOOOqzRu1KhR0axZs4iIWLVqVUyaNKnamg8//HCUlZVFRETfvn3jsMMOq3Jcnz594vDDD0/08fDDD1db8+WXX478/PyIiMjJyYmRI0dWOS47OzvGjh2bOH/88cerfYfbsmXLkkK08ePHV/t8AAAAAACAhkqIVktTp06N7373uzF16tTYvn17teOWLl0at99+e7zxxhuJa2eeeWa0bt260ti2bdvG5z//+cT5Aw88kHRfRERJSUk8/PDD8frrryeuXXTRRbvtteLnr732Wjz88MOVtmB844034sEHH0zqsU2bNtXWPOeccxLveMvPz48777yz0nveli5dGnfccUfiWf3794/BgwfvtlcAAAAAAICGKDvdDTQmH3/8cfz617+OrKysOOSQQ+KQQw6Jli1bRkZGRhQWFsayZcti9erVSfcMGzYsLrjggmprnnfeeTFv3ryYPXt2FBcXxz333BNPPfVU9O7dO3bt2hUffvhhbNy4MTH+i1/8YvTr12+3fQ4cODC+8IUvxFNPPRUREc8++2xMmzYtjj766GjSpEksWrQoli9fnhg/aNCgOPfcc3dbs3Xr1nHttdfGHXfcEaWlpfH+++/HFVdcEQMHDow2bdrEmjVrYu7cuVFeXh4REbm5uXH11VfvtiYAAAAAAEBDJUSrpSZNmiSOS0tLY/ny5UlBVKqcnJy44IIL4owzzojMzOoX/GVnZ8f//M//xO9+97t48803I+KTLRGXLVuWNC4rKysuuOCC+MIXvlCrfi+88MJo0qRJ/O1vf4vS0tLYuHFjpVVuEREnnXRSXH755ZGVlVVjzcGDB8f1118fEyZMiMLCwti5c2f8+9//rjSud+/ece2110Zubm6tegUAAAAAAGhohGi1dNppp8WAAQPigw8+iAULFsSKFSuioKAgtm3bFhERLVq0iHbt2kWvXr1i4MCBccIJJ0Tz5s1rVbtFixZx3XXXxdixY2Pq1Kkxf/782LRpU2RlZUWHDh3imGOOiTFjxsShhx5a634zMjLivPPOi2HDhsXkyZNj1qxZsX79+igtLY127dpF3759Y9SoUTFo0KA6fR+GDBkSP//5z+OVV16Jt99+O9auXRvbtm2Ltm3bRvfu3WP48OExfPjwyM42tQAAAAAAgMZL0lEHn27hOH78+H1Sf9CgQXUOtWpy6KGHxle/+tV6rdmmTZs4++yz4+yzz67XugAAAAAAAA1F9fsMAgAAAAAAwEFKiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKbLT3UBjs3bt2nj//fdj7ty5sXz58igoKIiioqJo3rx5dOjQIfr27RsjRoyIfv361areF7/4xTo9PzMzMx599NFajy8oKIjJkyfHjBkzEr3m5uZGr1694uSTT47jjz8+MjIy6tRDUVFRTJs2Ld58883Iz8+PLVu2RJs2bSIvLy9OPPHEGDlyZDRv3rxONQEAAAAAABoSIVotLV68OO67775YuHBhlZ9v27Yttm3bFsuWLYuXX345+vfvH1deeWV07NhxP3f6/0yePDkeeOCB2LlzZ9L1NWvWxJo1a2L69OkxcODAuPrqq6Ndu3a1qjl//vy49957Y+3atUnXN2zYEBs2bIg5c+bExIkT45prrokjjjiivr4UAAAAAACA/UqIVkurVq2qFKDl5eVF9+7do02bNrFt27aYP39+rF+/PiIi5syZEzfffHP86Ec/ii5dutTqGePHj69xTGZm7XbgnDx5cvz2t79NnLds2TL69+8fLVq0iOXLl8fHH38cEREffPBB3HbbbfHjH/+4xtVjS5YsiVtvvTWKiooiIiIrKysGDBgQHTp0iPXr18fs2bOjtLQ01qxZE7feemv8+Mc/jh49etSqXwAAAAAAgIZEiFZHXbt2jTFjxsTIkSMjNzc36bOysrKYMmVKYvXXxo0b4957741bb721VlsmXnbZZfXS46pVq+K+++5LnI8YMSIuv/zypJBs9uzZcffdd8e2bdti6dKl8cc//jGuuOKKamuWlJTE3XffnQjQevbsGTfccEN07tw5MWbt2rXxf//3f7F06dLYsWNH3H333fGzn/0ssrKy6uXrAgAAAAAA2F9qt6yJaN++fVxxxRVxzz33xDnnnFMpQIv4ZJXYmDFj4uqrr05cW7BgQcyaNWt/thqPPvpolJaWRkTEkUceGVdddVWlVWYDBgyIa665JnE+bdq0WLFiRbU1J02aFGvWrImIT1a13XzzzUkBWkRE586d43vf+160bNkyIiLy8/PjlVdeqZevCQAAAAAAYH8SotVSv379YvTo0bXaTnHo0KHRp0+fxPm77767L1tLsmnTppg+fXri/OKLL66258985jMxcODAiPhkFd1LL71Ubd0XXnghcXzmmWdW+w619u3bx5lnnlnlfQAAAAAAAI2FEG0fOfLIIxPH69at22/P/fe//x3l5eUR8ck72yr2UZXRo0cnjt95550qx6xevTpplVrFe2qquXTp0sQKNgAAAAAAgMZCiLaPVHwHWllZ2X577pw5cxLH/fv3r3F8xTEFBQWxevXqSmNmz56dOM7Ly6tyK8uKcnNzIy8vr8r7AQAAAAAAGoPsdDdwoFq2bFniuEOHDrW6Z+7cubFw4cLYvHlzZGZmRuvWraNXr17Rt2/fSu80q87KlSsTx717965xfG5ubrRt2zY2b94cERErVqyIrl27Jo2puAqtNjU/HZefn1+pJwAAAAAAgMZAiLYPFBQUJK2+GjRoUK3u++EPf1jl9WbNmsUpp5wS5513XrRt23a3NVatWpU47tSpU62e27Fjx0SIVvH+T30ahtW15qeEaAAAAAAAQGMjRNsHHnroocQWjh07dozjjjtur+rt3Lkz/vWvf8X06dPj+uuvj759+1Y5rri4OIqLixPnNQVun2rXrl3ieOvWrZU+LywsrPeaNVm/fn2tnpGVlRUREZmZdiaN8H0AAA48mZmZ/oxDg1BxHpqTNBbmLY2ReUtjZN7SGJm3tSNEq2dTpkyJ6dOnJ84vuuiiaNKkSbXjmzRpEkOGDInPfOYzcfjhh0fHjh2jSZMmsXXr1li0aFGiXnl5eWzcuDF++tOfxq233hqHHHJIpVpFRUVJ502bNq1VzxXHpdZIvVZfNWvy7W9/u8YxEyZMiA4dOkRWVlalLSgPVrUJHwEAGpOOHTv6sx4NTufOndPdAtSZeUtjZN7SGJm3NEbmbfWEaPXo448/jvvuuy9xPnz48BgxYsRu7/ntb38brVu3rnS9Xbt2ceyxx8axxx4bM2bMiJ/97Gexa9eu2Lp1a/zhD3+IH/zgB5XuqbgKLSIiO7t2P96KIV9qjYiIXbt21blmxXFV1QQAAAAAAGjIhGj1ZO3atXHHHXckAqeePXvGN7/5zRrvqypAS3XcccfFpZdeGr///e8jIuKDDz6IRYsWxWGHHZY0LnWVWElJSa16rxiSVbXSrGLIVtuaFcfVdvVaRRMmTKhxzKdbRpaWlsa6devq/IwDUUFBQbpbAACoVwUFBbF69ep0twGRmZmZ+C90165dm9jCHxoy85bGyLylMTJvaYwO1HnbqVOnxGug6oMQrR5s3LgxfvzjH8emTZsiIqJLly7xve99L1q0aFFvzxgzZkw89dRTiZBk5syZlUK05s2bJ53XdgVYxXGpNVKv1VfNmnTo0KFO4w+UX/C95fsAABxoysrK/BmHBse8pDEyb2mMzFsaI/OWxsi8rZ63xe2lwsLCuPXWW2PNmjUREdG+ffv4wQ9+EO3bt6/X52RmZsaAAQMS5ytXrqw0pmnTpkmrvjZv3lyr2p+GfxERrVq1qvR5xdVy9VUTAAAAAACgIROi7YXt27fHbbfdFsuXL4+IT8KmH/zgB/vsJXyfbl8Y8Ul4V5VDDjkkcVzbLQ4rbgFY8f5P5eXl7VXNbt261eoeAAAAAACAhkKItoeKiori9ttvj0WLFkVERIsWLeLmm2+OQw89dJ89c+fOnYnjZs2aVTmmYmC1ePHiGmtu2LAhaXVZVf1XvLZkyZLatJr0bCEaAAAAAADQ2AjR9kBxcXHceeedMW/evIj4JND6zne+U+kdZfWtYoBV3XaR/fv3TxzPnTu3xpoVx3Ts2DG6du2625qrVq2KjRs37rbmhg0bIj8/P3FecRtKAAAAAACAxkCIVkclJSVx9913x+zZsyMiokmTJnHDDTfEUUcdtU+fu3LlykRoF5EcbFU0ZMiQyMjIiIhPAq/58+fvtu7UqVOT7q1KXl5e0mq0ivfUVLNHjx7RpUuX3Y4HAAAAAABoaIRodVBWVhb33ntvzJw5MyIisrKy4rrrrotBgwbtUb2ioqJajdu5c2f85je/ibKysoj45N1rgwcPrnJsu3btYtiwYYnzhx9+OMrLy6scO2vWrJg1a1ZERGRmZsZpp51WbQ8VP5s4cWJs2rSpynGbNm2KiRMnJs7Hjx9fbU0AAAAAAICGSohWS+Xl5TFhwoR46623IiIiIyMjrrrqqmpXb9XGlVdeGY899lisXLmy2jEfffRRfP/7348FCxYkrl144YXRvHnzau+58MILIysrKyIiPvzww/j1r39dKbCbPXt23HvvvYnzkSNH7vZ9buPGjUusKCssLIzbb7891q1blzRm3bp1cfvtt8fWrVsj4pMVbGPGjKm2JgAAAAAAQEOVne4GGosXX3wxaZvCrl27xkcffRQfffRRre6/7LLLKl0rLCyMJ598Mp588slo37599OzZM9q2bRtNmjSJrVu3xuLFi2PNmjVJ94wfP363K8YiIrp16xbf/OY347e//W1EREybNi1mzJgRAwYMiJycnFi5cmVSKNezZ8+49NJLd1szOzs7rr/++rjllluiqKgoFi9eHNdcc00MHDgwcnNzY/369TF79uwoLS2NiIicnJy4/vrrE2EeAAAAAABAYyJEq6XNmzcnnefn50d+fn6t768qRKto48aNsXHjxmo/b9myZVx88cUxduzYWj1vzJgxUV5eHg8++GDs3Lkztm3bFtOnT680buDAgXHVVVdFTk5OjTV79eoV3//+9+Pee++NtWvXRmlpabz33nuVxnXp0iWuvvrq6NGjR616BQAAAAAAaGiEaGn0i1/8IubPnx/z58+PpUuXxpYtW6KwsDCKioqiefPm0aZNmzjssMNi4MCBMXz48GjWrFmd6o8dOzaOOeaYmDx5csyYMSMKCgqiqKgo2rVrF717946RI0fG8ccfHxkZGbWu2bdv37jrrrti6tSp8eabb0Z+fn4UFhZG69atIy8vL0488cQYNWrUbrebBAAAAAAAaOiEaLX0xS9+Mb74xS/Wa828vLzIy8uLUaNG1Wvdijp27FjvvTdv3jzGjx8f48ePr7eaAAAAAAAADUlmuhsAAAAAAACAhkaIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACnSHqI99dRTsWHDhnS3AQAAAAAAAAnZ6W7gscceiyeeeCKOOeaYGDduXBx77LGRmZn2bA8AAAAAAICDWNpDtIiIsrKymDlzZsycOTPatWsXo0ePjlNOOSW6du2a7tYAAAAAAAA4CDWIEK2iTZs2xTPPPBPPPPNM9O/fP8aOHRvDhg2L7OwG1yoAAAAAAAAHqLQnUzfccENMnjw5Zs6cGWVlZUmfzZkzJ+bMmROtWrWKk08+OcaMGRM9evRIU6cAAAAAAAAcLNIeog0ZMiSGDBkSmzZtismTJ8eUKVNizZo1SWO2bt0azz//fDz//PPRp0+fGDt2bJx00knRvHnzNHUNAADsEztLkk4XL16cpkZorHr27On/KwIAAPUi7SHap9q1axdf+MIX4gtf+ELMnj07Jk+eHG+//Xbs2rUradzChQtj4cKF8dBDD8VJJ50UY8aMiSOOOCJNXQMAAPVq+Zak08suuyxNjdBYTZ48OY488sh0twEAABwAGkyIVtGAAQNiwIABsW3btpg2bVq88sorsXTp0qQxRUVFMXny5Jg8eXJ07949xo4dGyeffHK0atUqTV0DAAAAAABwoGiQIdqnWrZsGaeffnqcfvrp8fHHH8ekSZPijTfeiB07diSNW758eTz44IPx8MMPx9ChQ2PMmDExYMCANHUNAAAAAABAY9egQ7SKDj/88Dj88MPja1/7Wrz55psxefLkmDdvXtKYXbt2xeuvvx6vv/56dOnSJcaMGROjR4+Odu3apadpAABg7zxzYUSf3HR3QUO2cEPEOY+luwsAAOAA1GhCtE81a9YsRo8eHaNHj45Vq1bFpEmTYurUqVFYWJg0bs2aNfHXv/41Hn/88RgyZEh89rOfjX79+qWpawAAYI/0yY3o3zndXQAAAHAQanQhWkWbN2+OzZs3x86dO6sdU1paGtOnT4/p06dH//794xvf+EYceuih+7FLAAAAAAAAGptGF6Jt2rQppk6dGq+88krk5+dXOaZFixbRtGnT2LRpU9L1OXPmxE033RT/+Z//GSNHjtwP3QIAAAAAANAYNYoQrby8PGbOnBmTJk2KmTNnRmlpaZXjjjjiiBg3blycdNJJkZ2dnbjn3XffjfLy8oiIKCkpiQkTJkT37t2jd+/e+/PLAAAAAAAAoJFo0CHa2rVrY/LkyTF16tTYsGFDlWNatGgRJ598cowbNy569OiR9Nlxxx0Xxx13XOTn58ef/vSnePfddyMioqysLJ577rm46qqr9vnXAAAAAAAAQOPT4EK0kpKSeOutt2Ly5Mkxd+7cxAqyVH369Ilx48bF8OHDo2nTprutmZeXFzfddFP89Kc/jZkzZ0bEJ1s7AgAAAAAAQFUaTIi2dOnSmDRpUrz22muxbdu2Ksfk5OQkVp317Nmzzs8444wzEiHa5s2b96pfAAAAAAAADlxpD9FeeumlmDx5cixatKjaMX369ImxY8fG8OHDo1mzZnv8rM6dOyeOq3uvGgAAAAAAAKQ9RLv//vurvJ6TkxMjRoyIcePGRa9everlWVlZWfVSBwAAAAAAgANb2kO0VIcffnjiXWd7s+qsKs2bN49Ro0bVa00AAAAAAAAOPA0iRGvevHmMGDEiTj311HpbdVaV1q1bxxVXXLHP6gMAAAAAAHBgSHuIdvnll8fw4cOjefPm6W4FAAAAAAAAIqIBhGhjx45NdwsAAAAAAACQJDPdDQAAAAAAAEBDI0QDAAAAAACAFGnfzvHjjz+O3//+9xERkZmZGd/97nejTZs2daqxefPm+OlPfxplZWUREXHllVdGjx496r1XAAAAAAAADg5pX4n24osvxpIlS2LJkiXRqVOnOgdoERFt27aNDh06JOq8+OKL+6BTAAAAAAAADhZpDdHKy8tjxowZifPRo0fvca0xY8Ykjt955529aQsAAAAAAICDXFpDtBUrVkRhYWFERDRp0iQGDRq0x7UGDRoU2dmf7E65adOmWLlyZb30CAAAAAAAwMEnrSHa8uXLE8c9evRIhGB7Ijs7O3r27FllbQAAAAAAAKiLtIZoGzduTBzn5ubudb2KNTZs2LDX9QAAAAAAADg4pTVE27lzZ+K4WbNme12vadOmieOioqK9rgcAAAAAAMDBKa0hWsuWLRPHn74bbW9s3bo1cdy8efO9rgcAAAAAAMDBKa0hWps2bRLHS5cu3et6FWtUrA0AAAAAAAB1kdYQrVevXonjTZs2xYIFC/a41vz582PTpk2J8+7du+9FZwAAAAAAABzM0hqi5eXlRYcOHRLnjzzyyB7XevTRRxPH7dq1i549e+5VbwAAAAAAABy80hqiRUSMHDkycTx37tx44IEH6lzjoYceijlz5iTOTz755HrpDQAAAAAAgINT2kO0s846K1q0aJE4/9e//hU//vGPY9myZTXeu3z58rjtttvin//8Z+JaTk5OnHPOOfuiVQAAAAAAAA4S2eluoEWLFvHtb3877r777sS12bNnxw033BB9+vSJo446Krp16xYtW7aMjIyM2LZtW6xcuTI+/PDDWLhwYVKtjIyM+Na3vhWtWrXa318GAAAAAAAAB5C0h2gREUOHDo2vfvWr8ec//znKy8sT1xcuXFgpKKtORkZGXHLJJXHCCSfsqzYBAAAAAAA4SDSIEC0i4nOf+1x069Ytfv3rX8eWLVvqdG/btm3jqquuikGDBu2j7gAAAAAAADiYNJgQLSJi8ODB8etf/zpefvnlmDRpUqxYsWK347t37x7jxo2LMWPGRNOmTfdTlwAAAAAAABzoGlSIFhHRtGnTOOOMM+KMM86ILVu2xMKFC2PTpk1RWFgYERGtWrWKdu3axRFHHBFt2rRJc7cAAAAAAAAciBpciFZRmzZt4thjj013GwAAAAAAABxkMtPdAAAAAAAAADQ0QjQAAAAAAABIIUQDAAAAAACAFEI0AAAAAAAASJGd7gYqKi8vj1mzZsXcuXNj6dKlsWXLlti+fXuUlpbWqU5GRkb88pe/3EddAgAAAAAAcKBrMCHaa6+9Fg8//HBs2LAh3a0AAAAAAABwkGsQIdpDDz0U//znP9PdBgAAAAAAAEREAwjRpk2bVmWAlp2dHV27do0WLVpEdnba2wQAAAAAAOAgkvZ06q9//WvS+ZFHHhnnn39+DBgwIDIzM9PUFQAAAAAAAAeztIZoixYtSnoH2oknnhjXXnttZGRkpLErAAAAAAAADnZpXeq1ZMmSxHHTpk3jm9/8pgANAAAAAACAtEtriLZly5bEcd++faNly5Zp7AYAAAAAAAA+kdYQrUWLFonjdu3apa8RAAAAAAAAqCCtIVqHDh0Sxzt27EhjJwAAAAAAAPD/pDVEO+qoo6JJkyYRkfx+NAAAAAAAAEintIZoLVu2jGHDhkVExPr162Pu3LnpbAcAAAAAAAAiIs0hWkTEJZdcEm3atImIiAcffDCKiorS3BEAAAAAAAAHu7SHaO3atYvrrrsucnJyYunSpXHbbbdFQUFButsCAAAAAADgIJad7gYKCgqic+fOce2118avfvWrmD9/fvzXf/1XnHjiiTF48ODo1q1btGjRIjIz65b3dezYcZ/0u3bt2nj//fdj7ty5sXz58igoKIiioqJo3rx5dOjQIfr27RsjRoyIfv361bn2woULY8qUKTFnzpzYsGFDRETk5uZG//79Y/To0dGnT5861ywoKIjJkyfHjBkzEr3m5uZGr1694uSTT47jjz8+MjIy6lSzqKgopk2bFm+++Wbk5+fHli1bok2bNpGXlxcnnnhijBw5Mpo3b17nXgEAAAAAABqKtIdoV155ZaVru3btimnTpsW0adP2qGZGRkY8+uije9taksWLF8d9990XCxcurPLzbdu2xbZt22LZsmXx8ssvR//+/ePKK6+sVZhXUlISf/7zn+Nf//pXlJeXJ322cuXKWLlyZbz00ktx+umnx8UXXxzZ2bX7sU2ePDkeeOCB2LlzZ9L1NWvWxJo1a2L69OkxcODAuPrqq6Ndu3a1qjl//vy49957Y+3atUnXN2zYEBs2bIg5c+bExIkT45prrokjjjiiVjUBAAAAAAAamrRv57gvpAZR9WHVqlWVArS8vLwYOnRojBs3Lk488cTo0KFD4rM5c+bEzTffHGvWrKmx9m9/+9t4/vnnE3136dIlRowYESNGjIguXbpExCdf0z//+c+47777atXv5MmT47e//W0iQGvZsmUMHTo0Ro8eHYcffnhi3AcffBC33XZbrd5Ft2TJkrj11lsTAVpWVlYcc8wxMWbMmDjmmGMiKysrIj4J6W699dZYtmxZrXoFAAAAAABoaNK+Eq2x6dq1a4wZMyZGjhwZubm5SZ+VlZXFlClTEqu/Nm7cGPfee2/ceuut1W6ZOHny5MSKu4yMjPjqV78ap59+emL7yrKysnj++efjT3/6U5SXl8crr7wS/fr1i1GjRlXb46pVq5LCthEjRsTll1+etMXi7Nmz4+67745t27bF0qVL449//GNcccUV1dYsKSmJu+++OxG29ezZM2644Ybo3LlzYszatWvj//7v/2Lp0qWxY8eOuPvuu+NnP/tZIlwDAAAAAABoLNIeop1//vnpbqFW2rdvH1dccUWMHDmy2vezZWZmxpgxY6JVq1Zx1113RUTEggULYtasWTF48OBK43ft2hVPPPFE4vzss8+Oz33uc5Vqfu5zn4tNmzbFs88+GxERjz/+eAwfPrzabR0fffTRKC0tjYiII488Mq666qpKPQ8YMCCuueaauP322yMiYtq0aXHWWWfFoYceWmXNSZMmJVbVtWzZMm6++eZKW0B27tw5vve978V///d/x7Zt2yI/Pz9eeeWVGDduXJU1AQAAAAAAGqq0h2gXXHBBuluolX79+kW/fv1qNXbo0KHRp0+fxPaP7777bpUh2r///e9Yv359RES0aNEizjvvvGprnn/++fHiiy/Gjh07Yt26dfHuu+/G0KFDK43btGlTTJ8+PXF+8cUXVxv6feYzn4mBAwfGBx98EGVlZfHSSy/FpZdeWuXYF154IXF85plnVvsOtfbt28eZZ56ZeCfdCy+8IEQDAAAAAAAanQPynWgNwZFHHpk4XrduXZVj3nnnncTxSSedFM2aNau2XrNmzeLEE09MnL/99ttVjvv3v/+deLdaXl5eUh9VGT16dJX9VLR69epYsWJFlffUVHPp0qW1ei8cAAAAAABAQyJE20cqvgOtrKysyjFz5sxJHNdmlduAAQMSx7Nnz66xZv/+/WusWXFMQUFBrF69utKYis/Ky8ur9C64VLm5uZGXl1djrwAAAAAAAA2VEG0fWbZsWeK4Q4cOlT7fvn17bNy4MXF+2GGH1Vizd+/eieMNGzbE9u3bK41ZuXJlleOrk5ubG23btk2cV1xxVtW12tRMHVexJwAAAAAAgMZAiLYPFBQUJK2+GjRoUKUxq1atSjrv2LFjjXVTx6TWSL3WqVOnGmum1q2qZn5+/l7VFKIBAAAAAACNTXa6G6hKcXFxfPTRRzFv3rxYt25dbN26NYqKiiIi4pZbbklzdzV76KGHEls4duzYMY477rhKYwoLCxPHOTk50bRp0xrrNmvWLHJycmLHjh0REbF169akz4uLi6O4uDhxXnGF2e60a9cucZxaM7XX+qpZk/Xr19fqGVlZWRERkZkpD47wfQAAgMzMzH3y5+KKNf25m8bCvKUxMm9pjMxbGiPztnYaVIi2devWeOaZZ2Ly5Mmxbdu2Wt/32muvxZ///OeIiGjVqlX83//9X9p+6FOmTInp06cnzi+66KJo0qRJpXGfhoIRUasAreLYT0O0ijWqOq9t3YrjUmvsaa811azJt7/97RrHTJgwITp06BBZWVnRtWvXOj/jQFSb8BEAAA5kHTt23Of//6Bz5877tD7sC+YtjZF5S2Nk3tIYmbfVazDx4uzZs+N//ud/YuLEiXUK0CIihg4dGiUlJbFp06ZYsWJFzJgxYx91uXsff/xx3HfffYnz4cOHx4gRI6ocu2vXrsRxdnbts8yKYyuuOqvqvLZ1K4Z8qTUi9qzX3fUJAAAAAADQ0DWIlWhz5syJn/70p0lhTUREVlZWtGjRImk7wao0bdo0hg8fHi+88EJERLz11ltx/PHH77N+q7J27dq44447El9Dz54945vf/Ga14ysGVyUlJbV+TsWxqavCUs9rW7fi972qlWZ70uvu+qyNCRMm1Djm0y0jS0tLY926dXV+xoGooKAg3S0AAEBaFRQUxOrVq+u9bmZmZuK/0F27dm1iC39oyMxbGiPzlsbIvKUxOlDnbadOnRKvgaoPaQ/RtmzZEnfddVdSkDNs2LA444wzok+fPrFhw4a4+uqra6wzdOjQRIj2wQcf7LN+q7Jx48b48Y9/HJs2bYqIiC5dusT3vve9aNGiRbX3NG/ePHFcl5VaFcdWrFHVeW3r7q5m6rX6qlmTDh061Gn8gfILvrd8HwAAONiVlZXt8z8X749nQH0zb2mMzFsaI/OWxsi8rV7aQ7Qnnngitm/fHhERGRkZ8a1vfStGjx6d+DwjI6NWdY466qjIzMyMsrKy2Lx5c6xdu3a/7ONZWFgYt956a6xZsyYiItq3bx8/+MEPon379ru9r3Xr1onjHTt2RHFxcY0rtnbu3Jl4H1rEJ+9/q6hp06bRtGnTRIC1efPmWn0Nn4Z/VdVM7bW+agIAAAAAADRkaX0nWmlpaUybNi1xfvbZZycFaHWRnZ0d3bp1S5yvWLFib9ur0fbt2+O2226L5cuXR8QnYdMPfvCDWoV3hxxySNJ5bbbhSx2TWiP1Wm23OKxYt6qaeXl5e1Wz4s8FAAAAAACgMUhriDZv3rwoKiqKiE/eu3XuuefuVb2KWwCuX79+r2rVpKioKG6//fZYtGhRRES0aNEibr755jj00ENrdX+LFi2SVqstXry4xnsqjsnNza1yu8iKgVVtam7YsCFpdVlV/Ve8tmTJkhprpj5biAYAAAAAADQ2aQ3RPt0CMSLiiCOO2KN3Z1VUMVSquO1hfSsuLo4777wz5s2bFxERzZo1i+985ztx2GGH1alO//79E8dz5sypcfzcuXMTxwMGDKixZsXxtanZsWPH6Nq1625rrlq1KjZu3Ljbmhs2bIj8/PwaewUAAAAAAGio0hqiVVwBVdM7xGqjvLw8cbyvXoJXUlISd999d8yePTsiPllBd8MNN8RRRx1V51rHH3984vjNN99MvMusKsXFxfHmm29WeW9FQ4YMSbxHbtWqVTF//vzd9jB16tSke6uSl5eXtBqt4j011ezRo0d06dJlt+MBAAAAAAAamrSGaE2bNk0c7y5Aqq3CwsLEcevWrfe6XqqysrK49957Y+bMmRERkZWVFdddd10MGjRoj+oNGTIksQXltm3b4qmnnqp27N/+9rfYtm1bRER06tQpjjvuuCrHtWvXLoYNG5Y4f/jhh5PCxYpmzZoVs2bNioiIzMzMOO2006p9fsXPJk6cGJs2bapy3KZNm2LixImJ8/Hjx1dbEwAAAAAAoKFKa4jWpk2bxPG6dev2ul7F93W1bdt2r+tVVF5eHhMmTIi33norIiIyMjLiqquuqnb1Vm00adIkLrjggsT5008/Hf/85z+TVtGVlZXFP//5z3j22WcT1774xS9GdnZ2tXUvvPDCyMrKioiIDz/8MH79618n3j33qdmzZ8e9996bOB85cuRu3+c2bty4xIqywsLCuP322yv9zNatWxe33357bN26NSI+WcE2ZsyYamsCAAAAAAA0VNUnMftBxdBm2bJlsWXLlqRgrS7mzZuXCG8iPnnHWn168cUXk7Yp7Nq1a3z00Ufx0Ucf1er+yy67rMrrY8aMiblz58a0adOivLw8HnzwwXj++ecT/S9YsCDp3XGjR4+OUaNG7fZZ3bp1i29+85vx29/+NiIipk2bFjNmzIgBAwZETk5OrFy5MhYsWJAY37Nnz7j00kt3WzM7Ozuuv/76uOWWW6KoqCgWL14c11xzTQwcODByc3Nj/fr1MXv27CgtLY2IiJycnLj++usTYR4AAAAAAEBjktYQrVevXtGuXbvYtGlTlJWVxT/+8Y+46KKL9qhWxa0Qe/ToUe8r0Sq+vy0iIj8/P/Lz82t9f3UhWkTEt771rWjRokW88MILUV5eHmvWrEkKziI+Wfn22c9+Ni655JJaPW/MmDGJUG7nzp2xbdu2mD59eqVxAwcOjKuuuipycnJqrNmrV6/4/ve/H/fee2+sXbs2SktL47333qs0rkuXLnH11VdHjx49atUrAAAAAABAQ5PWEC0i4uSTT068Q2vixIkxYMCAOr9j7B//+EdSmDNu3Lj6bHGfy87Ojm984xsxcuTImDx5csydOzc2bNgQERG5ubnRr1+/GDNmTPTp06dOdceOHRvHHHNMTJ48OWbMmBEFBQVRVFQU7dq1i969e8fIkSPj+OOPj4yMjFrX7Nu3b9x1110xderUePPNNyM/Pz8KCwujdevWkZeXFyeeeGKMGjUqmjdvXqdeAQAAAAAAGpK0h2jnnntuTJo0KbZv3x5lZWVxxx13xJe+9KU444wzatwKcOvWrfH444/HCy+8kLiWm5sbY8eOrfc+v/jFL8YXv/jFeq9bUZ8+feoclNWkY8eO9d578+bNY/z48TF+/Ph6qwkAAAAAANCQpD1Ea9myZXz729+On/3sZ1FeXh4lJSXxl7/8JZ599tk47rjjIjc3N2n8Sy+9FIWFhbFgwYKYM2dO7Ny5M/FZdnZ2XHvttZGdnfYvCwAAAAAAgEasQaRNQ4cOjcsuuyz++Mc/RllZWUREFBYWxpQpUyqNvf/++6uskZWVFZdffnkcddRR+7JVAAAAAAAADgINIkSLiDj11FOje/fu8ctf/jIKCgrqdG/79u3j2muvjaOPPnofdQcAAAAAAMDBpMGEaBERRx11VPziF7+IV199NV566aVYtGhRlJeXVzv+0EMPjXHjxsW4ceOiSZMm+7FTAAAAAAAADmQNKkSL+OS9ZqecckqccsopsWPHjliwYEGsX78+tm7dGqWlpdGqVato06ZNHHHEEdG+fft0twsAAAAAAMABqMGFaBXl5OTEoEGD0t0GAAAAAAAAB5nMdDcAAAAAAAAADY0QDQAAAAAAAFII0QAAAAAAACCFEA0AAAAAAABSZKe7gd/85jf1XjMjIyO+/e1v13tdAAAAAAAADg5pD9GmTp26T+oK0QAAAAAAANhTtnMEAAAAAACAFEI0AAAAAAAASJH27Rwfe+yxOo0vLy+Pbdu2xYoVK+K9996LSZMmxZYtW6Jly5ZxxRVXxJAhQ/ZRpwAAAAAAABwsGt1KtIyMjGjVqlUcddRR8aUvfSnuueeeOPbYY2Pbtm1x9913x6uvvpruFgEAAAAAAGjkGl2Ilqply5Zx/fXXR9++faOsrCx++9vfxpIlS9LdFgAAAAAAAI1Yow/RIiKys7Pj0ksvjYiIkpKSOm8RCQAAAAAAABUdECFaRMRhhx0WXbt2jYiI9957LzZu3JjmjgAAAAAAAGisDpgQLSLi0EMPjYiIsrKyWLBgQZq7AQAAAAAAoLE6oEK0Zs2aJY4LCgrS2AkAAAAAAACN2QEVoq1fvz5xXFJSksZOAAAAAAAAaMwOmBBtw4YNSVs4tmnTJo3dAAAAAAAA0JgdECFaSUlJ/OY3v4nS0tLEtT59+qSxIwAAAAAAABqz7HQ3sDc2bNgQ7733Xvz973+P/Pz8xPXu3bvHoYcemsbOAAAAAAAAaMzSHqJdddVVdb6ntLQ0tm/fHkVFRZU+y8jIiIsvvrg+WgMAAAAAAOAglfYQbd26dfVa72tf+1oMHjy4XmsCAAAAAABwcEl7iFZfjjjiiLj44ovjqKOOSncrAAAAAAAANHJpD9GOPvroyMjIqNM9mZmZkZOTE23atIlevXpF//79o1u3bvuoQwAAAAAAAA42aQ/RfvjDH6a7BQAAAAAAAEiSme4GAAAAAAAAoKERogEAAAAAAEAKIRoAAAAAAACkEKIBAAAAAABACiEa/7/27jzMrrLMF/ZTU+ZU5kAGMpAJMgECggkSiCB6WpkFm8bha5QWWqTtlha0sVVElMYWBIlKdyuejoIIiDR4RIQkkDBFscgAmUNCEpJUZajKUKnx+yMn6+y9ag6p7Kpw39fFda2197ue/Vblcbtr/9Z6FwAAAAAAACmFuZ7A0qVLc/baEydOzNlrAwAAAAAA0HHlPET7xje+kZPXzcvLiwceeCAnrw0AAAAAAEDH9q5dzrG+vj7XUwAAAAAAAKCDyvmVaAAAAHDQ9tVk7a5Zs6ZdXiY/Pz/KysoiIqK0tDTq6ura5XU4/EaOHBndunXL9TQAAOiAch6iXXPNNRERUV5eHr/5zW9i9+7dyXOjRo2KMWPGxNFHHx09evSIiIg9e/bE22+/HatWrYq1a9cmY3v27BkXXXRR9O7d+7DOHwAAgBxaX561e9VVV+VoInRWzzzzTEyYMCHX0wAAoAPKeYh21llnxbp16+K2225LArQzzjgjLr300hgyZEizx27atCkeeuihmD9/fuzevTueeOKJuOmmm2LkyJGHY+oAAAAAAAAcoXJ+T7SdO3fGrbfeGtu2bYuCgoK47rrr4rrrrmsxQIuIGDJkSHzhC1+I6667LgoKCmL79u3x7W9/O3bs2NH+EwcAAAAAAOCIlfMr0R588MEk9LrkkkvijDPOaHONM844I95+++146KGHYseOHfHAAw/E5z73uUM8UwAAADq831weMbZ/rmdBR7ZyW8SFD+Z6FgAAdAI5DdEqKytj/vz5ERHRrVu3+OhHP3rQtc4///x4/PHHo7KyMhYsWBCf/vSn3RgYAADg3WZs/4hJg3M9CwAA4AiQ0+Uc33jjjaisrIyIiHHjxkWXLl0OulaXLl1i/PjxERGxb9++eP311w/JHAEAAAAAAHj3yWmIVlpammwXFxe/43q9e/dOtsvKyt5xPQAAAAAAAN6dchqi7dq1K9muqKh4x/Uya2TWBgAAAAAAgLbIaYjWp0+fZHv58uVRXV190LWqqqpi+fLljdYGAAAAAACAtshpiDZ8+PBku7KyMp544omDrvXEE08k91dL1wYAAAAAAIC2yGmINm7cuBg4cGCy/9BDD8WLL77Y5jovvvhiPPTQQ8n+wIEDY9y4cYdkjgAAAAAAALz75DREi4i45JJLku2ampq48847Y9asWbFly5YWj928eXPce++9ceedd0ZtbW3y+KWXXtoucwUAAAAAAODdoTDXE5g5c2YsXLgw/vSnP0VERH19fcyZMyfmzJkTxx57bIwZMyaOOuqo6N69e0RE7N27NzZv3hyrVq2K1atXN6h38sknx9lnn31YfwYAAAAAAACOLDkP0SIi/vEf/zG+//3vx8KFC7MeX716daNBWVNOOeWU+OIXv3iopwcAAAAAAMC7TIcI0QoLC+OGG26Ip556Kn75y1/Gnj172nR8jx494oorrohzzz23nWYIAAAAAADAu0mHCNEO+OAHPxhnnHFGzJs3L+bPnx+rV6+OmpqaRscWFhbGscceG2eccUa8//3vjx49ehzm2QIAAAAAAHCk6lAhWsT+q8o+9KEPxYc+9KGoqamJt956K3bs2JFcndajR4/o27dvDB8+PAoLO9z0AQAAAAAAOAJ06BSqsLAwRo0aletpAAAAAAAA8C6Tn+sJAAAAAAAAQEcjRAMAAAAAAICUDr2cY01NTWzfvj127doVlZWVUV9fHxMnTsz1tAAAAAAAADjCdbgQbdeuXfH000/Hn/70p1i9enXU1NQkz+Xl5cUDDzzQ4JjVq1fH6tWrIyKiR48eMW3atMM2XwAAAAAAAI48HSpE+81vfhMPP/xwVFVVNfp8fX19o4/n5+fHfffdFxH7g7Zx48bFoEGD2m2eAAAAAAAAHNk6xD3Rampq4tvf/nb88pe/bDJAa86oUaPiuOOOi4j9Qdu8efMO9RQBAAAAAAB4F+kQIdrdd98dJSUlWY9Nnjw5Lr300rj88stbVSNzCcdXX331kM4PAAAAAACAd5ecL+e4cOHCePHFF5P9ESNGxHXXXRcjRoyIiIitW7fGgw8+2GKdk08+Of7rv/4rIiJWrVoVlZWV0a1bt/aZNAAAAAAAAEe0nF+J9tBDDyXbw4cPj2984xtJgNYWAwcOjN69e0dERF1dXbz11luHbI4AAAAAAAC8u+Q0RCsrK4u1a9cm+5/97GejR48eB11v+PDhyfbGjRvfydQAAAAAAAB4F8tpiLZ8+fJke/DgwXHccce9o3q9evVKtnft2vWOagEAAAAAAPDuldMQbceOHcn2wSzhmJZ5D7R9+/a943oAAAAAAAC8O+U0RMsMurp27fqO6+3Zs+eQ1gMAAAAAAODdKachWu/evZPtioqKd1yvtLS00doAAAAAAADQFjkN0fr165dsr1mz5h3V2r17d6xbty7ZHzJkyDuqBwAAAAAAwLtXYS5f/Ljjjov8/Pyoq6uLioqK+Mtf/hInnnjiQdV69tlno76+PiIievToEccee+whnCkAAABwRNhXk7X7Tk/q7cjy8/OjrKwsIvav3lNXV5fjGXV+I0eOjG7duuV6GgDAYZLTEK1Hjx4xYcKEeP311yMiYvbs2TFp0qQoKipqU53S0tJ49NFHk/2TTjop8vNzepEdAAAA0BGtL8/aveqqq3I0ETqjZ555JiZMmJDraQAAh0nOk6aLLroo2V63bl3ccccdUVlZ2erjt27dGrfddlvs2rUrIiLy8vLiwgsvPNTTBAAAAAAA4F0kp1eiRUSccMIJcfLJJ8ef/vSniIj4y1/+Etdff32cf/75cdpppzV53OrVq+OFF16Ip556Kit0mzlzZowYMaLd5w0AAAAAAMCRK+chWkTEF77whfja174Wb775ZkRE7NixI37+85/Hz3/+8wbrTF999dWxa9euqK2tbVBn7Nix8bd/+7ftOte6urpYv359rFq1KvnvzTffTOYzceLE+PrXv96qWlu2bInPf/7zbXr9o446Ku6+++5Wj3/rrbfi2WefjZKSkigrK4uampro379/jBs3LmbMmBFTpkxp0+tHRJSXl8ecOXPi5Zdfji1btsTu3bujT58+ccwxx8T06dNj2rRpUVjYIVoLAAAAmvebyyPG9s/1LOioVm6LuPDBXM8CAMiRDpF0dOvWLW6++ea4++67o6SkJOu59NKOO3fubLTGiSeeGNdff327hjcvv/xy3H333bFv3752e41D6ZFHHomHHnqoQeC4adOm2LRpU8ybNy+mT58eV199dXTv3r1VNf/0pz/FrFmzorw8ew350tLSKC0tjVdffTWeeOKJuP7662Po0KGH7GcBAACAdjG2f8SkwbmeBQAAHVCHCNEiInr37h1f+cpX4g9/+EP89re/jS1btrTquL59+8aFF14YH/rQhyIvL69d57hnz552C9C6d+8eZ555ZovjiouLW1XvwQcfjIcffjjZ79evXxx33HFRVFQUa9asifXr10dExPz582PXrl1x4403RkFBQbM1S0pK4o477khCua5du8bkyZOjuLg4Nm/eHK+//nrU19fHmjVr4pZbbolbb701+vd3Nh8AAAAAAND5dJgQ7YBzzz03PvCBD0RJSUksWbIkli1bFmVlZckSjr169Yri4uIYN25cTJ06NU4++eQoKio6rHPs06dPjBkzJsaOHRtjxoyJkpKSePLJJ99RzV69esVVV111SOa3aNGirADt/PPPj49//ONZV+k9//zzMWvWrKiuro6SkpJ49NFH49JLL22yZkVFRdx5551JgDZlypS4/vrrs0K9tWvXxu233x6lpaVRVlYW99xzT3zta187JD8TAAAAAADA4dThQrSIiPz8/DjppJPipJNOyvVUspx44olx7733xsCBA7MeX7FiRY5m1Lhf/OIXyfa0adPiyiuvbDDmjDPOiD179sR//Md/RETE448/Hh/84AebvNLtsccei927d0fE/vuy/fM//3N07do1a8yoUaPiy1/+ctx4441RW1sbixcvjpKSkjjhhBMO1Y8GAAAAAABwWOTn8sXXrFkT999/f/Lftm3bcjmdFvXt27dBgNbRrFy5MlatWhUREXl5eY0GaAece+65MWTIkIiI2Lt3b8ybN6/RcTU1NfHHP/4x2b/88ssbBGgHjBw5MmbMmJHs//73v2/zzwAAAAAAAJBrOQ3RlixZEk8++WQ8+eST8eKLL0a/fv1yOZ0jwiuvvJJsT506tdnQLy8vLyvwyjw209KlS5Or0Lp37x6nnXZas3M466yzku2SkpKorKxszdQBAAAAAAA6jJyGaDU1Ncn2iBEjIi8vL4ezOTIsWbIk2Z44cWKL4ydNmpRsL1u2LKqrqxuMWbx4cbI9fvz4Fu9BN3bs2ORKterq6li+fHmL8wAAAAAAAOhIcnpPtL59+ybbPXv2zN1EOoDa2tp47bXXYtWqVVFRURFFRUXRu3fvGDNmTIwdO7bF4OqADRs2JNujR49ucXzmmLq6uti0aVOMGDHiHdUsLCyMESNGJPeK27BhQ0ydOrXF4wAAAAAAADqKnIZomUsNlpeX53Amubdt27b41re+1ehzPXv2jPPOOy8uvPDC6NatW5M1du7cmSy7GBExaNCgFl+3S5cuUVxcnPz+N2zY0CBE27hxY7Ld2nvCDRgwICtEAwAAAAAA6ExyGqIdd9xx0aNHj9izZ0+sXLkyamtro6CgIJdT6pB2794djzzySLz44ovxz//8zzF06NBGx1VUVGTt9+nTp1X1+/btm4Rou3btavB85mOZVw+2VLOx41urrKysVa9xoF/y83O6MmmH4fcAAAAA7Sc/P9/f3u0s8/frd01noW/pjPRt6+Q0RCssLIzp06fHH/7wh9i7d288++yzcc455+RySodd9+7d47TTTosTTzwxRo0aFf3794/CwsLYuXNnrFixIv7whz/EokWLImL/FWHf/va349vf/nYUFxc3qFVZWZm136VLl1bNIXNcukb6sUNVsyXXXHNNi2NmzZoVAwYMiIKCgjj66KPb/BpHotaEjwAAAMDBGThwoO8gDqPBgwfnegrQZvqWzkjfNi2nIVpExBVXXBGvvvpqlJaWxuzZs2Ps2LExatSoXE/rsOjXr1/8+Mc/bnSJxgEDBsSAAQPi9NNPj6effjruu+++qK+vjy1btsQvfvGL+NznPtfgmOrq6qz9wsLW/fNm3m+tqqqqwfOZjx1MzfS8AAAAAAAAOrqch2g9evSIG264IW6//fYoKyuLf/3Xf43LL788zjnnnFZf9dRZFRUVZYVNTTnnnHNi69at8eijj0ZExJw5c+LjH/94g6UV07Vqampa9TvMDLkaG9+lS5fYt29fUrM1Mmu25mdMmzVrVotjDvz8tbW1sXXr1ja/xpGotLQ011MAAACAI1ZpaWm8/fbbuZ7GES0/Pz+5ImLLli1RV1eX4xlBy/QtndGR2reDBg06pLcNy3mINnfu3IiI+PCHPxy//vWvo7KyMu6///548MEHY/LkyTFq1KgoLi5u9Gqt5syYMaM9ppszF110UTzxxBNRVVUVdXV18dprr8WZZ56ZNSb9O6qqqmpViJZ5pVljv+du3bolIVpjV6odTM2WDBgwoE3jj5T/gb9Tfg8AAADQfurq6vztfRj5fdMZ6Vs6I33btJyHaPfee2+jj1dWVsbChQtj4cKFB1X3SAvRunXrFuPGjYslS5ZERMSGDRsajOndu3fW/s6dO6NXr14t1t6xY0ey3dj4Xr16xc6dOxuMfSc1AQAAAAAAOrL8XE+A1stcvrGioqLB83369ImePXsm+61Z4rCqqirKy8uT/WHDhjUYM3To0GS7tcsFlpWVNVsTAAAAAACgIxOidSIHllSMiOjatWujYzIDq7Vr17ZYc82aNcl2fn5+DBkypNmameObUltbG+vWrWv0eAAAAAAAgM4g58s5/uu//muup9BpZAZY/fr1a3TMpEmTYvny5RERsWTJkrjwwgubrbl06dJke8KECVFUVNRgzOTJk+M3v/lNREQsX748ampqorCw6dZZtWpVEvgVFRXF+PHjm50DAAAAAABAR5PzEG3ixIm5nkKn8Nprr2UtkThp0qRGx5166qnx6KOPRkTEokWLoqysLAYMGNBk3Tlz5mQd25iJEydGjx49Ys+ePbF379546aWXYvr06a2qOXXq1OjWrVuTYwEAAAAAADqidl/O8d57703+27VrV3u/XKdRU1MTNTU1rRpbXl4e9913X7I/bNiwGD16dKNjx44dG2PGjImIiLq6upg9e3aTdZ9++unYtGlTRER07949zjzzzEbHFRYWxgc+8IFk/1e/+lVUVVU1OnbdunVZIdp5553X5OsDAAAAAAB0VO0eos2dOzf5r7Kysk3jM+8BdqTZtm1bXHfddfHYY4/F1q1bGx1TX18ff/7zn+Omm26KzZs3R0REXl5efOITn4j8/Kb/6a644opk+/nnn4/Zs2c3COwWLFgQP/vZz5L9j370o1FcXNxkzQsvvDB69uwZERGbNm2K22+/PSoqKrLGvPnmm/Hd7343ea1JkybFiSee2GRNAAAAAACAjirnyzmm3Xvvvcn2pEmTomvXrjmcTUO33XZbbNu2LeuxHTt2JNurVq2KG264ocFxN910U/Tv3z/rsbKyspg9e3bMnj07Bg0aFCNGjIjevXtHYWFhlJeXx4oVK2L79u1Zx/zN3/xNvOc972l2jlOmTImLL744HnnkkYiIeOyxx2LevHlx/PHHR1FRUaxevTrWr1+fjJ86dWpcdNFFzdbs3bt3XH/99fHd7343amtr47XXXotrr702pkyZEsXFxbF58+ZYunRp1NfXR0RE//7947rrrmu2JgAAAAAAQEfV4UK0ju6tt95q8sqxiIh9+/bFm2++2eDxlpZu3Lp1a7N1+/fvH5/5zGfilFNOadU8L7/88igqKopf//rXUVtbG9u3b48FCxY0GDdt2rS4+uqro6CgoMWaJ554YvzTP/1TzJo1KyoqKmLfvn2xcOHCBuNGjx4d119/fYPQEAAAAAAAoLMQouXIoEGD4o477ojly5fH8uXLY/369VFRUREVFRVRVVUV3bt3j379+sWYMWPixBNPjPe+971RWNj6f668vLy45JJL4rTTTotnnnkmSkpKoqysLGpra6Nv374xfvz4mDFjRkydOrVN8z7llFPi+9//fjz77LPx8ssvx5YtW2L37t3Rp0+fOOaYY2L69Okxffr0Ns0VAAAAAACgo5F0tNEPf/jDQ1InLy8vRowYESNGjIhzzjnnkNRszPDhw+OTn/zkIa1ZXFwcF1xwQVxwwQWHtC4AAAAAAEBHkZ/rCQAAAAAAAEBHI0QDAAAAAACAFCEaAAAAAAAApAjRAAAAAAAAIEWIBgAAAAAAAClCNAAAAAAAAEgRogEAAAAAAEBK4eF8sZtvvjkKCgrabfwBeXl5cffdd7f5OAAAAAAAAIg4zCHatm3b2nU8AAAAAAAAHAqWcwQAAAAAAIAUIRoAAAAAAACktPtyjvfcc097vwQAAAAAAAAcUu0eog0aNKi9XwIAAAAAAAAOKcs5AgAAAAAAQIoQDQAAAAAAAFKEaAAAAAAAAJAiRAMAAAAAAIAUIRoAAAAAAACkCNEAAAAAAAAgRYgGAAAAAAAAKUI0AAAAAAAASBGiAQAAAAAAQIoQDQAAAAAAAFKEaAAAAAAAAJAiRAMAAAAAAIAUIRoAAAAAAACkCNEAAAAAAAAgRYgGAAAAAAAAKUI0AAAAAAAASBGiAQAAAAAAQIoQDQAAAAAAAFKEaAAAAAAAAJAiRAMAAAAAAIAUIRoAAAAAAACkCNEAAAAAAAAgRYgGAAAAAAAAKUI0AAAAAAAASBGiAQAAAAAAQIoQDQAAAAAAAFKEaAAAAAAAAJAiRAMAAAAAAIAUIRoAAAAAAACkCNEAAAAAAAAgRYgGAAAAAAAAKUI0AAAAAAAASBGiAQAAAAAAQIoQDQAAAAAAAFKEaAAAAAAAAJAiRAMAAAAAAIAUIRoAAAAAAACkCNEAAAAAAAAgRYgGAAAAAAAAKUI0AAAAAAAASBGiAQAAAAAAQIoQDQAAAAAAAFKEaAAAAAAAAJAiRAMAAAAAAIAUIRoAAAAAAACkCNEAAAAAAAAgRYgGAAAAAAAAKUI0AAAAAAAASBGiAQAAAAAAQIoQDQAAAAAAAFKEaAAAAAAAAJAiRAMAAAAAAIAUIRoAAAAAAACkCNEAAAAAAAAgRYgGAAAAAAAAKUI0AAAAAAAASBGiAQAAAAAAQIoQDQAAAAAAAFKEaAAAAAAAAJAiRAMAAAAAAIAUIRoAAAAAAACkCNEAAAAAAAAgRYgGAAAAAAAAKYW5nkBnU1dXF+vXr49Vq1Yl/7355ptRW1sbERETJ06Mr3/96wdVe9GiRTF37txYsWJFbNu2LQoLC2PAgAFxwgknxMyZM2PYsGFtrvnWW2/Fs88+GyUlJVFWVhY1NTXRv3//GDduXMyYMSOmTJnS5prl5eUxZ86cePnll2PLli2xe/fu6NOnTxxzzDExffr0mDZtWhQWai0AAAAAAKDzknS0wcsvvxx333137Nu375DW3bNnT/zkJz+JBQsWZD2+b9++2L17d6xbty6efPLJuOyyy+Kiiy5qdd1HHnkkHnrooSTgO2DTpk2xadOmmDdvXkyfPj2uvvrq6N69e6tq/ulPf4pZs2ZFeXl51uOlpaVRWloar776ajzxxBNx/fXXx9ChQ1s9VwAAAAAAgI5EiNYGe/bsOeQBWk1NTdxxxx2xePHi5LFjjjkmRo8eHdXV1fHGG2/E9u3bo7a2Nn75y19GbW1tXHrppS3WffDBB+Phhx9O9vv16xfHHXdcFBUVxZo1a2L9+vURETF//vzYtWtX3HjjjVFQUNBszZKSkrjjjjuSUK5r164xefLkKC4ujs2bN8frr78e9fX1sWbNmrjlllvi1ltvjf79+x/MrwUAAAAAACCnhGgHoU+fPjFmzJgYO3ZsjBkzJkpKSuLJJ588qFoPP/xwEqAVFRXFtddeG9OnT0+er6mpiQceeCB++9vfRkTEQw89FBMnToyJEyc2WXPRokVZAdr5558fH//4x7OWWHz++edj1qxZUV1dHSUlJfHoo482G85VVFTEnXfemQRoU6ZMieuvvz6Ki4uTMWvXro3bb789SktLo6ysLO6555742te+1sbfCAAAAAAAQO7l53oCncmJJ54Y9957b9x3331x4403xqWXXhonnXRS9OjR46Dq7dy5M/7nf/4n2f/0pz+dFaBFRBQWFsaVV14Z06ZNi4iI+vr6+MUvftFs3cznp02bFldeeWWDe5SdccYZ8alPfSrZf/zxxxss0Zjpsccei927d0dExFFHHRX//M//nBWgRUSMGjUqvvzlLydXtC1evDhKSkqanSsAAAAAAEBHJERrg759+8bAgQMPWb25c+cmy0MOGTIkzjnnnCbHXnnllZGXlxcREcuXL481a9Y0Om7lypWxatWqiIjIy8uLK6+8ssma5557bgwZMiQiIvbu3Rvz5s1rdFxNTU388Y9/TPYvv/zy6Nq1a6NjR44cGTNmzEj2f//73zf5+gAAAAAAAB2VEC2HXnnllWT7rLPOSkKyxgwcODAmT56c7L/88sst1pw6dWqzoV9eXl5W4JV5bKalS5cmV6F17949TjvttCZrRuz/WQ4oKSmJysrKZscDAAAAAAB0NEK0HKmqqorly5cn+5MmTWrxmMwxB+6jlrZkyZJku7n7pjVWc9myZVFdXd1gTOZrjR8/PoqKipqtOXbs2ORKterq6qyfEwAAAAAAoDMQouXIxo0bo76+PiL2XxE2atSoFo859thjk+0NGzY0Oibz8dGjR7dYM3NMXV1dbNq06R3XLCwsjBEjRrQ4VwAAAAAAgI5KiJYjGzduTLaLi4ujS5cuLR6TuTTjrl27ory8POv5nTt3JssuRkQMGjSoxZpdunSJ4uLiZL+xwCtzrq29J9yAAQOarQkAAAAAANCRFeZ6Au9Wu3btSrb79u3bqmPS43bt2pUVgFVUVGQ936dPn1bXPRDIZc7rUM21sZotKSsra9VrFBQUREREfr48OMLvAQAAANpTfn6+v73bWebv1++azkLf0hnp29YRouVIZWVlst2aq9AaG5dZo7H9g6mbrpF+7FDVbMk111zT4phZs2bFgAEDoqCgII4++ug2v8aRqDXhIwAAAHBwBg4c6DuIw2jw4MG5ngK0mb6lM9K3TRMv5khVVVWyXVjYuiwzPS6zRkREdXV1s+ObUlRU1GTN9GMHUzM9LwAAAAAAgI7OlWg5knmlVk1NTauOSY9LXxWWGVwdGN+aK8cyQ67Gxnfp0iX27dvXprlm1kzPqzVmzZrV4pgDS0bW1tbG1q1b2/waR6LS0tJcTwEAAACOWKWlpfH222/nehpHtPz8/OSKiC1btkRdXV2OZwQt07d0Rkdq3w4aNCi5DdShIETLkW7duiXbjV391Zj0uMwaje1XVVW1KkTLrJuuceCxAyHawcy1sZotGTBgQJvGHyn/A3+n/B4AAACg/dTV1fnb+zDy+6Yz0rd0Rvq2aZZzzJFevXol2zt27GjVMelxmTUiInr37p21v3PnzjbXTddMP3Ywc22sJgAAAAAAQEfmSrQcGTp0aLJdXl7eqqvGMpfq69WrVxQXF2c936dPn+jZs2fs3r07IiK2bt0aw4YNa7ZmVVVVlJeXJ/uNjR86dGhs2LChwRyaU1ZW1mxNAAAAgA5vX/ZtLdasWZOjibx75OfnJ98rlZaWdvorI0aOHHlQqzQB0DEI0XJk6NChkZeXF/X19VFfXx9r166N8ePHN3vM6tWrk+2mgqlhw4bF8uXLIyJi7dq1ceKJJzZbM/PDX35+fgwZMqTRmq+88kqD8U2pra2NdevWtThXAAAAgA5tfXnW7lVXXZWjidBZPfPMMzFhwoRcTwOAg2Q5xxzp0qVLVmi2dOnSFo95/fXXk+3Jkyc3OmbSpEnJ9pIlS1qsmfm6EyZMiKKiogZjMl9r+fLlUVNT02BMplWrViX3UCsqKmoxHAQAAAAAAOhohGg5dOqppybbc+bMaXZsaWlpLFq0qNFjm6q5aNGirGUVG5P5uk3VnDhxYvTo0SMiIvbu3RsvvfRSq2tOnTrVJesAAAAAAECnYznHHJoxY0Y89NBDsW/fvti4cWP88Y9/jA984AONjp09e3ayBvT48ePj2GOPbXTc2LFjY8yYMbFq1aqoq6uL2bNnxxe+8IVGxz799NOxadOmiIjo3r17nHnmmY2OKywsjA984APx+OOPR0TEr371qzj11FMbvYfbunXrskK08847r/EfHgAAAKCz+c3lEWP753oWdGQrt0Vc+GCuZwHAISJEy6E+ffrERz7ykXj44YcjIuKnP/1pdO/ePaZNm5aMqampiQcffDDmz5+fPHbFFVc0W/eKK66IW265JSIinn/++RgwYEBcfvnlUVj4//65FyxYED/72c+S/Y9+9KNRXFzcZM0LL7wwnnnmmdi9e3ds2rQpbr/99rj++uujd+/eyZg333wzbr/99mS5x0mTJrV4TzYAAACATmNs/4hJg3M9CwDgMBGitdFtt90W27Zty3psx44dyfaqVavihhtuaHDcTTfdFP37NzxT6ZJLLolly5bF4sWLo6qqKu6888545JFHYvTo0VFdXR2vv/56bN++PRl/2WWXxcSJE5ud45QpU+Liiy+ORx55JCIiHnvssZg3b14cf/zxUVRUFKtXr47169cn46dOnRoXXXRRszV79+4d119/fXz3u9+N2traeO211+Laa6+NKVOmRHFxcWzevDmWLl0a9fX1ERHRv3//uO6665qtCQAAAAAA0FEJ0drorbfeiq1btzb5/L59++LNN99s8PiBq7PSCgsL40tf+lL8+Mc/jhdeeCEi9i+JuG7duqxxBQUF8bGPfSwuvvjiVs3z8ssvj6Kiovj1r38dtbW1sX379liwYEGDcdOmTYurr746CgoKWqx54oknxj/90z/FrFmzoqKiIvbt2xcLFy5sMG706NFx/fXXNxoaAgAAAAAAdAZCtA6gR48e8cUvfjE+8IEPxNy5c2P58uWxY8eOKCgoiAEDBsQJJ5wQM2fOjOHDh7e6Zl5eXlxyySVx2mmnxTPPPBMlJSVRVlYWtbW10bdv3xg/fnzMmDEjpk6d2qa5nnLKKfH9738/nn322Xj55Zdjy5YtsXv37ujTp08cc8wxMX369Jg+fXrW0pEAAAAAAACdjaSjjX74wx+2W+2pU6e2OdRqyfDhw+OTn/zkIa1ZXFwcF1xwQVxwwQWHtC4AAAAAAEBHkZ/rCQAAAAAAAEBHI0QDAAAAAACAFCEaAAAAAAAApAjRAAAAAAAAIEWIBgAAAAAAAClCNAAAAAAAAEgRogEAAAAAAECKEA0AAAAAAABShGgAAAAAAACQIkQDAAAAAACAFCEaAAAAAAAApAjRAAAAAAAAIEWIBgAAAAAAAClCNAAAAAAAAEgRogEAAAAAAECKEA0AAAAAAABShGgAAAAAAACQIkQDAAAAAACAFCEaAAAAAAAApAjRAAAAAAAAIEWIBgAAAAAAAClCNAAAAAAAAEgRogEAAAAAAECKEA0AAAAAAABShGgAAAAAAACQIkQDAAAAAACAFCEaAAAAAAAApAjRAAAAAAAAIEWIBgAAAAAAAClCNAAAAAAAAEgRogEAAAAAAECKEA0AAAAAAABShGgAAAAAAACQIkQDAAAAAACAFCEaAAAAAAAApAjRAAAAAAAAIEWIBgAAAAAAAClCNAAAAAAAAEgRogEAAAAAAECKEA0AAAAAAABShGgAAAAAAACQIkQDAAAAAACAFCEaAAAAAAAApAjRAAAAAAAAIEWIBgAAAAAAAClCNAAAAAAAAEgRogEAAAAAAECKEA0AAAAAAABShGgAAAAAAACQIkQDAAAAAACAFCEaAAAAAAAApAjRAAAAAAAAIEWIBgAAAAAAAClCNAAAAAAAAEgRogEAAAAAAECKEA0AAAAAAABShGgAAAAAAACQIkQDAAAAAACAFCEaAAAAAAAApAjRAAAAAAAAIEWIBgAAAAAAAClCNAAAAAAAAEgRogEAAAAAAECKEA0AAAAAAABShGgAAAAAAACQIkQDAAAAAACAFCEaAAAAAAAApAjRAAAAAAAAIEWIBgAAAAAAAClCNAAAAAAAAEgRogEAAAAAAECKEA0AAAAAAABShGgAAAAAAACQIkQDAAAAAACAFCEaAAAAAAAApAjRAAAAAAAAIKUw1xN4t5szZ07ce++9bTpm5syZ8bnPfa5VYxctWhRz586NFStWxLZt26KwsDAGDBgQJ5xwQsycOTOGDRvW5jm/9dZb8eyzz0ZJSUmUlZVFTU1N9O/fP8aNGxczZsyIKVOmtLkmAAAAAABARyJEO0Lt2bMnfvKTn8SCBQuyHt+3b1/s3r071q1bF08++WRcdtllcdFFF7W67iOPPBIPPfRQ1NbWZj2+adOm2LRpU8ybNy+mT58eV199dXTv3v2Q/CwAAAAAAACHmxCtAxk2bFhMnjy5xXETJkxo9vmampq44447YvHixcljxxxzTIwePTqqq6vjjTfeiO3bt0dtbW388pe/jNra2rj00ktbfN0HH3wwHn744WS/X79+cdxxx0VRUVGsWbMm1q9fHxER8+fPj127dsWNN94YBQUFLdYFAAAAAADoaIRoHcjYsWPjqquuesd1Hn744SRAKyoqimuvvTamT5+ePF9TUxMPPPBA/Pa3v42IiIceeigmTpwYEydObLLmokWLsgK0888/Pz7+8Y9HYeH/a6Hnn38+Zs2aFdXV1VFSUhKPPvpoq8I5AAAAAACAjiY/1xPg0Nq5c2f8z//8T7L/6U9/OitAi4goLCyMK6+8MqZNmxYREfX19fGLX/yi2bqZz0+bNi2uvPLKrAAtIuKMM86IT33qU8n+448/HuXl5Qf9swAAAAAAAOSKEO0IM3fu3Ni3b19ERAwZMiTOOeecJsdeeeWVkZeXFxERy5cvjzVr1jQ6buXKlbFq1aqIiMjLy4srr7yyyZrnnntuDBkyJCIi9u7dG/PmzTuonwMAAAAAACCXhGhHmFdeeSXZPuuss5KQrDEDBw7Mugfbyy+/3GLNqVOnxsCBA5usmZeXFzNmzGj0WAAAAAAAgM5CiHYEqaqqiuXLlyf7kyZNavGYzDEH7qOWtmTJkmS7ufumNVZz2bJlUV1d3eIxAAAAAAAAHUlhy0M4XHbv3h0vvPBCrF+/Pvbs2RM9evSIfv36xfjx42PEiBHNXlUWEbFx48aor6+PiP1XhI0aNarF1zz22GOT7Q0bNjQ6JvPx0aNHt1gzc0xdXV1s2rQpRowY0eJxAAAAAAAAHYUQrQNZuHBhLFy4sNHnhgwZEhdccEGcffbZTYZpGzduTLaLi4ujS5cuLb5m5tKMu3btivLy8iguLk4e27lzZ+zevTvZHzRoUIs1u3TpEsXFxVFeXh4R+0M4IRoAAAAAANCZCNE6iU2bNsWPfvSjePnll+Mf/uEfolu3bg3G7Nq1K9nu27dvq+qmx+3atSsrRKuoqMh6vk+fPq2ueyBEy5xXa5WVlbXqNQoKCiIiIj/fyqQRfg8AAAAAHUl+fr7va94FMv+N/XvTWejb1hGidQADBw6M008/PaZMmRIjRoyI4uLiqKuri7Kysli8eHH87ne/S5ZU/POf/xw/+MEP4ktf+lKDxq6srEy2W3MVWmPjMms0tn8wddM1WuOaa65pccysWbNiwIABUVBQEEcffXSbX+NI1JrwEQAAAIDDY+DAgb63epcZPHhwrqcAbaZvmyZEy7FTTz01zjzzzEaT3qFDh8bQoUNj5syZ8ZOf/CTmzJkTEfuXfXz++efjzDPPzBpfVVWVbBcWtu6fNj0us0ZERHV1dbPjm1JUVNRkTQAAAAAAgI5OiJZjPXv2bHFMYWFhfO5zn4vNmzfH66+/HhERjz32WIMQLfPqr5qamla9fnpc+kqzzDDswPjWXI2WGb619uq1TLNmzWpxzIGlKGtra2Pr1q1tfo0jUWlpaa6nAAAAAMD/VVpaGm+//Xaup0E7y8/PT67k2bJlS9TV1eV4RtCyI7VvBw0alNwG6lAQonUS+fn5cemll8Ytt9wSERHr16+PsrKyGDBgQDIm8z5prb36Kz0ufa+19H5VVVWrQrHMuo3dv60lmT9Xaxwp/wN/p/weAAAAADqOuro639e8y/g3pzPSt01zt7hO5Pjjj89KUA/cJ+2AXr16Jds7duxoVc30uMwaERG9e/fO2t+5c2eb66ZrAgAAAAAAdHRCtE6ksLAwiouLk/3y8vKs54cOHZr1XGuuRstc/q9Xr15Z9SMi+vTpk7XkZGuWTayqqsqa27Bhw1o8BgAAAAAAoCMRonUylZWVyXZ6mcShQ4dGXl5eRETU19fH2rVrW6y3evXqZLupsCvz8dbUXLNmTbKdn58fQ4YMafEYAAAAAACAjkSI1ols3rw59u7dm+z369cv6/kuXbrE+PHjk/2lS5e2WPP1119PtidPntzomEmTJiXbS5YsabFm5utOmDAhioqKWjwGAAAAAACgIxGidSLPPvtsst2jR48YNWpUgzGnnnpqsj1nzpxm65WWlsaiRYsaPbapmosWLYqysrJm62a+blM1AQAAAAAAOjIhWg5lLs3YkmXLlsXjjz+e7E+bNi0KCgoajJsxY0Z07do1IiI2btwYf/zjH5usOXv27Kirq4uIiPHjx8exxx7b6LixY8fGmDFjIiKirq4uZs+e3WTNp59+OjZt2hQREd27d48zzzyzhZ8MAAAAAACg4xGi5dCLL74YN910U8ydOzf27NnT6Jiqqqp48skn45Zbbonq6uqIiOjZs2d87GMfa3R8nz594iMf+Uiy/9Of/jQWLFiQNaampiZmz54d8+fPTx674oormp1r5vPPP/98zJ49O2pqarLGLFiwIH72s58l+x/96EejuLi42boAAAAAAAAdUWGuJ/But2rVqvjhD38YBQUFMXTo0Bg2bFj07Nkz6urqYtu2bbF8+fKs+6B16dIlbrjhhgb3Q8t0ySWXxLJly2Lx4sVRVVUVd955ZzzyyCMxevToqK6ujtdffz22b9+ejL/sssti4sSJzc5zypQpcfHFF8cjjzwSERGPPfZYzJs3L44//vgoKiqK1atXx/r165PxU6dOjYsuuuhgfy0AAAAAAAA5JUTrIGpra2P9+vVZQVTa2LFj49prr43hw4c3W6uwsDC+9KUvxY9//ON44YUXIiJi3bp1sW7duqxxBQUF8bGPfSwuvvjiVs3x8ssvj6Kiovj1r38dtbW1sX379gZXuUXsX2ry6quvbnS5SQAAAAAAgM5AiJZD06dPjyFDhsSyZctixYoVsXnz5qioqIiKioqor6+PHj16xODBg2PcuHFx+umnx3HHHdfq2j169IgvfvGL8YEPfCDmzp0by5cvjx07dkRBQUEMGDAgTjjhhJg5c2aLgVymvLy8uOSSS+K0006LZ555JkpKSqKsrCxqa2ujb9++MX78+JgxY0ZMnTr1YH4dAAAAAAAAHYYQLYeKiopiwoQJMWHChHZ7jalTpx7yUGv48OHxyU9+8pDWBAAAAAAA6Ejycz0BAAAAAAAA6GiEaAAAAAAAAJAiRAMAAAAAAIAUIRoAAAAAAACkCNEAAAAAAAAgRYgGAAAAAAAAKUI0AAAAAAAASBGiAQAAAAAAQIoQDQAAAAAAAFKEaAAAAAAAAJAiRAMAAAAAAIAUIRoAAAAAAACkCNEAAAAAAAAgRYgGAAAAAAAAKUI0AAAAAAAASBGiAQAAAAAAQIoQDQAAAAAAAFKEaAAAAAAAAJAiRAMAAAAAAIAUIRoAAAAAAACkCNEAAAAAAAAgRYgGAAAAAAAAKUI0AAAAAAAASBGiAQAAAAAAQEphricAAAAAAHBE2FeTtbtmzZocTYTDKT8/P8rKyiIiorS0NOrq6g661siRI6Nbt26HamrAOyREAwAAAAA4FNaXZ+1eddVVOZoIndUzzzwTEyZMyPU0gP/Lco4AAAAAAACQIkQDAAAAAACAFMs5AgAAAAC0h99cHjG2f65nQUe2clvEhQ/mehZAE4RoAAAAAADtYWz/iEmDcz0LAA6S5RwBAAAAAAAgRYgGAAAAAAAAKUI0AAAAAAAASBGiAQAAAAAAQIoQDQAAAAAAAFKEaAAAAAAAAJAiRAMAAAAAAIAUIRoAAAAAAACkCNEAAAAAAAAgRYgGAAAAAAAAKUI0AAAAAAAASBGiAQAAAAAAQIoQDQAAAAAAAFKEaAAAAAAAAJAiRAMAAAAAAIAUIRoAAAAAAACkCNEAAAAAAAAgRYgGAAAAAAAAKUI0AAAAAAAASBGiAQAAAAAAQIoQDQAAAAAAAFKEaAAAAAAAAJAiRAMAAAAAAIAUIRoAAAAAAACkCNEAAAAAAAAgRYgGAAAAAAAAKUI0AAAAAAAASBGiAQAAAAAAQIoQDQAAAAAAAFKEaAAAAAAAAJAiRAMAAAAAAIAUIRoAAAAAAACkCNEAAAAAAAAgRYgGAAAAAAAAKUI0AAAAAAAASBGiAQAAAAAAQIoQDQAAAAAAAFKEaAAAAAAAAJAiRAMAAAAAAIAUIRoAAAAAAACkCNEAAAAAAAAgRYgGAAAAAAAAKUI0AAAAAAAASBGiAQAAAAAAQIoQDQAAAAAAAFKEaAAAAAAAAJAiRAMAAAAAAICUwlxPgM6npqYmFixYEPPnz4/169fHzp07o2fPnjF48OB473vfG2eddVYUFxfnepoAAAAAAAAHTYhGm2zYsCHuuuuuWLt2bdbjO3bsiB07dsTy5cvj8ccfj2uuuSbe85735GaSAAAAAAAA75DlHGm1srKy+OY3v5kEaHl5eTFx4sQ4++yz4+STT44uXbpERMTOnTvj3/7t32Lx4sU5nC0AAAAAAMDBcyUarfaDH/wgtm/fHhERgwYNihtuuCFGjRqVPF9eXh533XVXLFq0KGpra+Pf//3f4+67746ePXvmaMYAAAAAAB3Yvpqs3TVr1uRoInRWI0eOjG7duuV6GkcsIRqt8uc//zlef/31iIgoLCyML3/5yzFixIisMcXFxXHDDTfEDTfcEJs3b45du3bFY489FldccUUupgwAAAAA0LGtL8/aveqqq3I0ETqrZ555JiZMmJDraRyxLOdIq/z+979PtmfMmNEgQDugW7ducdlllyX7Tz/9dNTW1rb7/AAAAAAAAA4lIRotqqyszLq/2dlnn93s+NNOOy25fHTXrl3JFWwAAAAAAACdheUcadGyZcuiuro6IiK6du0aY8aMaXZ8ly5dYvz48fHaa69FRMTixYtj8uTJ7T5PAAAAAIBO7TeXR4ztn+tZ0JGt3BZx4YO5nsW7hhCNFm3YsCHZHjFiRBQUFLR4zOjRo5MQ7a233mq3uQEAAAAAHDHG9o+YNDjXswD+L8s50qKNGzcm24MGDWrVMQMHDmz0eAAAAAAAgM7AlWi0qKKiItnu06dPq47p27dvsr1r1642v2ZZWVmrXuPAVXH5+fLgiEZ+Dyu35WYidB7rdmbv6xlaomdoKz1DW+kZ2krP0FZ6hrbQL7SVnqGt9AxtleqR/Pz8g/p+PPMY3683La++vr4+15OgY7vtttvi1VdfjYiICy64IP7mb/6mxWNeffXVuO222yIiolu3bvHzn/+8Ta952WWXtTjmF7/4RRQWyoEzVVdXx+bNm3M9DQAAAAAADoOjjjoqioqKcj2NI5YEghZVV1cn260NrTL/R1tVVXXI5xQRkZeX1y51O7OioqIYPnx4rqcBAAAAAACdnhCNFmUGYjU1Na06JjN469KlS5tfc9asWS2OcYlpx1ZbWxs7duyIiOylN6Ej07d0RvqWzkjf0hnpWzojfUtnpG/pjPQtnZG+bR0hGi3q1q1bst3aq8oyx2Ue31oDBgxo8zF0LDt27IhrrrkmIvaHov5N6Qz0LZ2RvqUz0rd0RvqWzkjf0hnpWzojfUtnpG9bx6U8tKh3797J9s6dO5sZ+f8cSLAjInr16nWopwQAAAAAANCuhGi0aOjQocn21q1bW3VMaWlpo8cDAAAAAAB0BkI0WjRs2LBke926dVFbW9viMWvWrEm2hw8f3i7zAgAAAAAAaC9CNFo0YcKEKCoqioiIffv2xapVq5odX11dHStWrEj2J0+e3K7zAwAAAAAAONSEaLSoW7duWUHYnDlzmh3/0ksvxd69eyNi//3Qjj/++PacHgAAAAAAwCEnRKNVzjvvvGR77ty5sX79+kbH7du3L371q18l++ecc04UFBS0+/wAAAAAAAAOJSEarfKe97wnuaKsuro6vvOd78Sbb76ZNaaioiL+7d/+Ld5+++2I2H8V2gUXXHDY5woAAAAAAPBO5dXX19fnehJ0DmVlZfGVr3wltm/fHhEReXl5MXHixDjqqKOivLw8Fi1aFPv27YuIiIKCgvjKV74SU6ZMyeWUAQAAAAAADooQjTbZsGFD3HXXXbF27domxxQXF8e1114b73nPew7fxAAAAAAAAA4hIRptVlNTE/Pnz4/58+fH+vXrY+fOndGzZ88YPHhwnHbaaXHWWWdFcXFxrqcJAAAAAABw0IRoAAAAAAAAkJKf6wkAAAAAAABARyNEAwAAAAAAgBQhGgAAAAAAAKQI0QAAAAAAACBFiAYAAAAAAAApQjQAAAAAAABIKcz1BICOa8uWLfHaa6/F0qVLY/369VFaWhqVlZXRrVu3GDBgQIwfPz7OOOOMmDhxYptrr1y5MubMmRNLliyJbdu2RURE//79Y9KkSXHWWWfF2LFjD/WPw7tAeXl5LFu2LFauXBnr1q2LzZs3x/bt26OysjIKCgqiZ8+eMWLEiJg4cWLMmDEj+vfv36b6ixYtirlz58aKFSti27ZtUVhYGAMGDIgTTjghZs6cGcOGDWunn4x3s/vvvz+eeOKJZH/QoEHxwx/+sNXH61vaw5w5c+Lee+9t0zEzZ86Mz33uc60aq285XFavXh0vvPBCLFq0KLZt2xa7du2K3r17R9++fWPkyJExefLkmDp1avTt27fFWvqWQ23JkiXxjW9846CPv/baa+Oss85qdoy+pb0tX7485s2bFytWrIgtW7ZEZWVldOnSJfr06ROjRo2K9773vXHaaadFUVFRq+rV19fHK6+8Es8991ysXbs2tm3bFt26dYtBgwbFySefHGeffXYMHDiwnX8qjnRLly6NefPmxRtvvBHbt2+Pmpqa6NevX4wYMSKmTZsW73vf+6KgoKBNNb3f0hZ1dXWxfv36WLVqVfLfm2++GbW1tRERMXHixPj6179+ULXboxffeuutePbZZ6OkpCTKysqipqYm+vfvH+PGjYsZM2bElClTDmquHUVefX19fa4nAXQsa9asifvuuy9WrlzZqvGTJk2Kv//7v2/VB9Wampr43//7f8f/+T//J5p6+8nLy4sPf/jDceWVV0Zhoayf1vvOd74Tf/7zn1s1tqioKC688MK45JJLIj+/+Quz9+zZEz/5yU9iwYIFTY4pKCiIyy67LC666KI2zRmas3LlyvjqV7+a9X7Z2hBN39Ke2itE07ccLjt37oz7778/nn/++RbHnnfeeXHVVVc1+by+pb280xDtK1/5Spx44omNPqdvaW8VFRUxa9asWLhwYYtjjzrqqPj7v//7OO6445odt23btrjnnnti8eLFTY7p1q1b/O3f/m2LATI0pqKiIu6555549dVXmx137LHHxnXXXdeqsMH7LW318ssvx9133x379u1rcszBhGjt1YuPPPJIPPTQQ0nA15jp06fH1VdfHd27d2/TnDsK304DDWzcuLFBgDZkyJA45phjori4OHbv3h3Lly+PsrKyiNj/x91Xv/rV+OY3vxlHHXVUs7V/9KMfxbx585L9o446KsaNGxcREStWrIjNmzdHfX19PPnkk7F379645pprDvFPx7tF7969Y/jw4TFw4MDo1q1b7Nu3LzZv3hwrV66M2traqK6ujoceeig2b94cn//855usU1NTE3fccUfWH2rHHHNMjB49Oqqrq5Mz02pra+OXv/xl1NbWxqWXXno4fkSOcDU1NfGjH/2oyRMOWjpW33K4DBs2LCZPntziuAkTJjT7vL7lcCktLY2vf/3rsWXLluSxoUOHxogRI6JXr15RVVUVmzdvjrVr1zb75UWEvqV99e/fP84777xWj3/ttddi06ZNERHRp0+fJs/61re0t6qqqrjlllti7dq1yWPFxcUxevTo6N+/f5SXl8dbb70VmzdvjoiIzZs3x6233hpf+9rXku8H0vbs2RO33nprrF+/Pnls7NixMXz48NizZ08sWbIkdu/eHZWVlXHvvfdGXl5ezJgxo11/To4su3btin/5l39J3kcj/t93Vl26dInNmzfHG2+8EbW1tbF69er4+te/HrfeemsMHjy4yZrebzkYe/bsafEzaFu1Vy8++OCD8fDDDyf7/fr1i+OOOy6KiopizZo1yXv2/PnzY9euXXHjjTe2+SrOjkCIBjTp6KOPjpkzZ8aZZ57ZYNm7urq6mDNnTvz0pz+Nffv2xfbt2+MHP/hBfOtb34q8vLxG6z3zzDNJgJaXlxef/OQn48Mf/nByFVBdXV387ne/i5///OdRX18fzz77bLLsHrTGxIkT4+STT44pU6bE0Ucf3eiYHTt2xP333x/z58+PiIh58+bFKaecEqeffnqj4x9++OHkQ0ZRUVFce+21MX369OT5mpqaeOCBB+K3v/1tREQ89NBDMXHixINa5hQyPfbYY7Fu3bqIiDjjjDNadbXEAfqWw2ns2LHNXqXTWvqWw2HPnj3xjW98IwnQJk2aFJ/+9Kdj5MiRDcbW1NTE4sWLY+/evU3W07e0pyFDhrT6/bWuri7rat/3v//9TX5JpW9pb7/5zW+SAC0vLy8uv/zy+MhHPhJdunRJxtTX18eCBQvivvvuS74w/vGPfxx33HFHozX/67/+K/kytlevXvGP//iPWSfxVFZWxk9+8pPkM/OPf/zjmDBhQpN/F0Laj370oyRAKyoqir/7u7+LM888M2vM22+/HXfddVesWrUqdu7cGd/73vfiO9/5TpPfg3m/5Z3o06dPjBkzJsaOHRtjxoyJkpKSePLJJw+qVnv04qJFi7ICtPPPPz8+/vGPZ60q9vzzz8esWbOiuro6SkpK4tFHH+2UQXHz61cB70r9+vWLa6+9Nu6888648MILG71vVH5+fsycOTOuu+665LEVK1ZESUlJozUPXPVzwAUXXBB/9Vd/lbWMXn5+fvzVX/1VnH/++cljv/rVr6KmpuZQ/Fi8C5x//vlx7rnnNvuHUt++feMLX/hC1h9cf/jDHxodu3Pnzvif//mfZP/Tn/501oeMiIjCwsK48sorY9q0aRGx/4/BX/ziF+/kx4DYsGFDPPLIIxGxP0CbOnVqq4/Vt3RG+pbD5ec//3ly5cO0adPi5ptvbjRAi9jfcyeeeGK8733va/R5fUtH8pe//CV27NiR7Dd1IqK+5XCYO3dusv3hD384Lr744qwALWJ/uDZ9+vSs8HfdunXJSWSZ1q1bF88991yyn/57LmL/Mo6f//znkyvfa2pq4sEHHzwkPw9HvtWrV8fLL7+c7F9zzTUNArSI/Seb/8u//EtyO5M1a9Y0ebKj91sO1oknnhj33ntv3HfffXHjjTfGpZdeGieddFL06NHjoOq1Vy9mPj9t2rRGb8tzxhlnxKc+9alk//HHH4/y8vKD+jlySYgGNDBx4sQ466yzWrxPVETEe9/73hg7dmyy39T9qBYuXJgs/9ijR4+45JJLmqx56aWXJmvkbt26tdX3uILWysvLy1ojP3OZkUxz585NLqEfMmRInHPOOU3WvPLKK5Ozz5YvXx5r1qw5ZPPl3aW+vj5+9KMfRXV1dfTs2TPrA2dr6Fs6I33L4bB27dp45plnIiJiwIAB8Xd/93et+rzbFH1LR5IZWowePbrJcFjf0t727NkTW7duTfbTX9SmnXrqqdG1a9dkf+PGjQ3GPPXUU8kS51OnTm3yXn/5+fnxN3/zN8n+Cy+80Cm/rOXwe+GFF5LtkSNHxhlnnNHk2J49e2bdL6qpK4O833Kw+vbtmwS1h0J79OLKlStj1apVEbH/O7Yrr7yyyZrnnntuDBkyJCIi9u7dm3Wbn85CiAa8Y5n3OMn8sJzplVdeSbanTZuW9SE5rWvXrlln/GaeDQSHSnFxcbLd1DJNmX171llnNblEQ0TEwIEDs86G1LccrKeeeiqWLVsWERGf+MQnok+fPm06Xt/SGelbDoennnoq2T7vvPPe8Y3N9S0dxe7du2PhwoXJfnPL4etb2ltlZWXWfs+ePZsdX1BQkPV+nL4fcH19ffzpT39K9jNPhmzMcccdl6xMUldXl/W/DWjKypUrk+2TTjqpxfHvec97ku1Vq1ZFaWlpgzHeb+ko2qMXM2tOnTq12dAvfY/KzGM7CyEa8I5lvvnW1dU1OmbJkiXJdmvWds58w8686SUcKm+99VayPWjQoAbPV1VVxfLly5P9SZMmtVgzc4y+5WCUlpYmSyIcf/zxcfbZZ7fpeH1LZ6RvORzq6uqS+6FGRJP3Qm0tfUtH8sILL0R1dXVE7A8kmrqCQt9yOBQXF0dRUVGyn/l3V2PKy8tj586dyX76KspNmzYlq9pE6FvaR+ZyuK25Aqh///5ZV7On+8z7LR1Fe/ViW7/nzay5bNmy5HNLZ1HY8hCA5mWuWT5gwIAGz+/Zsye2b9+e7B977LEt1hw9enSyvW3bttizZ89Br/0Ladu2bYvHH3882W/si7SNGzcmZ0Hm5eXFqFGjWqyb2dsbNmx45xPlXec//uM/Yu/evVFYWBif/exnmz1DrDH6llzYvXt3vPDCC7F+/frk/6/79esX48ePjxEjRrTYx/qWw2HdunXJlec9evSIo446Kmpra2PevHnx3HPPxfr162P37t3Ru3fvGDlyZJxyyilx9tlnZ30RnEnf0pFkLuV40kknZa24kEnfcjgUFhbGSSedlFy98PDDD8cJJ5zQ5Go0//3f/5305ZQpU2Lo0KFZz2f2Xd++faNfv34tziHz+wR9S3vIy8vL+oy7fv36rOe939JRtFcvZj6e+Z7blMwxdXV1sWnTphgxYkSLx3UUQjTgHSktLc06K2Hq1KkNxqTXNG/NWT3pMRs3bsy69xq01b59+2Lr1q3x6quvxm9/+9vkbMdhw4bFhRde2GB8Zt8WFxc3uBF2YzL7dteuXVFeXt7klxiQNn/+/OQekBdccEEMHz68zTX0LbmwcOHCJpdKGjJkSFxwwQVx9tlnNxmm6VsOhwP3bIjYf9JXWVlZ/Pu//3vW8k0REdu3b4/t27fHX/7yl/jNb34T//iP/9joZ1B9S0exadOmZBnoiOaXutO3HC5//dd/Ha+99lpUVlbGmjVr4ktf+lJccsklcdxxx0X//v2jvLw81q1bF7/5zW/ijTfeiIiI4cOHxzXXXNOgVmbfNraCSGMy+7axe6xBWnFxcRIKNLY0Y9q2bduitrY22U8HDd5v6Sjaoxd37twZu3fvTvZb897cpUuXKC4uTu5TuWHDBiEa8O5x//33J0s4Dhw4ME4++eQGYyoqKpLt7t27t+oNu2vXrtG9e/fkjOFdu3YdohnzbvHGG2/E1772tWbHnHTSSfGFL3yh0XuiZPZc3759W/Wa6XG7du3yoZdWqaioiJ/+9KcRsT90uPjiiw+qjr6lo9m0aVP86Ec/ipdffjn+4R/+Ibp169ZgjL7lcMhcCiwi4rbbbkvOGh82bFiMGTMm8vPz480330xuoF5aWhrf+MY34hvf+EaDlRT0LR1F5lVovXv3zrpPT5q+5XAZNmxY3HLLLfHd7343SktLY/PmzXHvvfc2OrZnz57x/ve/P/76r/+60b/LMr9PaO29gjP7dt++fVFdXd3klcUQsf8qmddffz0iIkpKSuKKK65odvyBkx8PSH9n5f2WjqI9ejHzfTmibe/NB0K0zvY9rxANOGhz5syJl156Kdm/4oorGv1gmnlj4dYEaJljD4Ro6ZsTwzvRs2fP+MxnPhPTp09vcszB9G16nL6lte6///7kw+RnP/vZg/4jX99yOA0cODBOP/30mDJlSowYMSKKi4ujrq4uysrKYvHixfG73/0uOSv3z3/+c/zgBz+IL33pS1n3j4jQtxwemWfLHgjPunbtGtdee228733vyxq7ePHi+P73vx8VFRWxb9+++P73vx/f//73o7Dw//35rG/pCOrr6+O5555L9qdPn57Vp2n6lsNp5MiRcdddd8Uf//jHmD17duzbt6/RcSeccEKcccYZjQZoEYeub4VoNOfUU0+NJ598MiIi1qxZEy+++GKT90/du3dvPPbYYw0ey+T9lo6iPXoxvX8wdTtbfwvRgIOyatWquO+++5L96dOnN3kD68ybRTb3R11a5tiqqqqDmCXvZv369YvzzjsvIvZ/wVBZWRkbN26MNWvWxO7du+Ouu+6Kp59+Oj772c82WHc/IrvnWtu36XH6ltYoKSmJefPmRUTEjBkzYvLkyQddS99yuJx66qlx5plnNgjEIiKGDh0aQ4cOjZkzZ8ZPfvKTmDNnTkTsX/bx+eefjzPPPDNrvL7lcGjsy9vrrrsu3vve9zZ4fPLkyfHlL385br755qivr4/NmzfHc889F2effXYyRt/SESxdujS2bt2a7De3lGOEvuXwKi8vj//+7/+O5557Lmpra6Nv374xfvz4KC4ujt27d8fKlStj69atsWDBgliwYEGcc8458ZnPfKbBZ4uD+T4hHZjpW1oyadKkmDBhQrI87g9/+MOora1tcOLtli1b4u67747NmzdnPZ7uMe+3dBTt0YuZ78ttqZv53tzZ+luIBrTZli1b4rvf/W7ypjly5Mj47Gc/2+T4zDfJmpqaVr9O5ti2XMEGERFHHXVUXHXVVQ0e37ZtWzzwwAMxZ86cWLJkSXz1q1+Nr3/96zFy5MiscZk919q+TY/Tt7SksrIyfvKTn0TE/iWYPvGJT7yjevqWw6Vnz54tjiksLIzPfe5zsXnz5mR5nMcee6xBiKZvORzSX6iOHz++0QAt8/nTTjstXnzxxYiIWLBgQVaIpm/pCDKXcjzmmGMaLDuapm85XDZt2hTf/OY3o6ysLIqKiuJTn/pUnHvuuVFQUJCMqa+vj/nz58d9990Xe/fujaeffjry8/PjM5/5TFatg/k+If0Fr76lNa677rq46aabkivR77rrrnjwwQdj3LhxUVRUFJs3b4433ngjamtro2vXrnHcccdFSUlJRESDKym939JRtEcvpj9X19TUtKpfM9+bO1t/Nzx1FKAZ27dvj1tuuSV27NgREfuDiq985SvRo0ePJo/JvP9JW840yBzb2D1U4GD0798/rr322vjwhz8cEfuXd7rzzjuTe/sdcDB9mx6nb2nJAw88kJxB/olPfOIdr3mvb+lo8vPz49JLL032169f3+DeVPqWwyHdI80FaI2NWb58eZP19C25sG/fvqyl9WfMmNHiMfqWw6G2tjbuuOOO5P/vP/vZz8aHPvShrAAtIiIvLy/OOOOM+Kd/+qfksaeeeipWrlyZNU7fcrgMHjw4vvWtb8WIESOSx95+++147rnn4plnnoklS5ZEbW1t9OnTJ/75n/85hgwZkoxLn2Cmb+ko2qMX0/sHU7ez9bcQDWi1ioqK+Na3vpVctt6vX7+4+eabo1+/fs0e17t372R77969rXpz3bdvX9aa0r169TrIWUPjrrjiiuRssQ0bNsSrr76a9Xxmzx0IjVuSHqdvac7q1avjd7/7XUTsXz6kpSWYWkPf0hEdf/zxWV+cHbhP2gH6lsMh8/NoRMTw4cNbPGbYsGHJ9t69e5v8bKpvyYWXXnop6cn8/Px4//vf3+Ix+pbD4aWXXkruPTl06NAWA96pU6fGlClTkv1nn3026/nM9++dO3e2ag6Zfdu1a1f3Q6PVhgwZErfffntcf/31cdppp8WAAQOiqKgoevToEaNHj47LL788vve978WUKVOioqIiOW7AgAFZdbzf0lG0Ry+mP1cfzHtzZ+tvyzkCrbJnz5649dZbkw/DvXv3jptvvjkGDx7c4rHp+02VlpY2eg+q9JjmasA71bVr15gwYUL85S9/iYiIZcuWxcknn5w8n9lz5eXlUVVV1eLl5pl926tXr3d8VRFHtnXr1kV9fX1E7O+dr371q02OLS8vT7a3b9+eNfaSSy6J97znPRGhb+mYCgsLo7i4OLZv3x4R2f0coW85PNKfJVtz9mt6aaa9e/cmj+lbci1zKccTTjihxRMbI/Qth8eBv68i9p8olpeX1+IxkydPjkWLFkXE/hPNMmX2beY9AJuT2be+S6Ct8vPzY/r06Q3uh5b21ltvJdtjxozJes77LR1Fe/Rinz59omfPnrF79+6I2P/enHnyWWOqqqqy/g5saXxH40o0oEWVlZVx2223JR9me/ToEV/96ldbdQbvgfGZf9StWbOmxWMyx/Tv37/Z5SLhYGUuuZB5FlnE/g8aB/7gq6+vj7Vr17ZYL/MPvs72gYDc2rx5c6xYsaLJ/zJvXF1TU5P1XOYHUX1LR1VZWZlsp8MLfcvhkLk0U0R2TzYl88qziMj6PKpvyaWysrJYvHhxst+apRwj9C2Hx7Zt25Lt9NUKTckct2fPnqznMvtux44drbqSIvP7BH1Le9i9e3dWiDZhwoSs573f0lG0Vy9mPt6ampnvy/n5+VnLoXYGQjSgWVVVVXH77bfHsmXLImL/1Ts33nhjizetTps0aVKyvWTJkhbHL126NNmePHlym14LWqu5S8m7dOkS48ePT/Yze7Ipr7/+erKtb8kFfUtHtHnz5qwwIn21hL7lcBg8eHDWCgqZX3w1JXPp0V69emUFwPqWXHruueeSq9l79uwZp5xySquO07ccDplXOOzatatVx2SOS59AO2TIkKyl8nyfQEfw0ksvRW1tbUTsXyI6/R2Z91s6ivbqxXfyPe+ECRM63TK7QjSgSTU1NfG9730vOcuxqKgobrjhhjjuuOPaXOvUU09Ntl944YVm74tWVVUVL7zwQqPHwqFSUVERy5cvT/YbO7sms/fmzJnTbL3S0tJkCZL0sdCYs846K371q1+16r9rr702OW7QoEFZz6XvpaZv6Wgy723So0ePGDVqVIMx+pbD4b3vfW+y/corr7Q4/uWXX062jz/++AbP61tyJXMpx/e9730tLsuUSd/S3gYOHJhst+aL1YjIurLy6KOPznouLy8va9n9lvp2+fLlsWnTpojYf7VDa0NmaK3q6up49NFHk/1zzz230XHeb+ko2qMXMx9ftGhRlJWVNVs383U7Y38L0YBG1dXVxQ9+8IN49dVXIyKioKAgvvjFL8bUqVMPqt4pp5ySnD22e/fueOSRR5oc++tf/zpZV3fQoEFZH5ihKa09yzFif3//53/+Z1RXV0fE/oC4sT6bMWNGdO3aNSIiNm7cGH/84x+brDl79uyoq6uLiIjx48e3+WpNOFT0Le2tNcvgHbBs2bJ4/PHHk/1p06ZFQUFBg3H6lsPhgx/8YNJ/y5Yti4ULFzY5duXKlVkhWvqEhQh9S26sXLky6yrJxnqzOfqW9jZlypRke8OGDTFv3rxmxy9evDhee+21ZP+EE05oMOaDH/xgshxZSUlJ1vhMdXV18d///d/J/umnn+6+UhxS9fX1cd999yXL7R9zzDFNhmjeb+ko2qMXx44dm9wLsK6uLmbPnt1kzaeffjo5uaF79+5x5plnHtTPkUtCNKCB+vr6mDVrVrz44osRsf/Mr89//vPv6AyuoqKi+NjHPpbsP/roo/Hkk08mb8wR+990n3zyyXjssceSxy677LIoLCw86Nfl3WPu3Llx0003xdy5cxuso5/pzTffjNtuuy0WLFiQPPbRj3600fX6+/TpEx/5yEeS/Z/+9KdZx0Xsv2Jz9uzZMX/+/OSxK6644p38KPCO6Fva24svvtji+21VVVU8+eSTccsttyQnLPTs2TPrs0AmfcvhcPTRR8d5552X7N91113x0ksvNRi3dOnS+M53vpN8Th03blyjn4P1LbmQeSb3kCFDspZoag19S3t7z3vek3Wvmx//+Mfx1FNPZf3tH7H/e4cFCxbEHXfckTw2YMCAmD59eoOaI0aMiPe///3J/l133dXgKrfKysq4995744033oiIiMLCwvj4xz9+SH4m3h1KSkriV7/6Vdb9qDO9/fbb8d3vfjd5H+7SpUtcc801TX5n5f2WjqK9ejHz+eeffz5mz54dNTU1WWMWLFgQP/vZz5L9j370o53y5Ia8+gMLaQP8X7///e/jP//zP5P9IUOGtOkKtKuuuqrJ5+65556sM9GOOuqoGDduXERErFixIuvDyllnnZW1hBk054knnoj7778/IvZfOTl06NAYOnRo9OzZM/Ly8qKioiLWrVsXb7/9dtZxp512WvzDP/xDo1dGROz/IPHtb387a4mRESNGxOjRo6O6ujpef/312L59e/LcZZddFpdeemk7/IS8m82ZMyfuvffeiNh/he4Pf/jDZsfrW9pTZj8eeL8dNmxY9OzZM+rq6mLbtm2xfPnyrPugdenSJb7yla/ExIkTm6yrbzkcqqur41vf+lbWvR6GDRsWY8aMifz8/Fi3bl3WzdT79esXt956a9byZJn0LYdTTU1NXH311ckKDB//+Mfj4osvPqg6+pb2tGLFivjmN78Z+/btSx7r169fjB8/Pnr37h179uyJFStWxNatW5Pni4qK4uabb27y9hF79uyJm2++OdavX588Nm7cuBg2bFjs3bs3Fi9enKxoExFx7bXXtvlKTd7d5s+fH3fddVdE7P8ebMSIEdG7d+/Yu3dvbNy4MdasWZOMLSoqii9/+cstflfm/ZaDddttt8W2bduyHtuxY0fs3LkzIiK6du3aYPnbiIibbrop+vfv3+Dx9urFBx54IGu1sX79+sXxxx8fRUVFsXr16qz37KlTp8ZNN93U5PdvHZkQDWjgV7/6Vfz6179+R8c3paamJn7+85/H73//+2jq7ScvLy8+9KEPxSc+8QlXodFqTz31VPzHf/xHq8d37949Pvaxj8X/+l//K/Lzm78we8+ePfHjH/846159aQUFBfGxj33soL7IgJa0NUSL0Le0n8x+bI2xY8fGtddeG8OHD29xrL7lcNizZ0/cd999WWfaNmbcuHHxxS9+sckALbOevuVweOmll+J73/teROz/m+nee+9NlsxvK31Le1u5cmXcfffdyRJezRk8eHB8/vOfb/H+69u2bYt77rkn60vgtG7dusX/9//9f3H22We3ec68u2WGaM0ZM2ZMfPazn231kovebzkYf//3f591okFr3XPPPTF48OBGn2uPXqyvr49HHnkkfv3rX0dtbW2T46ZNmxZXX3119OjRo1V1OxohGtBAe4ZoB6xcuTKeeeaZWLp0aXJmRf/+/WPixIkxc+bMGDt27EG/Pu9eGzdujEWLFsWKFSvirbfeitLS0uRsxB49ekTfvn1j1KhRMWXKlDj99NOjW7dubar/2muvxdy5c2P58uWxY8eOKCgoiAEDBsQJJ5wQM2fObNUXxHAwDiZEO0DfcqhVV1fH6tWrY9myZclV5BUVFVFRURH19fXRo0ePGDx4cIwbNy5OP/30Fr8Qa4y+5XBYunRpzJs3L954443Ytm1b1NXVRZ8+fWLcuHExbdq0OPXUU5N78LSGvqW93X777cm9/KZMmRI333zzO66pb2lPtbW1sXDhwnjllVdi1apVsX379qisrIyuXbtG3759Y/To0XHKKafE6aef3uoTaOvr6+Pll1+O5557LtasWRM7duyIbt26xcCBA+Pkk0+OmTNntnjyAzSmsrIyXnvttVi8eHGsWLEiduzYEeXl5dGlS5fo27dvjB07Nt73vvfFiSee2OKJuI3xfktbtEeIdkB79OJbb70VzzzzTJSUlERZWVnU1tZG3759Y/z48TFjxow2rXDWEQnRAAAAAAAAIKXtsTkAAAAAAAAc4YRoAAAAAAAAkCJEAwAAAAAAgBQhGgAAAAAAAKQI0QAAAAAAACBFiAYAAAAAAAApQjQAAAAAAABIEaIBAAAAAABAihANAAAAAAAAUoRoAAAAAAAAkCJEAwAAAAAAgBQhGgAAAAAAAKQI0QAAAAAAACBFiAYAAAAAAAApQjQAAAAAAABIEaIBAAAAAABAihANAAAAAAAAUoRoAAAAAAAAkCJEAwAAAAAAgBQhGgAAAAAAAKQI0QAAAAAAACBFiAYAAAAAAAApQjQAAAAAAABIEaIBAAAAAABAihANAAAAAAAAUoRoAAAAAAAAkPL/A8xqZmfDOONcAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 458, "width": 872 } }, "output_type": "display_data" } ], "source": [ "cdc['age'].plot(kind = 'hist', color = 'springgreen', edgecolor = 'black', \n", " linewidth = 1.2, title = 'Histogram of age')\n", "plt.show(); " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Histograms are generally a very good way to see the shape of a single distribution, but that shape can change depending on how the data is split between the different bins. You can control the number of bins by adding an argument to the command. In the next two lines, we first make a default histogram of `bmi` and then one with the bin size of 50." ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABtEAAAOUCAYAAADU8hzuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AADSy0lEQVR4nOzdeZiXdb0//tds7AzLgLIvCqhsYqIkqCBgLrnvFablNzOzqFNp53tOndLjKfvayU4apZ5Qi9xyy9TU2BEFJUU2WWTfmWFfBmb7/cHF5zefz+zD4Az4eFyX13W/78/7ft2vgbkH9On7faeVlJSUBAAAAAAAAJCQXt8NAAAAAAAAQEMjRAMAAAAAAIAUQjQAAAAAAABIIUQDAAAAAACAFEI0AAAAAAAASCFEAwAAAAAAgBRCNAAAAAAAAEghRAMAAAAAAIAUQjQAAAAAAABIIUQDAAAAAACAFEI0AAAAAAAASCFEAwAAAAAAgBRCNAAAAAAAAEghRAMAAAAAAIAUQjQAAAAAAABIIUQDAAAAAACAFEI0AAAAAAAASCFEAwAAAAAAgBRCNAAAAAAAAEghRAMAAKrlsccei7S0tKR/gE+3AwcOxBNPPBFf/OIX46STToq2bdtGRkZG0s+J73znO/XdJgAA1EpmfTcAAAAAHH2mT58eX/ziF2Pt2rX13QoAABwRVqIBAEADNWXKlDIrv37yk58cdt3yVpQ99thjh10X+PSYOXNmjBo16hMP0Mr7+VXVPy1atIhOnTrFaaedFjfddFM8+OCDsXHjxiPSw4ABA+rk6/zOd75T4T1uvvnmatXo0aNH0nU9evSok94AAD5NrEQDAACOaitXroyePXsmnZs8eXKMGDGifhqCY1xRUVHceOONUVBQkHS+devWMWjQoGjbtm3Sdq+DBg36hDtMtmfPntizZ09s2LAhPvjgg3jiiSfiO9/5Tlx66aXxy1/+Mk444YQ6u9f8+fPjvffei8GDB9e6RkFBQUyYMKHOegIAoPaEaAAAAEC1vfLKK7F8+fKkc3feeWfcfffd0bhx43rqqmaKiorixRdfjL///e/x6KOPxpe+9KU6q/3YY48dVoj28ssvR25ubp31AwBA7QnRAACAarn55purvY0YcOx6+eWXk8b9+/ePn//850mrzz5JgwcPju7du5f7WXFxcezatSvWrFkTy5Yti6KioqTP8/Pz48tf/nI0atQorr322jrp58knn4xf/vKXtQ4Ux48fXyd9AABw+IRoAAAAQLXNmTMnaXzRRRfVW4AWEfHNb36zWgH/9u3b48knn4yf/OQnsXnz5sT54uLiuP3222PkyJGRk5NTqx46duwYGzZsiIiIrVu3xl//+tdahXIbN26Mv//974lxy5Yto6SkJHbv3l2rvgAAODzp9d0AAAAAcPRYu3Zt0rhHjx7100gNtW7dOr7xjW/E+++/X+Y9irm5ufHYY4/VuvaNN96YNK5trT/+8Y9RWFiYGF933XVHzRaZAADHIiEaAAAAUG07d+5MGjdr1qyeOqmdTp06xYMPPljm/EsvvVTrmldffXW0bNkyMX799dcTK9NqInUrx6985Su17gkAgMMnRAMAAACqbf/+/fXdwmG78MILo23btknnli1bVut6zZo1i+uuuy4xLioqij/+8Y81qjFr1qxYtGhRYty7d+8YNmxYrXsCAODweScaAADwidq8eXPMnTs3VqxYETt37oz8/Pxo2rRptGjRIrp06RI9e/aMPn36RGZmw/rXla1bt8asWbNi48aNsWXLlsjMzIz27dtH586d46yzzoqmTZvW6f2KiorinXfeieXLlydWtBx33HExYMCAOO200yI9/ZP7fyI/+uij+PDDD2Pt2rWxd+/eaNasWQwcODBGjx5d5bU7duyIRYsWxZIlS2Lbtm2xe/fuaN68ebRp0ya6dOkSZ555ZtIKniNl06ZN8c4778SKFSti9+7d0bJlyzjppJNi2LBh1b7/li1bYtasWfHxxx/H7t27o23bttG9e/cYMWJEg1qNlZ+fH++8806sW7cuNm/eHAcOHIj27dvH8ccfH2eeeWa0b9++vlusd+np6XHCCSfE1q1bE+dyc3MPq+ZXvvKV+N///d/E+LHHHos777yz2tenbgFZnfe8AQBwZDWsfysFAAAarMcee6zM1mIlJSXVujY/Pz9+97vfxeOPPx4ffPBBlfObNWsWp59+elx88cVx3XXXxQknnJD0+ZQpU+K8886r8PrKPjtkxYoVVb7LqaioKP73f/83/vCHP8S7774bxcXF5c5r0qRJDB8+PL7zne/EhRdeWOW9K7N9+/a4++67Y8KECbF58+Zy53To0CFuv/32+N73vpcIb0aMGBFTp05NzLnpppuqfC/TzTffHI8//nhiPHz48JgyZUpEHPw9+81vfhPjxo2LFStWlLl2+PDh5YZoRUVFMXHixHj55Zdj8uTJsXDhwkq/TzIyMuL000+Pb33rW3HDDTfUODwt73uh9O/ttGnT4u67747JkyeX+/vXrFmz+OpXvxp33313tGnTptx7zJw5M+6+++74xz/+EUVFRWU+b9KkSdx4443xs5/9LHJycmrUf12aOHFi/Pd//3dMnjw59u3bV+6ctLS0GDx4cNx8881x6623VvnrvXLlyjLvD0v1la98pcJtB//jP/4jfvKTn1Sr//p2uEHosGHDonfv3rF06dKIiFi0aFHMmjUrhgwZUuW1+fn58dRTTyXG6enp8eUvf/mw+gEA4PDZzhEAADii3nnnnejbt29897vfrVaAFhGxd+/emD59evzrv/5r3HrrrUe2wQrMnDkz+vfvH1//+tdj1qxZFQZoEQf/A/jrr78eF110UYwePTrWrFlTq3u+8sorcfLJJ8evfvWrCgO0iIiNGzfGj3/84zj11FOTtn+rKwsWLIiBAwfGnXfeWW6AVpF33303OnbsGBdccEE8+OCDsWDBgiqD1qKiopg9e3bceOON0b9//1i4cOHhth8REcXFxfEv//IvMWLEiJg4cWKFv3979+6NBx98MD7zmc/E4sWLy9T4wQ9+EGeffXa8/vrr5QZoEQd//x955JHo379/fPTRR3XSf01s2LAhLrzwwhg9enS8+uqrFQZoEQeD73fffTe++c1vRt++fZOC10+T4uLiWL58edK5qsLC6khdPVZVkH3ICy+8ENu3b0+MR48eHV26dDnsfgAAODxCNAAA4IiZNWtWnH/++TUKYhqC559/PkaNGlWrQGTixIlx1llnxfz582t03QsvvBBXXnllbNq0qdrXLFu2LM4999z4+OOPa9pmhRYuXBjnnHNOYjVNTWzatCm2bNlS63svXrw4hgwZEjNmzKh1jUNuueWW+NWvflXt1ZIrV66MCy64ILGlX0lJSdx0001x//33V7vGxo0bY+TIkZGXl1frvmtq0aJF8dnPfjZef/31Gl+7dOnS+NznPhdPP/30EeisYXvzzTeTtnKMiDj33HMPu+6Xv/zlpK1Wn3rqqcjPz6/yuvHjxyeNK1rZBwDAJ8t2jgAAwBFx4MCBuPnmm2P37t1J57t16xbXXHNNnHHGGdG1a9do0aJF7N+/P3bt2hUrV66MBQsWxPTp02POnDkVhhft27ePq6++OiIOriR67bXXkj4/99xzq3zvU/Pmzcs9P3Xq1Lj22mvLrFxq1apVXH/99XHBBRdE586do6CgIFauXBkvvfRSvPjii1FYWJiYu27dujjvvPNi3rx50aFDh0r7iIj44IMP4vrrr4+CgoKk861bt44bbrghzj///OjcuXMUFRXF6tWr49VXX41nn3028vPzIzc3N6677ro6eSfbvn374sorr4xt27ZFxMFtCq+55pq44IILolu3btGsWbNYv359zJkzJ1auXFlprUaNGsWwYcNi8ODB0a9fv+jcuXNkZ2dHVlZW7Nq1K5YtWxbvvPNOPPfcc0lhxu7du+P666+PDz74oNbv7vr1r3+dWAGUlpYWl156aVx22WXRu3fvaNGiRWzYsCFef/31eOSRR5ICjlWrVsVdd90V//u//xv/9V//FX/6058SNS655JJEjZYtW8bGjRvj9ddfj4cffjipxoYNG+IHP/hB/OEPf6hV7zWxZcuWGDlyZGzcuDHpfEZGRlx22WVxxRVXRM+ePaNx48axbt26ePPNN+Opp55K/P5GHHxOv/CFL0Tbtm3j/PPPL3OP5s2bJ561Q5577rmk8eDBg6N79+7l9ti3b9/afnlHzMaNG+OOO+5IOpeenh5f+9rXDrt2ly5dYvTo0fHGG29ExMHtWV988cW44YYbKrxmzZo1MXHixMS4devWccUVVxx2LwAA1IESAACgQZo8eXJJRCT98x//8R+HXXf8+PFl6o4fP75W11XmxRdfLDP/hz/8YUlBQUG1+ty4cWPJfffdV3LLLbdUOm/FihVl7jN58uRq3SPVtm3bSrp27Vqm3sUXX1yyYcOGCq97//33S0455ZQy111wwQUlxcXFld6zoKCgZNCgQWWu/fznP1+ycePGCq9bunRpyZlnnpmYn56ennT9TTfdVOXXe9NNN5W576F/RowYUbJixYoqa5T2yiuvlIwcObLkmWeeKdm9e3e1rtmzZ0/JD3/4w5K0tLSk+3/961+v1vXlPSeHanXv3r1k9uzZFV67aNGiko4dOyZdm5GRUfLyyy+XZGZmlkRESY8ePSqtsXDhwpLjjz8+qUZ6enrJ2rVrq9X/4bj00kvLfO19+vQpee+99yq8ZtOmTSWXXXZZmes6duxYsmXLlmrdtzY/P+pKbX9+lZSUlGzfvr3k97//fZnf84goueuuuw6rh3nz5iU+f/LJJ8v8HKjMPffckzT/tttuS/o8Jyenxs92SUlJSffu3ZOu6969e7W/RgAADrISDQAAjiLPPPNMjbcJTLVq1ao66qZyqdvLnX/++fGzn/2s2tcff/zxceedd9Z1W5W67777yrzP7OKLL44XX3wxsrKyKrxu0KBBMWnSpDj77LOTtlZ8/fXX46WXXqp0VckTTzxR5l1xF1xwQbzwwguV3rNXr17xxhtvxPDhw2Pu3LmVvrOtpkaMGBGvvfZaNGnSpEbXXXTRRXHxxRfX6JpmzZrFz372szj++OPju9/9buL8E088Ef/1X/8Vbdu2rVG9iINbMXbo0CFmzJhR6XulTj755Hj00Ufj85//fOJcUVFRXHXVVVFYWBgdO3aMt956Kzp16lRhjVNOOSUeffTRuPTSSxPniouLY8KECUf0+/f111+Pl19+Oelcjx49YvLkyZX2e9xxx8Vzzz0X11xzTbz00kuJ8xs2bIj//M//jAceeOBItXzEPPTQQ/G3v/2t3M+Ki4tjz549sWbNmliyZEmZ99qlp6fHD37wgxr9bKrKFVdcEa1bt0684+zNN9+MdevWRefOncudn/retNT3qgEAUH+EaAAAcBRZtGhRLFq0qL7bqJbUMOqSSy6pp06qZ9++ffHII48kncvJyYnHH3+80jDrkA4dOsT48eNj+PDhSdtQPvDAA5WGaOPGjUsat2zZMv7whz9U656tWrWK8ePHxxlnnFEmHKitFi1axOOPP17jAC3i4LaHtTV27NgYP358fPjhhxFx8PfjpZdeqvW7oR5++OFKA7RDLr744jjllFOSnqtD22o+8sgjlQZSh1xyySVx8sknJ71Db+rUqUc0RPv1r39d5twf/vCHavWbmZkZ48ePj5NOOinpHXZ/+MMf4u67747s7Ow67fVIe++99+K9996r0TW9evWKz33uc3HbbbfFgAED6rSfJk2axA033BC/+93vIuJgkPfEE0/Ev/7rv5aZO3369KTg/ZRTTokhQ4bUaT8AANReetVTAAAAai411Cmp4P1mDcWLL74YeXl5SefuuuuuaNeuXbVrnHPOOXH55ZcnnZs6dWosW7as3PkfffRRmf/4f+utt1YrCDnktNNOK3PPw3HjjTdGt27d6qxedaWlpZX5Ot5+++1a1Ro4cGDSyrCqXHTRRWXOnXrqqUkr1KqSugLv/fffr/a1NbVu3br4+9//Xub+5513XrVrtGnTJv7t3/4t6dyuXbvimWeeqZMeG7q8vLzYtm1b7Nix44jUTw1/H3/88XLnjR8/vtLrAACoX0I0AADgiEjdumzChAlRWFhYT91Ubdq0aUnjjIyMuPHGG2tc55Zbbilzbvr06eXOfeutt8qcGzNmTI3vWZtrPolaNdW1a9ek8Zw5c2pV5+qrr67R/H79+tV5jQ0bNhyx7/cZM2aUCaVrE76MGTMmGjVqlHSuou/VY822bdviySefTATfpVfk1YUzzzwz+vbtmxgvXrw4Zs6cmTRnz5498eyzzybGtf2ZAwDAkSNEAwCAo8h//Md/RElJyWH9k7ry4UgZNWpU0vjdd9+NCy+8MObOnfuJ3L+mUlc9DRgwIDp06FDjOqNGjYqMjIxKax8ya9aspHHLli3j1FNPrfE9zz777BpfU56srKz4zGc+Uye1Ig5u6fmb3/wmvvKVr8TgwYOja9eu0apVq8jIyIi0tLQy/9x6661J19c22Kjpdnjt27c/IjV27txZoxrVVd730+jRo2tcJycnJwYPHlxl7YZu/Pjxlf7M27dvX2zcuDGmTJkSd999d/Ts2TPp+r/+9a9x1llnxfr16+u0r9R3m6W+++zZZ5+N3bt3J8YXXnhhrX7mAABw5AjRAACAI+Lqq6+OE088MencxIkTY9CgQXHaaafFj370o5g4cWLs2bOnnjpMtnTp0qRxbcOkpk2bximnnJJ0bsmSJeXOXbFiRdK4f//+tXqvWPv27evkP7537969Vu9CS/XPf/4zRo8eHd27d49vf/vb8dhjj8WcOXNi7dq1sXPnziguLq5WnW3bttXq/h07dqzR/BYtWpQ5V9Nfz/JqlA5I6lLq9+oJJ5wQrVu3rlWt1O/zZcuWVfv352jRpEmTOP7442P48OHxox/9KD766KP43ve+lzTn448/jssuu6xOVw/eeOONSYH6M888E/v27UuMU/+HhtTQDQCA+idEAwAAjoisrKz4y1/+Em3atCnz2QcffBD/+Z//GaNHj45WrVrFaaedFmPHjo0XXnihXkK1AwcOxN69e5POdenSpdb1Uq+tKAzavn170ri81UzVVZN3t1WktkFMaf/5n/8ZZ5xxRkycOPGw34NX2xCqZcuWNZpfXnBZFzWOVBiV+v1Ul9+rJSUlR+w9YQ1Fo0aN4v7774+vfvWrSefnzJkTDz30UJ3dp0OHDnHhhRcmxjt27Ijnn38+Ig6GdqW3zszJyYnLLruszu4NAEDdEKIBAABHzKBBg2LOnDnxuc99rsI5RUVF8cEHH8T//M//xFVXXRXHHXdcjBkzJubNm/eJ9VleyJWdnV3req1atUoab926tdx5qSFaTYOb0g6n30OaN29+WNf/13/9V/zoRz8qNzxKS0uL448/PgYPHhyjR4+OSy65JK6++uqkf1K3Fqyt2qzmOxI1jpTU79e6/F6NqPj79Vhz7733lnkn3AMPPHDY4W9pqe+qO7Sl42OPPZZ0ny9+8YtlegEAoP5l1ncDAADAsa1nz57x+uuvx6xZs+Lxxx+Pl19+OdauXVvh/L1798aECRPiz3/+c3zzm9+M+++/Pxo3bvwJdvzJSf26Dhw4UOtah3NtXVi0aFH85Cc/KXP+kksuiVtuuSXOOeecyMnJqbTG+PHjy6wOgiOlQ4cOMWTIkKQVYStXrowFCxZE//796+Qel156aeTk5EReXl5EREyaNClWrVoVTzzxRNI8WzkCADRMVqIBAACfiCFDhsRvf/vbWLNmTXz88ccxfvz4uOWWW+Lkk08ud9VPSUlJPPjgg3HDDTcc8Xc0lbfl5M6dO2tdL3U7vLZt25Y7L3X7xMO55+FcWxd+8YtfREFBQdK58ePHx8svvxxXXHFFlQFaRNlfN8qX+v1al9+rERV/vx6LygvL5syZU2f1GzVqFF/84hcT4+Li4vjqV78aq1evTpwbOHBgrd/BCADAkSVEAwAAPnEnnHBC3HzzzfHoo4/GokWLYv369fHoo4/G2WefXWbuiy++GBMmTDii/TRq1CiaNWuWdG7dunW1rpd6bXkhXUTZ95gtX768VvcrLCxM+o/yn7Ti4uL429/+lnTuC1/4Qo1X1+Tm5tZhV8eu1O+nuvxeTUtLK3eLx2NVec/mli1b6vQeqVs6Tpo0qdLPAQBoOIRoAABAvevQoUPccsstMX369Hj22WfLvBto3LhxR7yH3r17J43/+c9/1qpOfn5+LFq0KOlcnz59yp07aNCgpPGyZctqtapo0aJFkZ+fX+Pr6sratWvLBGBf+tKXalynLlcAHctSv1eXL19e61V8qb/mvXr1ivT0T89/KtizZ0+Zc3X5TrSIiNNOOy0GDhxY7mdZWVm1elYAAPhkfHr+ZgwAABwVrrnmmvjmN7+ZdG727Nlltgo8pLz/4F+b/wg+dOjQpPG8efNi8+bNNa4zadKkKCwsrLT2IZ/97GeTxiUlJfHyyy/X+J4vvvhija+pS+X9Op1wwgk1qrFv376YOXNmXbV0TEv9fiopKYmJEyfWuM62bdvKhGgVfa8eq1auXFnm3PHHH1/n96lotdnnP//5aN++fZ3fDwCAuiFEAwAAGpxRo0YljYuKiiIvL6/cuanbMEYcDGRq6txzz00aFxYWxh//+Mca1/nf//3fMufOOeeccueeffbZ0aJFi6Rzv//972t0vwMHDsRjjz1Wo2vqWlFRUZlzqUFiVf70pz/V+3vdjhZnn312mfcIjh8/vsZ1/vSnP8X+/fuTzqU+B8eyAwcOxLRp08qcP/HEE+v8Xl/60pciKyurzPmabnkKAMAnS4gGAAA0OKn/YT8iyoRNh5T3/qb169fX+J5XXHFFmXeU/fznP4+tW7dWu8bMmTPjhRdeSDp33nnnVfgf5Vu0aBFjxoxJOjd9+vR48sknq33P+++/v9bvUqsr5a2kqcl2mFu3bo2f/OQnddjRsa1Tp05x8cUXJ53729/+Vm4gVJHt27fHvffem3QuOzs7rr322jrp8WjwyCOPxLZt25LOtW3btswK0brQvn37mDx5crz22mtJ/3z+85+v83sBAFB3hGgAAMAR8dRTT5UbhlXH008/nTTu0KFDhSFaVlZW9OjRI+ncjBkzanzPJk2axK233pp0Ljc3N77yla9Ua1XV5s2b4+abby6zleR3vvOdSq/79re/XWaFyte+9rWYPn16lfd85pln4sc//nGV8460Hj16RNu2bZPO/frXv67Wr1t+fn586UtfqlXw+Wk2duzYMue+8pWvxMaNG6u8tqioKL761a/Gpk2bks7fcsst0bJlyzrrsSGbOnVq/OAHPyhzfsyYMZGRkXFE7jls2LC48MILk/7JzMw8IvcCAKBuCNEAAIAj4rbbbotu3brFv//7v8eHH35YrWsKCgrixz/+cTzzzDNJ56taHTNkyJCk8Z///Od46aWXatZwRNx5553RvXv3pHN//etf4+qrr670/WgffvhhjBw5MpYuXZp0/sILL4xLL7200nuecsop8X//7/9NOrdnz54YPXp0/Pu//3uZoCMiYsWKFfH1r389brjhhigqKopGjRpF165dq/ryjpj09PQyK2ref//9+PKXv1zp1prLli2Lz33uc/H3v/89IkKgUAPnn39+XHHFFUnnli9fHiNHjowPPvigwutyc3Pj2muvLbNislOnTvHv//7vR6DThmXRokXx7W9/O0aNGlXme7Ndu3ZWRAIAkMS/oQAAAEfM5s2b495774177703TjjhhDj77LPjM5/5TPTq1SvatGkTzZs3j3379sWaNWvi3XffjaeffjpWr16dVKNNmzZx1113VXqfMWPGJK1eKygoiCuuuCI6duwYffv2jezs7EhPT/5/CMeNG1dmG8JWrVrFH//4xzjvvPOS3vP117/+NaZNmxZf+MIX4vzzz4/OnTtHQUFBrFy5Ml566aV48cUXo6CgIKnWcccdF4899liZd1eV59/+7d9iypQpMXXq1MS5AwcOxL333hs/+9nPon///tG5c+coKiqK1atXx0cffZR0/d133x2vvfZarFmzJnGuOvetS//6r/8aEyZMiOLi4sS5J598MmbMmBG33HJLnHXWWdG+ffvYvXt3rFixIl599dV44YUX4sCBAxER0bRp0/j2t78d99133yfa99Hs0UcfjdmzZyet4lu0aFGcccYZcfnll8fll18ePXv2jMaNG8f69evjzTffjCeffLLMFqXp6enxxBNPlFlNeLR46KGH4m9/+1uFn+/fvz927NgRH330UWzZsqXcOc2aNYvnnnsu2rRpc6TaBADgKCREAwAAPhHLly+P5cuXxxNPPFHta5o2bRp//vOfo3PnzpXOu/jii2PUqFExceLEpPMbNmyIDRs2lHvN/fffX+67vM4555z4y1/+El/4whciPz8/cX779u0xbty4GDduXJV9d+nSJf7+97/H8ccfX+XciINbUr7yyivx+c9/PilIi4goLi6ODz/8sMLVfN/85jfjrrvuildeeSXpfLNmzap177pyyimnxH/913/FD3/4w6Tza9asqXJ1T0ZGRkyYMCF27NhxBDs89uTk5MSkSZPiggsuiFWrViXOFxYWxnPPPRfPPfdclTUaN24cf/zjH2PUqFFHstUj6r333ov33nuv1td369Yt/vSnP8U555xTh10BAHAssJ0jAABwRBzuu5X69esXU6ZMiQsvvLDKuenp6fHMM8+U2d6utq644oqYOHFinHLKKTW+dvTo0fH2229Hv379anRd8+bN480334x77703mjZtWuX81q1bx+9///t48MEHIyLKBFCtWrWq0f3rwl133RU//elPy6z6q0zbtm3j5ZdfjiuvvPIIdnbsOumkk+Ltt9+u1nOSqk+fPvHGG29UuV3qsSonJyfuvPPOWLBggQANAIByCdEAAIAjYvny5TFx4sT43ve+F2eeeWZkZWVVeU16enqMHDkyHnvssZg7d26ceeaZ1b5f27Zt44UXXog5c+bEXXfdFaNHj46uXbuWu5VjdQwdOjTmzZsXDz/8cAwZMqTSGk2aNIkLLrggXnvttXjzzTejS5cuNb5fxMEVaf/3//7fWL58efzP//xPjBo1Knr27BlNmzaNxo0bR9euXePzn/98PPTQQ7Fq1aq49dZbE9fm5uYm1WrdunWtejhcP/7xj2PatGnxuc99rtItJdu1axff+973YvHixXHRRRd9gh0eezp27BivvfZa/OMf/4iLL7640hA2LS0tBg8eHA899FAsWLAgzj333E+w0/qRmZkZbdu2jZ49e8bIkSPj+9//frzwwguxfv36uO+++6JFixb13SIAAA1UWklJSUl9NwEAABz78vPzY8mSJbF8+fJYv3597Nq1KwoKCqJFixbRpk2bOOmkk2LAgAHRvHnz+m61XHl5efHOO+/Epk2bYsuWLZGZmRnt27ePzp07x1lnnfWJb59Y2qZNm6JDhw5J55577rm46qqr6qmjg3Jzc2PGjBmxdu3a2L59ezRu3Dg6dOgQ/fr1i0GDBtUq3KRq+fn58fbbb8fatWtjy5YtceDAgWjfvn0cf/zxceaZZ8Zxxx1X3y0CAMBRQYgGAABwlPvzn/8cX/rSl5LOrV69Orp27VpPHQEAABz9/G9/AAAAR7lD70U7pFOnTgI0AACAwyREAwAAOIo9/PDD8fbbbyedu+mmm+qpGwAAgGOHEA0AAKABePbZZ2PVqlU1uubPf/5zjB07Nulcenp63HrrrXXZGgAAwKeSEA0AAKABePrpp6NXr15x5ZVXxlNPPRVbt24td15BQUFMnTo1Lr/88vjSl74U+fn5SZ/feeed0aNHj0+gYwAAgGNbWklJSUl9NwEAAPBpd80118Rzzz2XdK5Hjx7RrVu3aN26dRw4cCDy8vJiwYIFsXfv3nJrDBkyJKZPnx5ZWVmfRMsAAADHtMz6bgAAAIDyrVy5MlauXFmtuZdcckk8+eSTAjQAAIA6YjtHAACABuDMM8+MVq1a1fi6nj17xsMPPxwvvfRStGjR4gh0BgAA8OlkO0cAAIAG4sCBAzF9+vR466234p///GesXLky1q9fH7t3744DBw5Ey5Yto23bttG5c+cYNmxYjBgxIkaNGhWZmTYZAQAAqGtCNAAAAAAAAEhhO0cAAAAAAABIIUQDAAAAAACAFEI0AAAAAAAASCFEAwAAAAAAgBRCNAAAAAAAAEghRAMAAAAAAIAUQjQAAAAAAABIkVnfDcDhKikpieLi4mrPz8jIiIiIoqKiI9UScBg8o9BweT6h4fJ8QsPl+YSGy/MJDZfnk9pKT0+PtLS0OqsnROOoV1xcHJs2barW3PT09OjQoUNERGzZsqVG4Rtw5HlGoeHyfELD5fmEhsvzCQ2X5xMaLs8nh+P4449PhLB1wXaOAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkCKzvhsAAI4e+fn5sWrVqvpug3qQnp4eeXl5ERGRm5sbxcXFtarTvXv3aNKkSV22BgAAAHBECNEAgGpbtWpVjBw5sr7b4Cg2adKkOOmkk+q7DQAAAIAq2c4RAAAAAAAAUgjRAAAAAAAAIIXtHAGAWrvo3F9GqxZd67sNGrAdu9fEa9O+V99tAAAAANSYEA0AqLVWLbpG29Yn1ncbAAAAAFDnbOcIAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQIrO+GzhaLVmyJKZNmxZLly6NzZs3R35+fjRq1ChatWoVPXr0iDPPPDOGDBkSWVlZ1apXUlIS7777bkyfPj1WrlwZW7dujSZNmkT79u3j9NNPj/POOy/atWtX4z6XLVsWU6ZMiQULFsTWrVsjIqJt27bRr1+/GDFiRPTq1avGNXNzc2PSpEkxZ86cyM3Njfz8/Gjbtm306NEjzjnnnDjjjDMiLS2txnUBAAAAAAAaCiFaDe3atSvGjRsX7733XpnP9u3bF/v27YuNGzfGO++8E8cff3x885vfjJNPPrnSmlu3bo0HH3ww5s+fn3S+oKAgdu3aFcuXL4+XX345vvrVr8aIESOq1WdhYWH88Y9/jL///e9RUlKS9Nm6deti3bp18eabb8ZFF10UY8aMiczM6n0rTJo0KcaPHx/79+9POr9p06bYtGlTzJo1KwYMGBDf+ta3onXr1tWqCQAAAAAA0NDYzrEGDhw4EPfcc09SgJadnR2nnnpqnHfeeXH66afH8ccfn/hs06ZNce+998bSpUsrrLl379649957kwK0Xr16xYgRI+LMM8+M5s2bR0REfn5+/Pa3v42pU6dWq9ff/e538dprryUCtOOPPz7OPvvsOPvssxM9lpSUxKuvvhqPPPJItWpOmjQpfve73yUCtObNm8eZZ54ZI0aMiBNPPDExb968eXHvvfdGfn5+teoCAAAAAAA0NFai1cCLL74YK1eujIiItLS0uP766+OSSy6JRo0aJeaUlJTEzJkz45FHHom9e/fG/v374/e//33cf//95db8wx/+EGvWrImIiBYtWsS//Mu/RP/+/ROf5+fnx8MPPxwzZsyIiIjf//73cdJJJ0WHDh0q7HPSpEkxbdq0RJ9f/vKX46KLLor09IOZaXFxcbz22mvxxBNPRElJSUyePDn69u0bw4cPr7Dm+vXrk8K2s88+O2699dZo0qRJ4tz8+fPjl7/8ZezZsydWrVoVf/jDH+L222+vsCYAAAAAAEBDZSVaDZReBXbRRRfFVVddlRSgRRwMrYYNGxa33XZb4tzq1atj9erVZeqtXr06pk+fnhh/+9vfTgrQIiKaNGkSd9xxR5x00kkRcXCbxqeffrrCHgsKCuLZZ59NjC+//PL4/Oc/nwjQIiLS09Pj85//fFx22WWJc88880wUFhZWWPepp56KoqKiiIg46aST4o477kgK0CIi+vfvH9/+9rcT42nTpsXatWsrrAkAAAAAANBQCdGqae/evbFly5bEeNiwYZXOP+OMM6Jx48aJ8fr168vMeeONNxLbLQ4cODAGDRpUbq309PT40pe+lBi//fbbsXPnznLnvvfee5GXlxcREc2aNYurr766wh6vueaaaNq0aUREbNmyJf75z3+WO2/79u0xa9asxHjMmDFJoVxpp512WgwYMCAiDq54e/PNNyu8PwAAAAAAQEMlRKum1Pd7HXpXWUUyMjISAVVEJMKy0uM5c+YkxiNGjKi03sknn5zYwrG4uDjpvWylvfvuu4njoUOHJgV5qRo3bhxnnXVWYjx79uxy57333nuJ/jt27JhYFVeR0l9L6X4AAAAAAACOFkK0asrOzo6srKzEuKptCnfu3Bk7duxIjLt37570+YYNGxIrxiIi+vXrV2UPpefMnz+/3DkLFixIHPft27fKmqW3j6xOzZr2mZubGxs3bqzyGgAAAAAAgIZEiFZNmZmZcdpppyXGzz33XOzfv7/C+X/6058Sq7cGDBgQnTp1Svp83bp1iePWrVtHmzZtquyhZ8+e5V5/yN69e2Pbtm2J8QknnFCjmlu3bo29e/eWmVP6XqXnV6Rt27bRqlWrxNh70QAAAAAAgKONEK0GvvCFL0STJk0iImLFihXx/e9/P6ZMmRIbN26MAwcORG5ubvzzn/+MH//4xzFlypSIiOjSpUt84xvfKFOr9DvS2rdvX637t2vXrtzrKzpXen51alanbl31CgAAAAAA0JBl1ncDR5POnTvHPffcE/fdd1/k5ubGpk2b4re//W25c5s3bx7nnHNOfOELX0h6N9ohu3btShyXXrVVmdatWyeO9+/fHwUFBUlbTJau2bRp02jUqFGVNRs3bhxNmzaNffv2RUTE7t27kz4/cOBAHDhw4LB6Ta1ZHaW3uqzsHhkZGRERkZ5evTy49LzqXgN8cjyjDZ/fFw5Xenq67yOoY/78hIbL8wkNl+cTGi7PJw2JEK2GunfvHr/+9a9j4sSJMWHChAq3dDz11FPj7LPPLjdAi4jIz89PHFcn7CpvXn5+flKIVpuah+YeCtFK1yhvXJteU2tUR3mr91KNGzcucnJyIiMjIzp06FDjexx33HE1vgb45HhGG6bq/E8OUJl27drV6s9toHr8+QkNl+cTGi7PJzRcnk/qmxCthnbu3Bl/+tOfYvr06VFUVBStW7eOPn36RHZ2duzZsyeWLVsWW7ZsiZkzZ8bMmTNj9OjR8X/+z/8pk5gXFBQkjjMzq/fbUDowi4ikFWK1rZk6N7Vm6rg2vabWAAAAAAAAaOiEaDWwYcOGuPvuuyMvLy+ysrLipptuivPPPz+xpWBERElJSbz11lvxyCOPxL59++If//hHpKenx//5P/8nqVbpkKmwsLBa9y8dkkWUXRVWm5qpc1Nrpo5r02tNVsUdMm7cuCrnHNoysqioKLZs2VKtuunp6Yn/e2Hz5s1RXFxc496AI8cz2vDl5ubWdwsc5XJzc2Pjxo313QYcU/z5CQ2X5xMaLs8nNFyeTw5H+/btkzKbwyVEq6aioqK4//77E9tYfe1rX4sRI0aUmZeWlhZnn312ZGdnx3/+539GRMQbb7wRI0aMiF69eiXmNWnSJHFc3ZVaqfNK16htzdS5ldWsSd3KalZHTk5OjebX5gdpcXGxH8DQgHlGGya/JxwuzzYcWZ4xaLg8n9BweT6h4fJ8Ut+8la+aZs2aFWvWrImIiE6dOsXw4cMrnT9w4MAYMGBAYjx58uSkz1u2bJk43rFjR7V62L59e+K4cePGZbZ3LF1z37591Qq89u/fn3gfWkREixYtkj5v1KhR0kqy2vSaWhMAAAAAAKChE6JV0wcffJA47tevX6SlpVV5Tf/+/RPHy5cvT/qsU6dOiePqbkVYegut0tdXdK46W26lzqmqbl31CgAAAAAA0JAJ0app69atiePSK74qU3re3r17kz7r3Llz4nj79u1JK7cqsmLFinKvP6RZs2bRpk2bcudXp2bbtm2jWbNmZeaUvld1am7dujVpxVqXLl2qvAYAAAAAAKAhEaJVU+ktDXfv3l2ta0rPSw2nOnbsmPTerwULFlRZb+HChYnj0qvcSuvXr98RrVl6fnVqtmvXLjp06FDlNQAAAAAAAA1JZn03cLRo165d4rg64VRExPz58xPHqUFSWlpanH766fHGG29ERMSUKVNi2LBhFdZasmRJbNiwISIi0tPTY/DgweXOO+OMM2LGjBkREfH222/HzTffnBQAlnbgwIF4++23k64tz+DBg+ORRx6JkpKSWL9+fSxZsiT69OlTYa9Tp05NuhZouPLz82PVqlX13UZCenp65OXlRcTBbWG9OLbhqc6KZAAAAAA4FgjRqmnAgAHx97//PSIi1q1bF9OmTYtzzz23wvnz58+PDz/8MDE+9dRTy8z53Oc+F2+++WaUlJTE3Llz48MPP4yBAweWmVdcXBx/+tOfEuPPfvazkZ2dXe59Bw8eHDk5OZGXlxd79uyJ559/Pm644YZy5/7lL3+JPXv2RERE+/bt4/TTTy93XuvWrWPIkCHxzjvvRETEhAkT4ic/+Um574WbO3duzJ07NyIO/sfwz33uc+XWBBqGVatWxciRI+u7DQAAAACABsd2jtX0mc98Jjp27JgY//73v4833nijzCqJkpKSmDlzZtx///2Jczk5OeWuMuvWrVucc845ifGvf/3rMqvc8vPz47e//W189NFHERGRmZlZYSgWEZGVlRXXXnttYvzCCy/Eq6++mtRncXFxvPrqq/HSSy8lzl133XWRmVlxpnr99ddHRkZGREQsWrQoHnroocjPz0+aM3/+/Pif//mfxPjcc8/1PjQAAAAAAOCoZCVaNWVkZMQdd9wRd999d+zfvz8KCgri0Ucfjeeeey769OkTLVu2jL1798bSpUtjy5YtieuysrJi7NixkZWVVW7dr371q7FixYpYs2ZN7Nq1K376059G7969o3PnzrFv376YP39+YrVYRMStt95a5TvGRo4cGQsXLoxp06ZFSUlJPPbYY/Haa69F7969IyJi6dKlsWnTpsT8ESNGxPDhwyut2blz5/ja174Wv/vd7yIiYtq0aTFnzpzo379/NG3aNNatWxdLly5NzO/evXt85StfqbQmAAAAAABAQyVEq4HevXvHf/zHf8RvfvObxPvJtm3bFrNmzSp3/nHHHRd33HFHnHzyyRXWbNasWfzbv/1bPPjgg4l3qC1dujQpkIqIaNKkSXzlK1+JESNGVKvX2267LZo1axavv/56lJSUxKZNm5KCs4iD72W78MIL48Ybb6xWzZEjRyZCuf3798eePXvK/doHDBgQd9xxRzRt2rRadYGG46JzfxmtWnSt7zZowNZuejdmzPl/9d0GAAAAABxxQrQa6tWrV/z3f/93vPfee/Huu+/Gxx9/HNu2bYv8/Pxo3LhxtG7dOnr27BmDBw+Oz372s5VukXhI27Zt40c/+lHMnj07pk+fHitWrIjt27dHkyZNol27dnH66afHyJEjo127dtXuMzMzM7761a/GueeeG5MmTYqFCxfG1q1bE/fr27dvjBw5Mnr16lWjr3/UqFFx6qmnxqRJk2LOnDmRm5sb+fn5ia/73HPPjTPOOKPc96UBDV+rFl2jbesT67sNGrAdu9bUdwsAAAAA8IkQotVCRkZGDBkyJIYMGVJnNdPS0uq8ZsTB0K+mQVlV2rVrF9ddd11cd911dVoXAAAAAACgoUiv7wYAAAAAAACgoRGiAQAAAAAAQAohGgAAAAAAAKQQogEAAAAAAEAKIRoAAAAAAACkEKIBAAAAAABACiEaAAAAAAAApBCiAQAAAAAAQAohGgAAAAAAAKQQogEAAAAAAEAKIRoAAAAAAACkEKIBAAAAAABACiEaAAAAAAAApBCiAQAAAAAAQAohGgAAAAAAAKQQogEAAAAAAEAKIRoAAAAAAACkEKIBAAAAAABACiEaAAAAAAAApBCiAQAAAAAAQAohGgAAAAAAAKQQogEAAAAAAEAKIRoAAAAAAACkEKIBAAAAAABACiEaAAAAAAAApBCiAQAAAAAAQAohGgAAAAAAAKQQogEAAAAAAEAKIRoAAAAAAACkEKIBAAAAAABACiEaAAAAAAAApBCiAQAAAAAAQAohGgAAAAAAAKQQogEAAAAAAEAKIRoAAAAAAACkEKIBAAAAAABACiEaAAAAAAAApBCiAQAAAAAAQAohGgAAAAAAAKQQogEAAAAAAEAKIRoAAAAAAACkEKIBAAAAAABACiEaAAAAAAAApBCiAQAAAAAAQAohGgAAAAAAAKQQogEAAAAAAEAKIRoAAAAAAACkEKIBAAAAAABACiEaAAAAAAAApBCiAQAAAAAAQAohGgAAAAAAAKQQogEAAAAAAEAKIRoAAAAAAACkEKIBAAAAAABACiEaAAAAAAAApBCiAQAAAAAAQAohGgAAAAAAAKQQogEAAAAAAEAKIRoAAAAAAACkEKIBAAAAAABACiEaAAAAAAAApBCiAQAAAAAAQIrM+m7gaLFgwYL46U9/Wuvrb7/99hgxYkSlc+bNmxdTp06NpUuXxtatWyMzMzNycnLi1FNPjZEjR0bnzp1rfN+1a9fG5MmTY+7cuZGXlxeFhYXRtm3b6N27dwwfPjwGDBhQ45o7d+6MKVOmxOzZs2Pz5s2xZ8+eaNWqVXTt2jWGDRsWQ4cOjcxM31oAAAAAAMDRS9LxCWndunWFn+3duzcefvjhmDlzZtL5/fv3x549e2L16tXx6quvxnXXXRdXXnllte/5/PPPx7PPPhtFRUVJ5zds2BAbNmyIadOmxbBhw+LWW2+Npk2bVqvmnDlzYty4cbFz586k87m5uZGbmxvvv/9+vPLKKzF27Njo1KlTtXsFAAAAAABoSIRo1dS2bdu44IILqj3/ww8/jA0bNkRERKtWrSpc8VVYWBj3339/zJ8/P3Gua9eu0bNnzygoKIiPPvootm3bFkVFRfHkk09GUVFRXHPNNVXe/+mnn47nnnsuMW7Tpk2cfPLJkZWVFStWrIg1a9ZERMRbb70Vu3fvjh/+8IeRkZFRac25c+fG/fffnwjlGjduHP3794/s7OzYtGlTLFq0KEpKSmLFihVxzz33xL333htt27atslcAAAAAAICGRohWTR07doxbbrmlWnOLi4vjtttuS4zPOeecCgOq5557LhGgZWVlxe233x7Dhg1LfF5YWBhPPfVU/PWvf42IiGeffTb69u0bffv2rfD+8+bNSwrQLrvssrjhhhuStlicMWNGjBs3LgoKCmLu3LnxwgsvVBrO7dq1Kx544IFEgDZgwIAYO3ZsZGdnJ+asXLkyfvGLX0Rubm7k5eXFgw8+GD/+8Y8rrAkAAAAAANBQpdd3A8eiDz74ILZv354YDx8+vNx5O3bsiL/97W+J8c0335wUoEVEZGZmxpgxY2Lo0KEREVFSUhJ//vOfK71/6c+HDh0aY8aMKfOOsrPPPjtuuummxPjll18us0VjaS+99FLs2bMnIiKOP/74uPPOO5MCtIiIHj16xF133ZUIDOfPnx9z586ttFcAAAAAAICGSIh2BEydOjVx3LNnz+jevXuF8/bv3x8RB1e6jR49usKaY8aMibS0tIiIWLJkSaxYsaLcecuWLYuPP/44IiLS0tJizJgxFdY8//zzo2PHjhERsW/fvpg2bVq58woLC2PixImJ8fXXXx+NGzcud2737t2TQsPXX3+9wvsDAAAAAAA0VEK0OrZnz5547733EuOKVqFFRLz77ruJ4xEjRiRCsvK0a9cu+vfvnxjPnj27ypoDBw6Mdu3aVVgzLS0tqb/S15a2cOHCxCq0pk2bxpAhQyqsGXHwazlk7ty5kZ+fX+l8AAAAAACAhkaIVsfefvvtKCgoiIiIjIyMOPvss8udd+DAgViyZEli3K9fvyprl55z6D1qqRYsWJA4ruy9aeXVXLx4caL30krfq0+fPpGVlVVpzV69eiVWqhUUFCR9nQAAAAAAAEcDIVodK72V42mnnVbmvWGHrF+/PkpKSiLi4IqwHj16VFn7hBNOSByvW7eu3Dmlz/fs2bPKmqXnFBcXx4YNGw67ZmZmZnTr1q3KXgEAAAAAABoqIVod2rBhQyxevDgxLr2tYar169cnjrOzs6NRo0ZV1i+9NePu3btj586dSZ/v2LEjse1iRET79u2rrNmoUaOkoK+8wKt0r5VtD1laTk5OpTUBAAAAAAAassz6buBYUnoVWsuWLeMzn/lMhXN3796dOG7dunW16qfO2717d1IAtmvXrqTPW7VqVe26hwK50n3VVa/l1axKXl5ete6RkZERERHp6dXLg0vPq+41cCzzHACftPT0dD97oI75Oy40XJ5PaLg8n9BweT5pSIRodaSkpCSmT5+eGA8bNiwyMyv+5c3Pz08cV2cVWnnzStcob1ybuqk1Us/VVc2qfOMb36hyzrhx4yInJycyMjKiQ4cONb7HcccdV+Nr4FhTncAaoC61a9euVn9uA9Xj77jQcHk+oeHyfELD5fmkvolx68jChQtjy5YtiXFlWzlGRBw4cCBxXFnYVlrqvNI1IiIKCgoqnV+RrKysCmumnqtNzdS+AAAAAAAAGjor0epI6a0cu3btGieccEKl80uv1CosLKzWPVLnpa4KKx1cHZpfnZVjpUOu8uY3atQo9u/fX6NeS9dM7as6xo0bV+WcQ1tGFhUVJQWYlUlPT0/83wubN2+O4uLiGvcGx5Lc3Nz6bgH4lMnNzY2NGzfWdxtwTPF3XGi4PJ/QcHk+oeHyfHI42rdvn3gNVF0QotWB/fv3x6xZsxLj4cOHV3lNkyZNEsflrf4qT+q80jXKGx84cKBaIVrpuqk1Dp07FKLVptfyalYlJyenRvNr84O0uLjYD2A+9TwDwCfNn79wZHnGoOHyfELD5fmEhsvzSX2znWMdmDVrVuzbty8iDqbk55xzTpXXtGjRInG8ffv2at0ndV7pGhERLVu2TBrv2LGjxnVTa6aeq02v5dUEAAAAAABoyIRodaD0Vo6nnnpqtGnTpsprOnXqlDjeuXNntVZ4ld52rUWLFpGdnZ30eatWraJ58+aJcXW2ODxw4EDs3LkzMe7cuXOlvVZ367e8vLxKawIAAAAAADRkQrTDlJeXF/Pnz0+Mq7OVY8TBYCotLS0iIkpKSmLlypVVXrN8+fLEcUXBVOnz1am5YsWKxHF6enp07Nix0pql51ekqKgoVq9eXWWvAAAAAAAADZUQ7TBNnz49SkpKIiKiefPmMXjw4Gpd16hRo+jTp09ivHDhwiqvWbRoUeK4f//+5c7p169f4njBggVV1ix935NOOimysrLKzCl9ryVLlkRhYWGlNT/++OPEO9SysrKSvk4AAAAAAICjgRDtMJXeyvGss86KRo0aVfvaM844I3E8ZcqUSufm5ubGvHnzyr22oprz5s1L2laxPKXvW1HNvn37RrNmzSIiYt++fTFr1qxq1xw4cGA0adKk0vkAAAAAAAANjRDtMCxbtizWrVuXGI8YMaJG1w8fPjwaN24cERHr16+PiRMnVjh3woQJUVxcHBERffr0iRNOOKHceb169YoTTzwxIiKKi4tjwoQJFdb8xz/+ERs2bIiIiKZNm8a5555b7rzMzMwYNWpUYvzMM89U+A631atXJ4VoF1xwQYX3BwAAAAAAaKiEaIehdFjUsWPHGm9b2KpVq7jkkksS4/Hjx8fMmTOT5hQWFsaECRPirbfeSpz74he/WGnd0p/PmDEjJkyYUGYLxpkzZ8Zjjz2WGF966aWRnZ1dYc0rrrgimjdvHhERGzZsiF/84hexa9eupDmrVq2K++67L3Gvfv36xaBBgyrtFQAAAAAAoCHKrO8GjlaFhYVJgdfw4cNrVefqq6+OxYsXx/z58+PAgQPxwAMPxPPPPx89e/aMgoKCWLRoUWzbti0x/7rrrou+fftWWnPAgAFx1VVXxfPPPx8RES+99FJMmzYtTjnllMjKyorly5fHmjVrEvMHDhwYV155ZaU1W7ZsGWPHjo377rsvioqK4sMPP4zbb789BgwYENnZ2bFp06ZYuHBh4v1wbdu2jW9961u1+jUBAAAAAACob0K0WpozZ07s3r07IiLS0tJqHaJlZmbG97///fj9738fb7/9dkQc3BJx9erVSfMyMjLi2muvjauuuqpada+//vrIysqKv/zlL1FUVBTbtm0rs8otImLo0KFx6623RkZGRpU1Bw0aFN/73vdi3LhxsWvXrti/f3+89957Zeb17Nkzxo4dG23btq1WrwAAAAAAAA2NEK2Wpk6dmjju379/5OTk1LpWs2bN4rvf/W6MGjUqpk6dGkuWLInt27dHRkZG5OTkxKmnnhojR46MLl26VLtmWlpaXH311TFkyJCYNGlSzJ07N/Ly8qKoqChat24dffr0ieHDh8fAgQNr1OvgwYPjV7/6VUyePDlmz54dmzdvjj179kSrVq2ia9euMWzYsBg2bFhkZvrWAgAAAAAAjl6Sjlq6884767zmwIEDaxxqVaVLly7x5S9/uU5rZmdnx+WXXx6XX355ndYFAAAAAABoKNLruwEAAAAAAABoaIRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACmEaAAAAAAAAJBCiAYAAAAAAAAphGgAAAAAAACQQogGAAAAAAAAKYRoAAAAAAAAkEKIBgAAAAAAACky67uBo93y5cvj7bffjnnz5sXWrVtj9+7d0bJly2jdunV07949+vfvHwMHDozWrVtXWWvevHkxderUWLp0aWzdujUyMzMjJycnTj311Bg5cmR07ty5xv2tXbs2Jk+eHHPnzo28vLwoLCyMtm3bRu/evWP48OExYMCAGtfcuXNnTJkyJWbPnh2bN2+OPXv2RKtWraJr164xbNiwGDp0aGRm+tYCAAAAAACOXpKOWtqxY0c8/vjjMWPGjDKfbdu2LbZt2xYrVqyIKVOmxAUXXBC33HJLhbX27t0bDz/8cMycOTPp/P79+2PPnj2xevXqePXVV+O6666LK6+8sto9Pv/88/Hss89GUVFR0vkNGzbEhg0bYtq0aTFs2LC49dZbo2nTptWqOWfOnBg3blzs3Lkz6Xxubm7k5ubG+++/H6+88kqMHTs2OnXqVO1eAQAAAAAAGhIhWi3k5ubGT37yk9i8eXPiXKdOnaJbt27RokWLOHDgQGzatClWrlwZ+/fvr7RWYWFh3H///TF//vzEua5du0bPnj2joKAgPvroo9i2bVsUFRXFk08+GUVFRXHNNddU2ePTTz8dzz33XGLcpk2bOPnkkyMrKytWrFgRa9asiYiIt956K3bv3h0//OEPIyMjo9Kac+fOjfvvvz8RyjVu3Dj69+8f2dnZsWnTpli0aFGUlJTEihUr4p577ol777032rZtW2WvAAAAAAAADY0QrYb27t0bP/3pTxMBWr9+/eLmm2+O7t27l5lbWFgY8+fPj3379lVY77nnnksEaFlZWXH77bfHsGHDkmo89dRT8de//jUiIp599tno27dv9O3bt8Ka8+bNSwrQLrvssrjhhhuStlicMWNGjBs3LgoKCmLu3LnxwgsvVBrO7dq1Kx544IFEgDZgwIAYO3ZsZGdnJ+asXLkyfvGLX0Rubm7k5eXFgw8+GD/+8Y8rrAkAAAAAANBQpdd3A0ebJ554IjZt2hQREUOHDo0f/ehH5QZoERGZmZkxaNCgOOuss8r9fMeOHfG3v/0tMb755puTArRDNcaMGRNDhw6NiIiSkpL485//XGmPpT8fOnRojBkzpsw7ys4+++y46aabEuOXX365zBaNpb300kuxZ8+eiIg4/vjj484770wK0CIievToEXfddVdiRdv8+fNj7ty5lfYKAAAAAADQEAnRamDlypUxadKkiIjIycmJr3/965GeXvtfwqlTpya2e+zYsWOMHj26wrljxoyJtLS0iIhYsmRJrFixotx5y5Yti48//jgiItLS0mLMmDEV1jz//POjY8eOERGxb9++mDZtWrnzCgsLY+LEiYnx9ddfH40bNy53bvfu3WP48OGJ8euvv17h/QEAAAAAABoqIVoNvPHGG4njCy64IJo2bXpY9d59993E8YgRIxIhWXnatWsX/fv3T4xnz55dZc2BAwdGu3btKqyZlpaWFHiVvra0hQsXJlahNW3aNIYMGVJhzYiDX8shc+fOjfz8/ErnAwAAAAAANDRCtGoqLi6Ot956KzH+7Gc/e1j1Dhw4EEuWLEmM+/XrV+U1pecceo9aqgULFiSOK3tvWnk1Fy9eHAUFBWXmlL5Xnz59Iisrq9KavXr1SqxUKygoSPo6AQAAAAAAjgaZVU8hImL16tWxb9++iIho1qxZHH/88VFUVBTTpk2L6dOnx5o1a2LPnj3RsmXL6N69ewwePDjOO++8CgOn9evXR0lJSUQcXBHWo0ePKns44YQTEsfr1q0rd07p8z179qyyZuk5xcXFsWHDhujWrdth1czMzIxu3brF0qVLE9cPHDiwyusAAAAAAAAaCiFaNR16z1jEwfeh5eXlxX//93/HsmXLkuZt27Yttm3bFh988EG8+OKL8S//8i/Rq1evMvXWr1+fOM7Ozo5GjRpV2UPprRl3794dO3fujOzs7MS5HTt2JLZdjIho3759lTUbNWoU2dnZsXPnzog4GHilhmile61se8jScnJykkK0msrLy6tyTuvWrSMjIyMiotrvpis973DeZwfHCs8B8ElLT0/3swfqmL/jQsPl+YSGy/MJDZfnk4ZEiFZNqaHOz372s1izZk1ERHTu3DlOPPHESE9Pj1WrVsWKFSsiIiI3Nzd++tOfxk9/+tOkVWQRB0OwQ1q3bl2tHlLn7d69OylE27VrV9LnrVq1qnbdQyFa6b7qqtfyalblG9/4RpVzxo0bFzk5OZGRkREdOnSo8T2OO+64Gl8Dx5rqBNYAdaldu3a1+nMbqB5/x4WGy/MJDZfnExouzyf1TYhWTaVXeB0Kzxo3bhy33357nHXWWUlz58+fH7/61a9i165dsX///vjVr34Vv/rVryIz8///5c7Pz08cV2cVWnnzStcob1ybuqk1Us/VVU0AAAAAAICGTIhWTfv37y9z7lvf+laceeaZZc73798/7rrrrvjRj34UJSUlsWnTppg+fXqcd955iTkHDhxIHJcO1yqTOq90jYiIgoKCSudXpPR721Jrpp6rTc3Uvqpj3LhxVc45tNqtqKgotmzZUq266enpif97YfPmzVFcXFzj3uBYkpubW98tAJ8yubm5sXHjxvpuA44p/o4LDZfnExouzyc0XJ5PDkf79u0Tr4GqC0K0aiodCkVE9OnTp9wArfTnQ4YMiXfeeSciImbOnJkUopVeqVVYWFitHlLnpa4KS+2xsLCwWivHSodc5c1v1KhRIkSsbq+la6b2VR05OTk1ml+bH6TFxcV+APOp5xkAPmn+/IUjyzMGDZfnExouzyc0XJ5P6pu38lVTkyZNksaVBWjlzVmyZEmF9cpb/VWe1HmpPaWOa1M3tUbqubqqCQAAAAAA0JAJ0aqpZcuWSeMuXbpUeU3nzp0Tx/v27Yt9+/Ylxi1atEgcb9++vVo9pM4rXaO8Hnfs2FHjuqk1U8/VptfyagIAAAAAADRkQrRq6tSpU9K4OqurmjZtmjQuHaKVrrdz585qrfAq/e6iFi1aRHZ2dtLnrVq1iubNmyfG1XlP2IEDB2Lnzp2Jcengr7xeq/v+pLy8vEprAgAAAAAANGRCtGrq1q1b0jg/P7/Ka0qHZhERzZo1Sxx36tQp0tLSIiKipKQkVq5cWWW95cuXJ44rCqZKn69OzRUrViSO09PTo2PHjpXWLD2/IkVFRbF69eoqewUAAAAAAGiohGjVdNxxx8Vxxx2XGK9du7bKa9atW5c4btGiRdLqtUaNGkWfPn0S44ULF1ZZb9GiRYnj/v37lzunX79+ieMFCxZUWbP0fU866aTIysoqM6f0vZYsWRKFhYWV1vz4449j//79ERGRlZWV9HUCAAAAAAAcDYRoNXDmmWcmjt99990q58+ePTtxfMopp5T5/IwzzkgcT5kypdJaubm5MW/evHKvrajmvHnzkrZVLE/p+1ZUs2/fvolVdPv27YtZs2ZVu+bAgQOrtfUlAAAAAABAQyJEq4HPfe5zkZGRERERixcvjvfee6/CucuWLUsK0UaMGFFmzvDhw6Nx48YREbF+/fqYOHFihfUmTJgQxcXFERHRp0+fOOGEE8qd16tXrzjxxBMjIqK4uDgmTJhQYc1//OMfsWHDhog4+P62c889t9x5mZmZMWrUqMT4mWeeqfAdbqtXr04K0S644IIK7w8AAAAAANBQCdFqoEOHDkmh0K9//etyV2UtXLgwfv7znydCr969e8fgwYPLzGvVqlVccsklifH48eNj5syZSXMKCwtjwoQJ8dZbbyXOffGLX6y0z9Kfz5gxIyZMmFBmC8aZM2fGY489lhhfeumlkZ2dXWHNK664Ipo3bx4RERs2bIhf/OIXsWvXrqQ5q1ativvuuy9xr379+sWgQYMq7RUAAAAAAKAhyqzvBo42X/rSl2LFihWxaNGi2L9/f/zyl7+Mzp07x4knnhjp6emxevXqWL58eWJ+mzZt4rvf/W6kpaWVW+/qq6+OxYsXx/z58+PAgQPxwAMPxPPPPx89e/aMgoKCWLRoUWzbti0x/7rrrou+fftW2uOAAQPiqquuiueffz4iIl566aWYNm1anHLKKZGVlRXLly+PNWvWJOYPHDgwrrzyykprtmzZMsaOHRv33XdfFBUVxYcffhi33357DBgwILKzs2PTpk2xcOHCKCkpiYiItm3bxre+9a3KfzEBAAAAAAAaKCFaDWVlZcVdd90VjzzySGJ12Lp162LdunVl5vbu3Tu++93vRrt27Sqsl5mZGd///vfj97//fbz99tsRcXBLxNWrVyfNy8jIiGuvvTauuuqqavV5/fXXR1ZWVvzlL3+JoqKi2LZtW5lVbhERQ4cOjVtvvTWxTWVlBg0aFN/73vdi3LhxsWvXrti/f3+5W1r27Nkzxo4dG23btq1WrwAAAAAAAA2NEK0WmjVrFmPHjo3zzz8/pk2bFh999FFs3bo1iouLo1WrVtG7d+8YOnRonHHGGRWuQEut993vfjdGjRoVU6dOjSVLlsT27dsjIyMjcnJy4tRTT42RI0dGly5dqt1jWlpaXH311TFkyJCYNGlSzJ07N/Ly8qKoqChat24dffr0ieHDh8fAgQNr9LUPHjw4fvWrX8XkyZNj9uzZsXnz5tizZ0+0atUqunbtGsOGDYthw4ZFZqZvLQAAAAAA4Ogl6TgMffv2rXJrxZoYOHBgjUOtqnTp0iW+/OUv12nN7OzsuPzyy+Pyyy+v07oAAAAAAAANRXp9NwAAAAAAAAANjRANAAAAAAAAUgjRAAAAAAAAIIUQDQAAAAAAAFII0QAAAAAAACCFEA0AAAAAAABSCNEAAAAAAAAghRANAAAAAAAAUgjRAAAAAAAAIIUQDQAAAAAAAFII0QAAAAAAACCFEA0AAAAAAABSCNEAAAAAAAAghRANAAAAAAAAUgjRAAAAAAAAIIUQDQAAAAAAAFII0QAAAAAAACCFEA0AAAAAAABSCNEAAAAAAAAghRANAAAAAAAAUgjRAAAAAAAAIIUQDQAAAAAAAFII0QAAAAAAACCFEA0AAAAAAABSCNEAAAAAAAAghRANAAAAAAAAUgjRAAAAAAAAIIUQDQAAAAAAAFII0QAAAAAAACCFEA0AAAAAAABSCNEAAAAAAAAghRANAAAAAAAAUtR7iPb888/H1q1b67sNAAAAAAAASMis7waefvrpePbZZ+PUU0+N0aNHx2c+85lIT6/3bA8AAAAAAIBPsXoP0SIiiouL4/3334/3338/WrduHSNGjIjzzjsvOnToUN+tAQAAAAAA8CnUIEK00rZv3x4vvvhivPjii9GvX78YNWpUDBkyJDIzG1yrAAAAAAAAHKPqPZn6wQ9+EJMmTYr3338/iouLkz5bsGBBLFiwIFq0aBHnnHNOjBw5Mrp161ZPnQIAAAAAAPBpUe8h2uDBg2Pw4MGxffv2mDRpUkyZMiU2bdqUNGf37t3x2muvxWuvvRa9evWKUaNGxdChQ6NJkyb11DUAAAAAAADHsnoP0Q5p3bp1XHXVVXHVVVfF/PnzY9KkSTF79uwoKChImrds2bJYtmxZPP744zF06NAYOXJk9O7du566BgAAAAAA4FjUYEK00vr37x/9+/ePPXv2xLRp02Ly5MmxatWqpDn5+fkxadKkmDRpUnTt2jVGjRoV55xzTrRo0aKeugYAAAAAAOBY0SBDtEOaN28eF110UVx00UXx8ccfx8SJE2PmzJmxb9++pHlr1qyJxx57LCZMmBBnnnlmjBw5Mvr3719PXQMAAAAAAHC0a9AhWmknnnhinHjiiXHTTTfF22+/HZMmTYrFixcnzSkoKIi33nor3nrrrTj++ONj5MiRMWLEiGjdunX9NA0AAAAAAMBR6agJ0Q5p3LhxjBgxIkaMGBHr16+PiRMnxtSpU2PXrl1J8zZt2hRPPvlkPPPMMzF48OC48MILo2/fvvXUNQAAAAAAAEeToy5EK23Hjh2xY8eO2L9/f4VzioqKYtasWTFr1qzo169ffPWrX40uXbp8gl0CAAAAAABwtDnqQrTt27fH1KlTY/LkybFhw4Zy5zRr1iwaNWoU27dvTzq/YMGCuOuuu+LrX/96nHvuuZ9AtwAAAAAAAByNjooQraSkJN5///2YOHFivP/++1FUVFTuvN69e8fo0aNj6NChkZmZmbjmn//8Z5SUlERERGFhYYwbNy66du0aPXv2/CS/DAAAAAAAAI4SDTpE27x5c0yaNCmmTp0aW7duLXdOs2bN4pxzzonRo0dHt27dkj47/fTT4/TTT48NGzbEE088Ef/85z8jIqK4uDheeeWVuOOOO4741wAAAAAAAMDRp8GFaIWFhfHOO+/EpEmTYuHChYkVZKl69eoVo0ePjmHDhkWjRo0qrdmxY8e466674uc//3m8//77EXFwa0cAAAAAAAAoT4MJ0VatWhUTJ06MGTNmxJ49e8qd07Rp08Sqs+7du9f4HhdffHEiRNuxY8dh9QsAAAAAAMCxq95DtDfffDMmTZoUy5cvr3BOr169YtSoUTFs2LBo3Lhxre913HHHJY4req8aAAAAAAAA1HuI9uijj5Z7vmnTpnH22WfH6NGjo0ePHnVyr4yMjDqpAwAAAAAAwLGt3kO0VCeeeGLiXWeHs+qsPE2aNInhw4fXaU0AAAAAAACOPQ0iRGvSpEmcffbZcf7559fZqrPytGzZMm6//fYjVh8AAAAAAIBjQ72HaLfeemsMGzYsmjRpUt+tAAAAAAAAQEQ0gBBt1KhR9d0CAAAAAAAAJEmv7wYAAAAAAACgoRGiAQAAAAAAQIp6387x448/jocffjgiItLT0+Nf//VfIzs7u0Y1duzYET//+c+juLg4IiK++c1vRrdu3eq8VwAAAAAAAD4d6n0l2htvvBErV66MlStXRvv27WscoEVEtGrVKnJychJ13njjjSPQKQAAAAAAAJ8W9RqilZSUxJw5cxLjESNG1LrWyJEjE8fvvvvu4bQFAAAAAADAp1y9hmhr166NXbt2RUREVlZWDBw4sNa1Bg4cGJmZB3en3L59e6xbt65OegQAAAAAAODTp15DtDVr1iSOu3XrlgjBaiMzMzO6d+9ebm0AAAAAAACoidqnVnVg27ZtieO2bdsedr22bdvGxx9/HBERW7duPex6qaZMmRK//e1va3TNyJEj47bbbqvW3Hnz5sXUqVNj6dKlsXXr1sjMzIycnJw49dRTY+TIkdG5c+ca97x27dqYPHlyzJ07N/Ly8qKwsDDatm0bvXv3juHDh8eAAQNqXHPnzp0xZcqUmD17dmzevDn27NkTrVq1iq5du8awYcNi6NChhxWIAgAAAAAA1Ld6TTr279+fOG7cuPFh12vUqFHiOD8//7DrfVL27t0bDz/8cMycOTPp/P79+2PPnj2xevXqePXVV+O6666LK6+8stp1n3/++Xj22WejqKgo6fyGDRtiw4YNMW3atBg2bFjceuut0bRp02rVnDNnTowbNy527tyZdD43Nzdyc3Pj/fffj1deeSXGjh0bnTp1qnavAAAAAAAADUm9hmjNmzdPHB96N9rh2L17d+K4SZMmh12vMp07d47+/ftXOe+kk06q9PPCwsK4//77Y/78+YlzXbt2jZ49e0ZBQUF89NFHsW3btigqKoonn3wyioqK4pprrqnyvk8//XQ899xziXGbNm3i5JNPjqysrFixYkViu8u33nordu/eHT/84Q8jIyOj0ppz586N+++/PxHKNW7cOPr37x/Z2dmxadOmWLRoUZSUlMSKFSvinnvuiXvvvbdOVhgCAAAAAAB80uo1RMvOzk4cr1q16rDrla5RuvaR0KtXr7jlllsOu85zzz2XCNCysrLi9ttvj2HDhiU+LywsjKeeeir++te/RkTEs88+G3379o2+fftWWHPevHlJAdpll10WN9xwQ9IWizNmzIhx48ZFQUFBzJ07N1544YVKw7ldu3bFAw88kAjQBgwYEGPHjk36dV65cmX84he/iNzc3MjLy4sHH3wwfvzjH9fwVwQAAAAAAKD+pdfnzXv06JE43r59eyxdurTWtZYsWRLbt29PjLt27XoYnX0yduzYEX/7298S45tvvjkpQIuIyMzMjDFjxsTQoUMjIqKkpCT+/Oc/V1q39OdDhw6NMWPGlHlH2dlnnx033XRTYvzyyy+X2aKxtJdeein27NkTERHHH3983HnnnWWCyh49esRdd92VWNE2f/78mDt3bqW9AgAAAAAANET1GqJ17NgxcnJyEuOqwqHKPPXUU4nj1q1bR/fu3Q+rt0/C1KlTE++F69ixY4wePbrCuWPGjIm0tLSIOBgYrlixotx5y5Yti48//jgiItLS0mLMmDEV1jz//POjY8eOERGxb9++mDZtWrnzCgsLY+LEiYnx9ddfX+E77Lp37x7Dhw9PjF9//fUK7w8AAAAAANBQ1WuIFhFx7rnnJo4XLlwY48ePr3GNxx9/PBYsWJAYn3POOXXS25H27rvvJo5HjBiRCMnK065du6R3sM2ePbvKmgMHDox27dpVWDMtLS0p8Cp9bWkLFy5MrEJr2rRpDBkypMKaEQe/lkPmzp0b+fn5lc4HAAAAAABoaOo9RLvsssuiWbNmifHf//73uOeee2L16tVVXrtmzZq4995749VXX02ca9q0aVxxxRVHotU6deDAgViyZEli3K9fvyqvKT3n0HvUUpUOEyt7b1p5NRcvXhwFBQVl5pS+V58+fSIrK6vSmr169UqsVCsoKEj6OgEAAAAAAI4GmVVPObKaNWsW3/jGN+KXv/xl4tz8+fPjBz/4QfTq1StOPvnk6Ny5czRv3jzS0tJiz549sW7duli0aFEsW7YsqVZaWlrcdttt0aJFiyPe9549e+Ltt9+ONWvWxN69e6NZs2bRpk2b6NOnT3Tr1q3SVWUREevXr4+SkpJE36XfD1eRE044IXG8bt26cueUPt+zZ88qa5aeU1xcHBs2bIhu3bodVs3MzMzo1q1b4h1369ati4EDB1Z5HQAAAAAAQENR7yFaRMSZZ54ZX/7yl+OPf/xjIliKOPh+r9SgrCJpaWlx4403xmc/+9kj1WaS9957L957771yP+vYsWNcfvnlcd5551UYpq1fvz5xnJ2dHY0aNarynqW3Zty9e3fs3LkzsrOzE+d27NiR2HYxIqJ9+/ZV1mzUqFFkZ2fHzp07I+Jg4JUaopXutbLtIUvLyclJCtEAAAAAAACOJg0iRIuI+PznPx+dO3eOhx56KBHoVFerVq3ijjvuaDCrnTZs2BC/+93vYvbs2fGd73wnmjRpUmbO7t27E8etW7euVt3Uebt3704K0Xbt2pX0eatWrapd99Cveem+6qrX8mpWJS8vr1r3yMjIiIiI9PTq7Uxael51r4FjmecA+KSlp6f72QN1zN9xoeHyfELD5fmEhsvzSUPSYEK0iIhBgwbFQw89FP/4xz9i4sSJsXbt2krnd+3aNUaPHh0jR46s1kquutCuXbv47Gc/GwMGDIhu3bpFdnZ2FBcXR15eXsyfPz9ee+21xMqrf/7zn/E///M/8f3vf7/Mw56fn584rm7vqfNK1yhvXJu6qTVSz9VVzap84xvfqHLOuHHjIicnJzIyMqJDhw41vsdxxx1X42vgWFOdwBqgLrVr165Wf24D1ePvuNBweT6h4fJ8QsPl+aS+NagQLeJg+HLxxRfHxRdfHDt37oxly5bF9u3bE6usWrRoEa1bt47evXsnrcL6JJxxxhlx7rnnlpt+d+rUKTp16hQjR46Mhx9+OKZMmRIRB7d9nDFjRpx77rlJ8w8cOJA4zsys3m9D6rzSNSIiCgoKKp1fkaysrAprpp6rTc3UvgAAAAAAABq6BheilZadnR2f+cxn6ruNhObNm1c5JzMzM2677bbYtGlTLFq0KCIiXnrppTIhWumVWoWFhdW6f+q81FVhpYOrQ/Ors3KsdMhV3vxGjRrF/v37a9Rr6ZqpfVXHuHHjqpxzaMvIoqKi2LJlS7XqpqenJ/7vhc2bN0dxcXGNe4NjSW5ubn23AHzK5ObmxsaNG+u7DTim+DsuNFyeT2i4PJ/QcHk+ORzt27dPvAaqLjToEO1olZ6eHtdcc03cc889ERGxZs2ayMvLi5ycnMSc0u9JK2/1V3lS56W+ay11fODAgWqFaKXrlvf+tiZNmiRCtNr0Wl7NqpT+taqO2vwgLS4u9gOYTz3PAPBJ8+cvHFmeMWi4PJ/QcHk+oeHyfFLfvJXvCDnllFOS0s5D70k7pEWLFonj7du3V6tm6rzSNSIiWrZsmTTesWNHjeum1kw9V5tey6sJAAAAAADQkAnRjpDMzMykd7bt3Lkz6fNOnTolfVadFV6lt11r0aJFmXfCtWrVKmnLyepscXjgwIGk3jp37lxmTuleq7v1W15eXqU1AQAAAAAAGjIh2hGUn5+fOE7d0rBTp06RlpYWERElJSWxcuXKKustX748cVxRMFX6fHVqrlixInGcnp4eHTt2rLRm6fkVKSoqitWrV1fZKwAAAAAAQEPVoN6JVlJSEnPnzo2FCxfGqlWrYufOnbF3794oKiqqUZ20tLT4zW9+c4S6rJ5NmzbFvn37EuM2bdokfd6oUaPo06dPLF68OCIiFi5cGH369Km05qJFixLH/fv3L3dOv379YsmSJRERsWDBgrjiiisqrblw4cLE8UknnRRZWVll5vTv3z9efPHFiIhYsmRJFBYWRmZmxd86H3/8ceIdallZWVV+XQAAAAAAAA1NgwnRZsyYERMmTIitW7fWdyt1YvLkyYnjZs2aRY8ePcrMOeOMMxIh2pQpUyoNvHJzc2PevHlJ15bnjDPOiBdeeCEiIubNmxd5eXmRk5NTYd0pU6ZUWbNv377RrFmz2Lt3b+zbty9mzZoVw4YNq1bNgQMHllmFBwAAAAAA0NA1iO0cH3/88fjNb37ToAO00lszVmXx4sXx8ssvJ8ZDhw6NjIyMMvOGDx8ejRs3joiI9evXx8SJEyusOWHChCguLo6IiD59+sQJJ5xQ7rxevXrFiSeeGBERxcXFMWHChApr/uMf/4gNGzZERETTpk3j3HPPLXdeZmZmjBo1KjF+5plnKnyH2+rVq5NCtAsuuKDC+wMAAAAAADRU9b4Sbdq0afHqq6+WOZ+ZmRkdOnSIZs2aVbp14CflnXfeiddffz0uvPDCOOOMM6JZs2Zl5hw4cCD+8Y9/xJ///OcoKCiIiIjmzZvHtddeW27NVq1axSWXXBLPPfdcRESMHz8+mjZtGkOHDk3MKSwsjKeffjreeuutxLkvfvGLlfb6xS9+Me65556IOLjCLycnJ66//vqkX8eZM2fGY489lhhfeumlkZ2dXWHNK664IiZNmhR79uyJDRs2xC9+8YsYO3ZstGzZMjFn1apV8Ytf/CIKCwsj4uDWkoMGDaq0VwAAAAAAgIao3tOpJ598Mml80kknxTXXXBP9+/eP9PQGsVAu4eOPP46HHnooMjIyolOnTtG5c+do3rx5FBcXx9atW2PJkiVJ70Fr1KhR/OAHPyjzPrTSrr766li8eHHMnz8/Dhw4EA888EA8//zz0bNnzygoKIhFixbFtm3bEvOvu+666Nu3b6V9DhgwIK666qp4/vnnIyLipZdeimnTpsUpp5wSWVlZsXz58lizZk1i/sCBA+PKK6+stGbLli1j7Nixcd9990VRUVF8+OGHcfvtt8eAAQMiOzs7Nm3aFAsXLoySkpKIiGjbtm1861vfqrQmAAAAAABAQ1WvIdry5cuTtnA866yzYuzYsZGWllaPXVWtqKgo1qxZkxREperVq1fcfvvt0aVLl0prZWZmxve///34/e9/H2+//XZEHNwScfXq1UnzMjIy4tprr42rrrqqWj1ef/31kZWVFX/5y1+iqKgotm3bFjNnziwzb+jQoXHrrbeWu91kqkGDBsX3vve9GDduXOzatSv2798f7733Xpl5PXv2jLFjx0bbtm2r1SsAAAAAAEBDU68h2sqVKxPHjRo1iq997WsNNkAbNmxYdOzYMRYvXhxLly6NTZs2xa5du2LXrl1RUlISzZo1i+OOOy569+4dn/3sZ+Pkk0+udu1mzZrFd7/73Rg1alRMnTo1lixZEtu3b4+MjIzIycmJU089NUaOHFllIFdaWlpaXH311TFkyJCYNGlSzJ07N/Ly8qKoqChat24dffr0ieHDh8fAgQNr9OswePDg+NWvfhWTJ0+O2bNnx+bNm2PPnj3RqlWr6Nq1awwbNiyGDRvWILbgBAAAAAAAqK16TTp27tyZOO7Tp080b968HrupXFZWVpx00klx0kknHbF7DBw4sMahVlW6dOkSX/7yl+u0ZnZ2dlx++eVx+eWX12ldAAAAAACAhqJeXzrWrFmzxHHr1q3rrxEAAAAAAAAopV5DtJycnMTxvn376rETAAAAAAAA+P/Va4h28sknR1ZWVkQkvx8NAAAAAAAA6lO9hmjNmzePIUOGREREXl5eLFy4sD7bAQAAAAAAgIio5xAtIuLGG2+M7OzsiIh47LHHIj8/v547AgAAAAAA4NOu3kO01q1bx3e/+91o2rRprFq1Ku69997Izc2t77YAAAAAAAD4FMus7wZyc3PjuOOOi7Fjx8aDDz4YS5Ysie985ztx1llnxaBBg6Jz587RrFmzSE+vWd7Xrl27I9QxAAAAAAAAx7p6D9G++c1vljlXUFAQ06ZNi2nTptWqZlpaWjz11FOH2xoAAAAAAACfUvW+neORUFJSUt8tAAAAAAAAcBQ7JkM0AAAAAAAAOBz1vp3jNddcU98tAAAAAAAAQJJ6D9Guvfba+m4BAAAAAAAAktjOEQAAAAAAAFII0QAAAAAAACCFEA0AAAAAAABSCNEAAAAAAAAgRWZ9N1CeAwcOxEcffRSLFy+OLVu2xO7duyM/Pz8iIn784x/Xc3cAAAAAAAAc6xpUiLZ79+548cUXY9KkSbFnz55qXzdjxoz44x//GBERLVq0iP/3//5fpKdbZAcAAAAAAEDtNJikaf78+fH9738/Xn755RoFaBERZ555ZhQWFsb27dtj7dq1MWfOnCPUJQAAAAAAAJ8GDSJEW7BgQfz85z+Pbdu2JZ3PyMiIli1bVnl9o0aNYtiwYYnxO++8U+c9AgAAAAAA8OlR79s57ty5M+6///4oKChInBsyZEhcfPHF0atXr9i6dWt861vfqrLOmWeeGa+//npERMybN++I9QsAAAAAAMCxr95DtGeffTb27t0bERFpaWlx2223xYgRIxKfp6WlVavOySefHOnp6VFcXBw7duyIzZs3x3HHHXckWgYAAAAAAOAYV6/bORYVFcW0adMS48svvzwpQKuJzMzM6Ny5c2K8du3aw20PAAAAAACAT6l6DdEWL14c+fn5ERGRlZUVV1555WHVy8nJSRzn5eUdVi0AAAAAAAA+veo1RNu0aVPiuHfv3tGkSZPDqtesWbPE8b59+w6rFgAAAAAAAJ9e9Rqi7dixI3Hcpk2bw65XUlKSOC4uLj7segAAAAAAAHw61WuI1qhRo8TxgQMHDrverl27EsctW7Y87HoAAAAAAAB8OtVriJadnZ043rJly2HXW7lyZeK4VatWh10PAAAAAACAT6d6DdG6dOmSOF69enXs3Lmz1rUWL14cu3fvTox79+59WL0BAAAAAADw6VWvIVqPHj2idevWEXHwHWZ/+9vfal3r+eefTxx369bNSjQAAAAAAABqrV5DtIiIc845J3H88ssvx4cffljjGn/729/igw8+SIxHjx5dF60BAAAAAADwKVXvIdqVV14ZzZo1i4iDq9Huu+++ePnll6OoqKjKa3fv3h1/+MMf4o9//GPiXNu2bWPUqFFHrF8AAAAAAACOfZn13UDz5s3jG9/4Rvz3f/93lJSURGFhYfzpT3+Kl156KU4//fRo27Zt0vw333wzdu3aFUuXLo0FCxbE/v37E59lZmbG2LFjIzOz3r8sAAAAAAAAjmINIm0688wz45Zbbok//OEPUVxcHBERu3btiilTppSZ++ijj5ZbIyMjI2699dY4+eSTj2SrAAAAAAAAfAo0iBAtIuL888+Prl27xm9+85vIzc2t0bVt2rSJsWPHximnnHKEugMAAAAAAODTpMGEaBERJ598cvz617+O6dOnx5tvvhnLly+PkpKSCud36dIlRo8eHaNHj46srKxPsFMAAAAAAACOZQ0qRIs4+F6z8847L84777zYt29fLF26NPLy8mL37t1RVFQULVq0iOzs7Ojdu3e0adOmvtsFAAAAAADgGNTgQrTSmjZtGgMHDqzvNgAAAAAAAPiUSa/vBgAAAAAAAKChEaIBAAAAAABACiEaAAAAAAAApBCiAQAAAAAAQIrM+m7gt7/9bZ3XTEtLi2984xt1XhcAAAAAAIBPh3oP0aZOnXpE6grRAAAAAAAAqC3bOQIAAAAAAEAKIRoAAAAAAACkqPftHJ9++ukazS8pKYk9e/bE2rVr44MPPoiJEyfGzp07o3nz5nH77bfH4MGDj1CnAAAAAAAAfFocdSvR0tLSokWLFnHyySfHDTfcEA888EB85jOfiT179sQvf/nLmD59en23CAAAAAAAwFHuqAvRUjVv3jy+973vRZ8+faK4uDh+97vfxcqVK+u7LQAAAAAAAI5iR32IFhGRmZkZX/nKVyIiorCwsMZbRAIAAAAAAEBpx0SIFhFxwgknRIcOHSIi4oMPPoht27bVc0cAAAAAAAAcrY6ZEC0iokuXLhERUVxcHEuXLq3nbgAAAAAAADhaHVMhWuPGjRPHubm59dgJAAAAAAAAR7NjKkTLy8tLHBcWFtZjJwAAAAAAABzNjpkQbevWrUlbOGZnZ9djNwAAAAAAABzNjokQrbCwMH77299GUVFR4lyvXr3qsSMAAAAAAACOZpn13cDh2Lp1a3zwwQfx17/+NTZs2JA437Vr1+jSpUs9dgYAAAAAAMDRrN5DtDvuuKPG1xQVFcXevXsjPz+/zGdpaWkxZsyYumgNAAAAAACAT6l6D9G2bNlSp/VuuummGDRoUJ3WBAAAAAAA4NOl3kO0utK7d+8YM2ZMnHzyyfXdCgAAAAAAAEe5eg/RTjnllEhLS6vRNenp6dG0adPIzs6OHj16RL9+/aJz585HqEMAAAAAAAA+beo9RPvJT35S3y0AAAAAAABAknoP0Y4ljz/+eLzyyiuJcfv27eOhhx6q9vXz5s2LqVOnxtKlS2Pr1q2RmZkZOTk5ceqpp8bIkSNrtdpu7dq1MXny5Jg7d27k5eVFYWFhtG3bNnr37h3Dhw+PAQMG1Ljmzp07Y8qUKTF79uzYvHlz7NmzJ1q1avX/tXfnUVbWd57437WxUyCLCCKIIho2NWo0YAshSZtMJ+5LH49ZZhydDh11Mul0Fn9mkknSdmztGJOIHbsnbeaYmBhNG1udbAi0aDQaQ1gUREBQECj2raC23x8e7lRdasXCKuT1Osdznue5n+dzv1XWt+6l3vf5PjnuuOMyderUTJkyJeXlfrQAAAAAAIDDl6SjkyxfvjyPPfbYQZ27e/fufP/7389TTz3V5PjevXuza9eurF69Oo899liuuOKKXHzxxe3u+9BDD+WBBx5IXV1dk+Pr1q3LunXrMm/evEydOjXXXXddevfu3a6ezz//fGbNmpXt27c3OV5VVZWqqqq88MILefTRR3PjjTdmxIgR7R4rAAAAAABAdyJE6wS1tbW5++6709DQcFDn3nbbbVm0aFHh2HHHHZcxY8akpqYmL730UrZs2ZK6urr8+Mc/Tl1dXS677LI2+/7kJz/Jgw8+WNg/6qijcsopp6SioiIrV67MmjVrkiTz58/Pzp0784UvfCFlZWWt9lywYEFuu+22QijXs2fPTJw4MZWVlVm/fn1efPHFNDQ0ZOXKlfna176Wb3zjGxk0aFCHvycAAAAAAABdTYjWCR5++OGsXr06SXLuuefmySefbPe5Dz74YCFAq6ioyMyZMzN16tTC47W1tbn//vvzi1/8IknywAMPZPz48Rk/fnyLPRcuXNgkQLvgggvyl3/5l02WWHzyyScza9as1NTUZMGCBfn5z3/eaji3Y8eO3HHHHYUAbdKkSbnxxhtTWVlZqFm1alVuvfXWVFVVZdOmTfnud7+bL3/5y+3+XgAAAAAAAHQXpV09gMPd66+/noceeijJmwHa5MmT233utm3b8u///u+F/U9+8pNNArQkKS8vz9VXX50pU6YkSRoaGvKjH/2o1b6NH58yZUquvvrqA+5Rdu655+YTn/hEYf+RRx45YInGxh5++OHs2rUrSTJs2LD87d/+bZMALUmOP/74fP7zny9c0bZo0aIsWLCg1bECAAAAAAB0R11+JdqSJUu67Llbu5qrPRoaGnL33XenpqYmffv2zSc+8Ym88MIL7T5/7ty52bt3b5Jk+PDh+cAHPtBi7dVXX52nn346DQ0NWbZsWVauXJkxY8YcULd8+fK88sorSZKSkpJcffXVLfb84Ac/mEcffTTr1q3Lnj17Mm/evHzkIx85oK62tja//e1vC/tXXnllevbs2WzP0aNHZ9q0aZk9e3aS5Je//GVOPfXUFscAAAAAAADQHXV5iPbVr361S563pKQk999//1vq8atf/SpLly5NknzsYx/LgAEDOnT+73//+8L29OnTU1JS0mLtkCFDMnHixCxcuDBJ8uyzzzYbojXuOXny5AwZMqTFniUlJZk2bVrh+/D73/++2RBtyZIlhavQevfunbPPPrvVr2v69OmFEG3BggWprq5Or169Wj0HAAAAAACgOzlil3NsaGh4S+dXVVUVlk1817velfe9730dOn/fvn1ZtmxZYX/ChAltntO4Zv991IotXry4sN2eK+0a91y6dGlqamoOqGn8XOPGjUtFRUWrPceOHVu4Uq2mpqbJ1wkAAAAAAHA4OGJDtLfqn//5n7Nnz56Ul5fn2muvbfUqsuasXbu2EOSVlJTk+OOPb/OcE044obD9+uuvN1vT+HhzV6oVa1xTX1+fdevWveWe5eXlGTVqVJtjBQAAAAAA6K66fDnHT33qU0mS7du359/+7d8KywYmyfHHH58TTzwxxxxzTPr06ZMk2b17d95444288sorWbVqVaG2b9++ufjii9O/f/9DPub58+fnD3/4Q5LkwgsvzMiRIzvcY+3atYXtysrK9OjRo81zGi/NuHPnzmzfvj2VlZWFY9u2bWvy/Rs6dGibPXv06JHKysps3749yZuBV+MArHisrS0P2djgwYPz8ssvF3oCAAAAAAAcTro8RJs+fXpWr16dW265pRAAnXvuubnssssyfPjwVs9dt25dHnjggcyfPz+7du3Ko48+mi9+8YsZPXr0IRvvjh078oMf/CBJMnz48FxyySUH1Wfnzp2F7YEDB7brnOK6nTt3NgnRduzY0eTx9t6jbeDAgYUQrfG4OmuszfVsy6ZNm9r1HGVlZUmS0tL2XVTZuK6958A7mXkAvN1KS0v97oFO5j0udF/mJ3Rf5id0X+Yn3UmXh2jbtm3LN77xjWzdujVlZWWZOXNmzj333HadO3z48Nxwww1597vfnbvuuitbtmzJ3/3d3+Wb3/xmu8Oejrr33nsLgdO1117b5v3BWlJdXV3Ybs9VaM3VNe7R3P7B9C3uUXyss3q2Zf8Viq2ZNWtWBg8enLKyshxzzDEdfo6jjz66w+fAO017AmuAzjRkyJCDet0G2sd7XOi+zE/ovsxP6L7MT7pal8e4P/nJT7J169YkyaWXXtruAK2xc889t3BF2NatW3P//fd35hALFixYkHnz5iVJpk2blokTJx50r3379hW2y8vbl2UW1zXukSQ1NTWt1rekcRBY3LP42MH0LB4XAAAAAABAd9elV6JVV1dn/vz5SZJevXrlox/96EH3uuCCC/LII4+kuro6Tz31VD75yU+mV69enTXUVFdX5/vf/36SpH///vnYxz72lvo1vlKrtra2XecU1xVfFVZ8VVxtbW27rhxrHHI1V9+jR4/s3bu3Q2Nt3PNgrtabNWtWmzX7rzasq6vLxo0b29W3tLS08OmFDRs2pL6+vsNjg3eSqqqqrh4CcISpqqrKG2+80dXDgHcU73Gh+zI/ofsyP6H7Mj95K4YOHVq4DVRn6NIQ7aWXXios9XfSSSe1e6nA5vTo0SPjxo3Ln/70p+zduzcvvvhiTj/99M4aau6///5CUPOxj32syb3IDkbjgK+5q7+aU1xXHBIW7+/bt69d39PGfZsLHnv16lUI0Q5mrAcTZg4ePLhD9Qfzi7S+vt4vYI545gDwdvP6C4eWOQbdl/kJ3Zf5Cd2X+UlX69LlHBtfAfFWQ6nkzSvE9uvM+/ysWLEijz/+eJJkwoQJmT59+lvu2a9fv8L2/uUs21Jc17hH0vTrT96831xH+xb3LD52MGNtricAAAAAAEB31qVXou3cubOwvWPHjrfcr3GPxr3fqtWrV6ehoSHJm8HfTTfd1GLt9u3bC9tbtmxpUnvppZfm3e9+d5JkxIgRTc5pz1VjjUPHfv36HRA8DhgwIH379s2uXbuSJBs3bsyxxx7bas99+/Y1GXNz9SNGjMjrr79+wBha0zjEbGsMAAAAAAAA3U2XhmgDBgwobC9btiw1NTUHdf+s5M0waNmyZc327kzr16/P+vXr21VbW1ubl19+ubDfOKwaMWJESkpK0tDQkIaGhqxatSrjxo1rtd+KFSsK2y0FU8cee2zh+7Bq1aqcdtpprfZcuXJlYbu0tDTDhw9vtufvf//7A+pbUldXl9WrV7c5VgAAAAAAgO6qS5dzHDlyZGG7uro6jz766EH3evTRRwv3Vyvu3R3tv4fbfkuWLGnznBdffLGwPXHixGZrJkyYUNhevHhxmz0bP+/JJ5/cbIjZ+LmWLVuW2traVnu+8sorhXuoVVRUtBkOAgAAAAAAdDddeiXaSSedlCFDhhSWCHzggQdyzDHH5JxzzulQn9/97nd54IEHCvtDhgzJSSed1GnjnD59ervvgzZnzpzcddddSZKhQ4fme9/7Xou1Z511VpYuXVo476KLLmqxtqqqKgsXLmxybks9f/7znydJFi5cmE2bNmXw4MGtjretnuPHj0+fPn2ye/fu7NmzJ88880ymTp3arp6TJ09Or169WqwFAAAAAADojrr0SrTkzfuE7VdbW5s77rgjs2bNyoYNG9o8d/369bnrrrtyxx13pK6urnD8sssuOyRj7WzTpk1Lz549kyRr167Nb3/72xZr77vvvtTX1ydJxo0blxNOOKHZurFjx+bEE09MktTX1+e+++5rsedvfvObrFu3LknSu3fvnHfeec3WlZeX5/3vf39h/6c//Wn27dvXbO3q1aubhGjnn39+i88PAAAAAADQXXXplWhJMmPGjDz33HN5/vnnkyQNDQ2ZM2dO5syZkxNOOCEnnnhihg0blt69eydJ9uzZk/Xr1+eVV15pco+w/c4444y8733ve1u/hoM1YMCAfOQjH8mDDz6YJPnBD36Q3r17Z8qUKYWa2tra/OQnP8n8+fMLx6666qpW+1511VX52te+liR58sknM3jw4Fx55ZUpL/9//7ufeuqp/Ou//mth/6Mf/WgqKytb7HnRRRdl9uzZ2bVrV9atW5dbb701N954Y/r371+oefXVV3PrrbcWlnucMGFCm/dkAwAAAAAA6I66PERLkv/xP/5HvvWtb+W5555rcnzFihXNBmUtOfPMM/OZz3yms4d3SF166aVZunRpFi1alH379uWOO+7IQw89lDFjxqSmpiYvvvhitmzZUqi/4oorMn78+FZ7Tpo0KZdcckkeeuihJMnDDz+cefPm5V3velcqKiqyYsWKrFmzplA/efLkXHzxxa327N+/f2688cZ885vfTF1dXf70pz9l5syZmTRpUiorK7N+/fosWbIkDQ0NSZJBgwbl+uuvP9hvCwAAAAAAQJfqFiFaeXl5Pve5z+VXv/pVfvzjH2f37t0dOr9Pnz656qqr8sEPfvAQjfDQKS8vz9/8zd/kn/7pn/L0008neXNJxNWrVzepKysry+WXX55LLrmkXX2vvPLKVFRU5Gc/+1nq6uqyZcuWPPXUUwfUTZkyJdddd13Kysra7Hnaaafls5/9bGbNmpUdO3Zk7969BwSfSTJmzJjceOONGTRoULvGCgAAAAAA0N10ixBtvz//8z/Pueeem3nz5mX+/PlZsWJFYWnAYuXl5TnhhBNy7rnn5s/+7M/Sp0+ft3m0nadPnz75zGc+k/e///2ZO3duli1blq1bt6asrCyDBw/OqaeemhkzZmTkyJHt7llSUpJLL700Z599dmbPnp0FCxZk06ZNqaury8CBAzNu3LhMmzYtkydP7tBYzzzzzHzrW9/KE088kWeffTYbNmzIrl27MmDAgBx33HGZOnVqpk6d2mTpSAAAAAAAgMNNt0s6+vTpkw996EP50Ic+lNra2rz22mvZunVr4eq0Pn36ZODAgRk5cmS3DGqmT5+e6dOnH9S5kydP7nCo1ZaRI0fm4x//eKf2rKyszIUXXpgLL7ywU/sCAAAAAAB0F90vhWqkvLw8xx9/fFcPAwAAAAAAgCNMaVcPAAAAAAAAALobIRoAAAAAAAAU6dbLOdbW1mbLli3ZuXNnqqur09DQkPHjx3f1sAAAAAAAAHiH63Yh2s6dO/Ob3/wmzz//fFasWJHa2trCYyUlJbn//vsPOGfFihVZsWJFkqRPnz6ZMmXK2zZeAAAAAAAA3nm6VYj2b//2b3nwwQezb9++Zh9vaGho9nhpaWnuueeeJG8GbSeddFKGDh16yMYJAAAAAADAO1u3uCdabW1t/u7v/i4//vGPWwzQWnP88cfnlFNOSfJm0DZv3rzOHiIAAAAAAABHkG4Ron3nO9/JggULmhybOHFiLrvsslx55ZXt6tF4CccXXnihU8cHAAAAAADAkaXLl3N87rnn8rvf/a6wP2rUqFx//fUZNWpUkmTjxo35yU9+0mafM844I//7f//vJMkrr7yS6urq9OrV69AMGgAAAAAAgHe0Lr8S7YEHHihsjxw5Ml/96lcLAVpHDBkyJP3790+S1NfX57XXXuu0MQIAAAAAAHBk6dIQbdOmTVm1alVh/9prr02fPn0Out/IkSML22vXrn0rQwMAAAAAAOAI1qUh2rJlywrbRx99dE455ZS31K9fv36F7Z07d76lXgAAAAAAABy5ujRE27p1a2H7YJZwLNb4Hmh79+59y/0AAAAAAAA4MnVpiNY46OrZs+db7rd79+5O7QcAAAAAAMCRqUtDtP79+xe2d+zY8Zb7VVVVNdsbAAAAAAAAOqJLQ7SjjjqqsL1y5cq31GvXrl1ZvXp1YX/48OFvqR8AAAAAAABHri4N0U455ZSUlr45hB07duSPf/zjQfd64okn0tDQkCTp06dPTjjhhM4YIgAAAAAAAEegLg3R+vTpk5NPPrmwf99996WmpqbDfaqqqvLzn/+8sH/66acXwjkAAAAAAADoqC5Pmi6++OLC9urVq3Pbbbelurq63edv3Lgxt9xyS3bu3JkkKSkpyUUXXdTZwwQAAAAAAOAIUt7VAzj11FNzxhln5Pnnn0+S/PGPf8yNN96YCy64IGeffXaL561YsSJPP/10fvWrXzUJ3WbMmJFRo0Yd8nEDAAAAAADwztXlIVqS3HDDDfnyl7+cV199NUmydevW/PCHP8wPf/jD9OrVq0ntddddl507d6auru6APmPHjs1/+S//5W0ZMwAAAAAAAO9cXb6cY5L06tUrN998c0499dQDHite2nHbtm3NBminnXZabrrpppSXd4tcEAAAAAAAgMNYt0mc+vfvny996Uv59a9/nV/84hfZsGFDu84bOHBgLrroonzoQx9KSUnJIR4lAAAAAAAAR4JuE6Lt98EPfjDvf//7s2DBgixevDhLly7Npk2bCks49uvXL5WVlTnppJMyefLknHHGGamoqOjqYQMAAAAAAPAO0u1CtCQpLS3N6aefntNPP72rhwIAAAAAAMARqEtDtJUrV2bevHmF/Y9+9KMZNGhQF44IAAAAAAAAujhEW7x4cR577LEkyaBBg/Lxj3+8K4cDAAAAAAAASZLSrnzy2trawvaoUaNSUlLShaMBAAAAAACAN3VpiDZw4MDCdt++fbtuIAAAAAAAANBIl4ZoQ4YMKWxv3769C0cCAAAAAAAA/0+XhminnHJK+vTpkyRZvnx56urqunI4AAAAAAAAkKSLQ7Ty8vJMnTo1SbJnz5488cQTXTkcAAAAAAAASNLFIVqSXHXVVYVlHe+7776sWrWqawcEAAAAAADAEa/LQ7Q+ffrkc5/7XAYPHpzdu3fnf/7P/5nHHnss+/bt6+qhAQAAAAAAcIQq7+oBzJ07N0ny4Q9/OD/72c9SXV2de++9Nz/5yU8yceLEHH/88amsrEyvXr061HfatGmHYrgAAAAAAAAcAbo8RLvrrruaPV5dXZ3nnnsuzz333EH1FaIBAAAAAABwsLp8OUcAAAAAAADoboRoAAAAAAAAUKTLl3P8n//zf3b1EAAAAAAAAKCJLg/Rxo8f39VDAAAAAAAAgCYOeYh21113FbY//vGPp1+/fof6KQEAAAAAAOAtOeQh2ty5cwvbV1xxRZshWuP6c845Jz179jxkYwMAAAAAAIDmdPlyjsUaX7k2YcIEIRoAAAAAAABvu9KuHgAAAAAAAAB0N0I0AAAAAAAAKCJEAwAAAAAAgCJCNAAAAAAAACgiRAMAAAAAAIAiQjQAAAAAAAAoIkQDAAAAAACAIkI0AAAAAAAAKCJEAwAAAAAAgCJCNAAAAAAAAChS/nY+2c0335yysrJDVr9fSUlJvvOd73T4PAAAAAAAAEje5hBt8+bNh7QeAAAAAAAAOoPlHAEAAAAAAKCIEA0AAAAAAACKHPLlHL/73e8e6qcAAAAAAACATnXIQ7ShQ4ce6qcAAAAAAACATmU5RwAAAAAAACgiRAMAAAAAAIAiQjQAAAAAAAAocsjvifZOsn379ixdujTLly/P6tWrs379+mzZsiXV1dUpKytL3759M2rUqIwfPz7Tpk3LoEGDOtR/4cKFmTt3bl5++eVs3rw55eXlGTx4cE499dTMmDEjxx57bIfH/Nprr+WJJ57IggULsmnTptTW1mbQoEE56aSTMm3atEyaNKnDPbdv3545c+bk2WefzYYNG7Jr164MGDAgxx13XKZOnZopU6akvNyPFgAAAAAAcPiSdHTAXXfdlT/84Q/NPlZXV5d9+/Zly5YtWbBgQX72s5/loosuyqWXXprS0tYv+Nu9e3e+//3v56mnnmpyfO/evdm1a1dWr16dxx57LFdccUUuvvjido/3oYceygMPPJC6uromx9etW5d169Zl3rx5mTp1aq677rr07t27XT2ff/75zJo1K9u3b29yvKqqKlVVVXnhhRfy6KOP5sYbb8yIESPaPVYAAAAAAIDuRIh2kPr375+RI0dmyJAh6dWrV/bu3Zv169dn+fLlqaurS01NTR544IGsX78+n/70p1vsU1tbm9tuuy2LFi0qHDvuuOMyZsyY1NTU5KWXXsqWLVtSV1eXH//4x6mrq8tll13W5vh+8pOf5MEHHyzsH3XUUTnllFNSUVGRlStXZs2aNUmS+fPnZ+fOnfnCF76QsrKyVnsuWLAgt912WyGU69mzZyZOnJjKysqsX78+L774YhoaGrJy5cp87Wtfyze+8Y0OX40HAAAAAADQHQjROmD8+PE544wzMmnSpBxzzDHN1mzdujX33ntv5s+fnySZN29ezjzzzJxzzjnN1j/44IOFAK2ioiIzZ87M1KlTC4/X1tbm/vvvzy9+8YskyQMPPJDx48dn/PjxLY5z4cKFTQK0Cy64IH/5l3/ZZInFJ598MrNmzUpNTU0WLFiQn//8562Gczt27Mgdd9xRCNAmTZqUG2+8MZWVlYWaVatW5dZbb01VVVU2bdqU7373u/nyl7/cYk8AAAAAAIDuqvV1BmniggsuyAc/+MEWA7QkGThwYG644YZMnDixcOzXv/51s7Xbtm3Lv//7vxf2P/nJTzYJ0JKkvLw8V199daZMmZIkaWhoyI9+9KNWx9n48SlTpuTqq68+4B5l5557bj7xiU8U9h955JEDlmhs7OGHH86uXbuSJMOGDcvf/u3fNgnQkuT444/P5z//+cIVbYsWLcqCBQtaHSsAAAAAAEB3JEQ7BEpKSjJ9+vTC/qpVq5qtmzt3bvbu3ZskGT58eD7wgQ+02PPqq69OSUlJkmTZsmVZuXJls3XLly/PK6+8UhjH1Vdf3WLPD37wgxk+fHiSZM+ePZk3b16zdbW1tfntb39b2L/yyivTs2fPZmtHjx6dadOmFfZ/+ctftvj8AAAAAAAA3ZUQ7RBpfJXWnj17mq35/e9/X9iePn16ISRrzpAhQ5pc3fbss8+22XPy5MkZMmRIiz1LSkqaBF6Nz21syZIlhavQevfunbPPPrvFnkmaBIgLFixIdXV1q/UAAAAAAADdjRDtEHnttdcK20OHDj3g8X379mXZsmWF/QkTJrTZs3HN/vuoFVu8eHFhu7X7pjXXc+nSpampqTmgpvFzjRs3LhUVFa32HDt2bOFKtZqamiZfJwAAAAAAwOFAiHYIbN68OY888khh/5xzzjmgZu3atWloaEjy5hVhxx9/fJt9TzjhhML266+/3mxN4+Njxoxps2fjmvr6+qxbt+4t9ywvL8+oUaPaHCsAAAAAAEB3JUTrJHv37s1rr72WRx55JJ///OezZcuWJMmxxx6biy666ID6tWvXFrYrKyvTo0ePNp+j8dKMO3fuzPbt25s8vm3btsKyi0nzV8AV69GjR5OlJ5sLvBqPtbXlIRsbPHhwqz0BAAAAAAC6s/KuHsDh6qWXXsqXv/zlVmtOP/303HDDDendu/cBj+3cubOwPXDgwHY9Z3Hdzp07mwRgO3bsaPL4gAED2t13fyDXeFydNdbmerZl06ZN7XqOsrKyJElpafvy4MZ17T0H3snMA+DtVlpa6ncPdDLvcaH7Mj+h+zI/ofsyP+lOhGiHQN++ffNf/+t/zdSpU1usqa6uLmy35yq05uoa92hu/2D6FvcoPtZZPdvyqU99qs2aWbNmZfDgwSkrK8sxxxzT4ec4+uijO3wOvNO0J7AG6ExDhgw5qNdtoH28x4Xuy/yE7sv8hO7L/KSrCdEO0lFHHZXzzz8/SdLQ0JDq6uqsXbs2K1euzK5du/Ltb387v/nNb3LttddmxIgRB5y/b9++wnZ5efv+NxTXNe6RJDU1Na3Wt6SioqLFnsXHDqZn8bgAAAAAAAC6OyHaQRo2bFiuueaaA45v3rw5999/f+bMmZPFixfnpptuyle+8pWMHj26SV3jK7Vqa2vb9ZzFdcVXhTUOrvbXt+fKscYhV3P1PXr0yN69ezs01sY9i8fVHrNmzWqzZv+SkXV1ddm4cWO7+paWlhY+vbBhw4bU19d3eGzwTlJVVdXVQwCOMFVVVXnjjTe6ehjwjuI9LnRf5id0X+YndF/mJ2/F0KFDC7eB6gxCtE42aNCgzJw5M717987jjz+eXbt25Y477sjtt9/eZP3WXr16Fbabu/qrOcV1jXs0t79v3752hWiN+xb32H9sf4h2MGNtrmdbBg8e3KH6g/lFWl9f7xcwRzxzAHi7ef2FQ8scg+7L/ITuy/yE7sv8pKu5K98hctVVV6V3795Jktdffz0vvPBCk8f79etX2N66dWu7ehbXNe6RJP3792+yv23btg73Le5ZfOxgxtpcTwAAAAAAgO5MiHaI9OzZMyeffHJhf+nSpU0eb3yftO3bt7frCq/Gy67169cvlZWVTR4fMGBA+vbtW9hvzxKH+/bty/bt2wv7xx577AE1jcfa3qXfNm3a1GpPAAAAAACA7kyIdgg1DrR27NjR5LERI0akpKQkSdLQ0JBVq1a12W/FihWF7ZaCqcbH29Nz5cqVhe3S0tIMHz681Z6N61tSV1eX1atXtzlWAAAAAACA7kqIdgi1tqRhjx49Mm7cuML+kiVL2uz34osvFrYnTpzYbM2ECRMK24sXL26zZ+PnPfnkk1NRUXFATePnWrZsWWpra1vt+corrxTuoVZRUdHk6wQAAAAAADgcCNEOkR07dmTZsmWF/eauxjrrrLMK23PmzGm1X1VVVRYuXNjsuS31XLhwYZNlFZvT+Hlb6jl+/Pj06dMnSbJnz54888wz7e45efLk9OrVq9V6AAAAAACA7kaI1k47d+5sd219fX3+5V/+JTU1NUnevBrrjDPOOKBu2rRp6dmzZ5Jk7dq1+e1vf9tiz/vuuy/19fVJknHjxuWEE05otm7s2LE58cQTC+O47777Wuz5m9/8JuvWrUuS9O7dO+edd16zdeXl5Xn/+99f2P/pT3/a4j3cVq9e3SREO//881t8fgAAAAAAgO5KiNZOc+fOzRe/+MXMnTs3u3fvbrHu1VdfzS233JKnnnqqcOyjH/1o+vfvf0DtgAED8pGPfKSw/4Mf/KDJeUlSW1ub++67L/Pnzy8cu+qqq1oda+PHn3zyydx3330HLMH41FNP5V//9V+bjLGysrLFnhdddFHhHm/r1q3LrbfeesB93l599dV885vfLDzXhAkTctppp7U6VgAAAAAAgO6ovKsHcDh55ZVX8r3vfS9lZWUZMWJERowYkb59+6akpCQ7duzI6tWr88YbbzQ55+yzz87ll1/eYs9LL700S5cuzaJFi7Jv377ccccdeeihhzJmzJjU1NTkxRdfzJYtWwr1V1xxRcaPH9/qOCdNmpRLLrkkDz30UJLk4Ycfzrx58/Kud70rFRUVWbFiRdasWVOonzx5ci6++OJWe/bv3z833nhjvvnNb6auri5/+tOfMnPmzEyaNCmVlZVZv359lixZkoaGhiTJoEGDcv3117faEwAAAAAAoLsSorVTRUVFYbuuri5r1qxpEkQV6927dy6//PL8p//0n1Ja2vIFf+Xl5fmbv/mb/NM//VOefvrpJG8uibh69eomdWVlZbn88stzySWXtGu8V155ZSoqKvKzn/0sdXV12bJlywFXuSXJlClTct1116WsrKzNnqeddlo++9nPZtasWdmxY0f27t2b55577oC6MWPG5MYbb8ygQYPaNVYAAAAAAIDuRojWTn/+53+eiRMnZuHChXn55Zfz2muvpaqqKrt27UqS9OnTJwMHDszxxx+fSZMm5ZxzzkmvXr3a1btPnz75zGc+k/e///2ZO3duli1blq1bt6asrCyDBw/OqaeemhkzZmTkyJHtHm9JSUkuvfTSnH322Zk9e3YWLFiQTZs2pa6uLgMHDsy4ceMybdq0TJ48uUPfhzPPPDPf+ta38sQTT+TZZ5/Nhg0bsmvXrgwYMCDHHXdcpk6dmqlTp6a83I8WAAAAAABw+JJ0dMD+JRzPP//8Q9J/8uTJHQ612jJy5Mh8/OMf79SelZWVufDCC3PhhRd2al8AAAAAAIDuouV1BgEAAAAAAOAIJUQDAAAAAACAIkI0AAAAAAAAKCJEAwAAAAAAgCJCNAAAAAAAACgiRAMAAAAAAIAiQjQAAAAAAAAoIkQDAAAAAACAIkI0AAAAAAAAKCJEAwAAAAAAgCJCNAAAAAAAACgiRAMAAAAAAIAiQjQAAAAAAAAoIkQDAAAAAACAIkI0AAAAAAAAKCJEAwAAAAAAgCJCNAAAAAAAACgiRAMAAAAAAIAiQjQAAAAAAAAoIkQDAAAAAACAIkI0AAAAAAAAKCJEAwAAAAAAgCJCNAAAAAAAACgiRAMAAAAAAIAi5V09AAAA3rnq6vY12V+5cmUXjYTD1ejRo9OrV6+uHgYAAABHICEaAACHzM7d65vsX3PNNV00Eg5Xs2fPzsknn9zVwwAAAOAIZDlHAAAAAAAAKCJEAwAAAAAAgCKWcwQA4G3z4fNuz4B+x3X1MOjGtu1ck8fnfbarhwEAAABCNAAA3j4D+h2XQQNP7OphAAAAALTJco4AAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEWEaAAAAAAAAFBEiAYAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEWEaAAAAAAAAFBEiAYAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEWEaAAAAAAAAFBEiAYAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEWEaAAAAAAAAFBEiAYAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEWEaAAAAAAAAFBEiAYAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARcq7egCHmw0bNuRPf/pTlixZkjVr1qSqqirV1dXp1atXBg8enHHjxuXcc8/N+PHjO9x7+fLlmTNnThYvXpzNmzcnSQYNGpQJEyZk+vTpGTt2bId7VlVVZfbs2Xn++ecLYx00aFCOP/74/Nmf/VnOOuuslJSUdKhndXV15s2bl6effjrr1q3L9u3bU1lZmeHDh+e9731vzjvvvPTq1avDYwUAAAAAAOguhGjttHLlytxzzz1Zvnx5s4/v2rUru3btyurVq/Ob3/wmEyZMyF//9V9nyJAhbfaura3N//k//yf/9//+3zQ0NDR57PXXX8/rr7+eX//61/nwhz+cq6++OuXl7fvfNnv27PzgBz/I3r17mxxfv3591q9fn2eeeSaTJk3K9ddfn4EDB7ar57Jly3LnnXdmw4YNTY5v3rw5mzdvzuLFi/PII4/khhtuyEknndSungAAAAAAAN2N5Rzbae3atQcEaMOHD8973vOefOADH8h73/veDB48uPDY4sWLc9NNN2X9+vVt9r777rvz+OOPFwK0YcOG5dxzz825556bYcOGJUkaGhry2GOP5Z577mnXeGfPnp277767EKD17ds373nPezJ9+vSceOKJhbqFCxfmG9/4Rqqrq9vsuWrVqnz9618vBGhlZWU59dRTM2PGjJx66qkpKytL8mZI9/Wvfz2rV69u11gBAAAAAAC6G1eiddAxxxyTGTNm5LzzzsugQYOaPFZfX585c+YUrv7asmVL7rzzznz9619vccnE2bNnZ968eUmSkpKSfPzjH8+HP/zhlJaWFno+/vjj+eEPf5iGhoY88cQTGT9+fKZNm9biGNeuXdskbDv33HNz3XXXNVlicdGiRbn99tuza9euvPrqq/nf//t/Z+bMmS32rK2tze23314I20aPHp3Pfe5zOfroows1GzZsyD/8wz/k1VdfzZ49e3L77bfnH//xHwvhGgAAAAAAwOHClWjtdNRRR2XmzJm54447ctFFFx0QoCVJaWlpZsyYkeuvv75w7OWXX86CBQua7VlTU5MHHnigsH/hhRfmL/7iLwoB2v6ef/EXf5ELLrigcOynP/1pamtrWxzr/fffn7q6uiTJySefnE9/+tMH3KNs4sSJueGGGwr78+bNy2uvvdZiz9/+9reFq+r69u2bm266qUmAliRHH310vvSlL6Vv375JknXr1uWJJ55osScAAAAAAEB3JURrp/Hjx2f69OlNAq6WvOc978nYsWML+3/4wx+arXvuueeyadOmJEmfPn1y6aWXttjzsssuS+/evZMkGzdubLHn1q1b88wzzxT2r7766hbHfPrpp2fSpElJ3rzi7de//nWLz//LX/6ysP3Rj360xXuoHXXUUfnoRz/a7HkAAAAAAACHCyHaIXLyyScXtjdu3Nhsze9///vC9pQpU9KzZ88W+/Xs2TPvfe97C/vPPvtss3XPPfdc4d5qw4cPbzKO5kyfPr3Z8TT2xhtvNLlKrfE5bfV89dVX23VfOAAAAAAAgO5EiHaINL4HWn19fbM1ixcvLmyPHz++zZ4TJ04sbC9atKjNnhMmTGizZ+OaqqqqvPHGGwfUNH6u4cOHN7uUZWODBg3K8OHD2xwrAAAAAABAdyVEO0RWr15d2B48ePABj+/evTtbtmwp7J9wwglt9hwzZkxhe/Pmzdm9e/cBNa+//nqz9S0ZNGhQBgwYUNhv7r5ojY+1p2dxXeMxAQAAAAAAHA6EaIdAVVVVk6uvJk+efEDN2rVrm+wPGTKkzb7FNcU9io8NHTq0zZ7FfZvruW7durfUU4gGAAAAAAAcbsq7egDvRPfee29hCcchQ4bkjDPOOKBmx44dhe3evXunR48ebfbt2bNnevfunT179iRJdu7c2eTxffv2Zd++fYX9xleYtWbgwIGF7eKexWPtrJ5t2bRpU7ueo6ysLElSWtq+PLhxXXvPgXcy8wCA7q60tNTrVRu8x4Xuy/yE7sv8hO7L/KQ7EaJ1sjlz5uSZZ54p7F911VWpqKg4oK66urqw3Z4ArXHt/hCtcY/m9tvbt3FdcY+DHWtbPdvyqU99qs2aWbNmZfDgwSkrK8sxxxzT4ec4+uijO3wOvNO0J7AGgK40ZMiQg3qvd6TyHhe6L/MTui/zE7ov85OuJsbtRK+88kruueeewv7UqVNz7rnnNltbU1NT2C4vb3+W2bi28VVnze23t2/jkK+4R3JwY21tnAAAAAAAAN2dK9E6yYYNG/LNb36zEDiNHj061157bYv1jYOr2tradj9P49riq8KK99vbt3FI1tyVZgcz1tbG2R6zZs1qs2b/kpF1dXXZuHFju/qWlpYWPr2wYcOGwrKbcKSqqqrq6iEAQKuqqqryxhtvdPUwujXvcaH7Mj+h+zI/ofsyP3krhg4dWrgNVGcQonWCLVu25Gtf+1q2bt2aJBk2bFi+9KUvpU+fPi2e06tXr8J2R67UalzbuEdz++3t21rP4mOd1bMtgwcP7lD9wfwira+v9wuYI545AEB35z1bx/h+QfdlfkL3ZX5C92V+0tUs5/gW7dixI1//+tezfv36JMlRRx2Vm2++OUcddVSr5/Xv37+wvWfPnnaFU3v37i3cDy1J+vXr1+TxHj16NLnqa9u2be36GvaHf831LB5rZ/UEAAAAAADozoRob8Hu3bvzjW98I2vWrEnyZth08803t+tmhyNGjGiy354l1YprinsUH2vvEoeN+zbXc/jw4W+p57HHHtuucwAAAAAAALoLIdpBqq6uzi233JIVK1YkSfr06ZObbropI0eObNf5ffr0aXK12sqVK9s8p3HNoEGDml0usnFg1Z6emzdvbnJ1WXPjb3xs1apVbfYsfm4hGgAAAAAAcLgRoh2Effv25dZbb83SpUuTJD179swXvvCFnHDCCR3qM2HChML24sWL26xfsmRJYXvixIlt9mxc356eQ4YMyTHHHNNqz7Vr12bLli2t9ty8eXPWrVvX5lgBAAAAAAC6KyFaB9XW1ub222/PokWLkiQVFRX53Oc+l1NOOaXDvc4666zC9tNPP93qfdH27duXp59+utlzGzvzzDNTUlKS5M3Aa9myZa2OYe7cuU3Obc7w4cObXI3W+Jy2eo4aNSrDhg1rtR4AAAAAAKC7EaJ1QH19fe6888688MILSZKysrJ85jOfyeTJkw+q35lnnpnBgwcnSXbt2pWHHnqoxdqf/exn2bVrV5Jk6NChOeOMM5qtGzhwYM4+++zC/n333ZeGhoZmaxcsWJAFCxYkSUpLS/Pnf/7nLT5/48ceeeSRbN26tdm6rVu35pFHHinsn3/++S32BAAAAAAA6K6EaO3U0NCQWbNm5Xe/+12SpKSkJJ/+9KdbvHqrPSoqKnL55ZcX9n/+85/nscceS319feFYfX19HnvssTz88MOFY1dccUXKy8tb7HvllVemrKwsSfLiiy/me9/7Xqqrq5vULFq0KHfeeWdh/7zzzmv1fm4f+MAHCleU7dixI7fccks2btzYpGbjxo255ZZbsnPnziRvXsE2Y8aMFnsCAAAAAAB0Vy0nMTTxq1/9qskyhcccc0xeeumlvPTSS+06/5prrmn2+IwZM7JkyZLMmzcvDQ0N+dd//dc8/vjjOemkk5IkL7/8ctavX1+onz59eqZNm9bqcx177LG59tprc/fddydJ5s2bl+effz4TJ05M79698/rrr+fll18u1I8ePTr/+T//51Z7lpeX57Of/Wy+/OUvp7q6OitXrswNN9yQSZMmZdCgQdm0aVMWLVqUurq6JEnv3r3z2c9+thDmAQAAAAAAHE6EaO20bdu2Jvvr1q3LunXr2n1+SyFakvzVX/1V+vTpk1/+8pdpaGjI+vXrmwRnyZtXvn3oQx/Kxz72sXY934wZMwqh3N69e7Nr164888wzB9RNmjQpn/70p9O7d+82ex5//PH5//6//y933nlnNmzYkLq6uvzxj388oG7YsGG5/vrrM2rUqHaNFQAAAAAAoLsRonUD5eXl+S//5b/kvPPOy+zZs7NkyZJs3rw5STJo0KCMHz8+M2bMyNixYzvU9/3vf39OPfXUzJ49O88//3yqqqpSXV2dgQMHZsyYMTnvvPNy1llnpaSkpN09x40bl9tuuy1z587N008/nXXr1mXHjh3p379/hg8fnve+972ZNm1aevXq1aGxAgAAAAAAdCdCtHa64oorcsUVVxzS5xg7dmyHg7K2DBkypNPH3qtXr5x//vk5//zzO60nAAAAAABAd1La1QMAAAAAAACA7kaIBgAAAAAAAEWEaAAAAAAAAFBEiAYAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEWEaAAAAAAAAFBEiAYAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEWEaAAAAAAAAFBEiAYAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEWEaAAAAAAAAFBEiAYAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEWEaAAAAAAAAFBEiAYAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEWEaAAAAAAAAFBEiAYAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEWEaAAAAAAAAFBEiAYAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEWEaAAAAAAAAFBEiAYAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEWEaAAAAAAAAFBEiAYAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEWEaAAAAAAAAFBEiAYAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEXKu3oAh5v6+vqsWbMmr7zySuG/V199NXV1dUmS8ePH5ytf+cpB9V64cGHmzp2bl19+OZs3b055eXkGDx6cU089NTNmzMixxx7b4Z6vvfZannjiiSxYsCCbNm1KbW1tBg0alJNOOinTpk3LpEmTOtxz+/btmTNnTp599tls2LAhu3btyoABA3Lcccdl6tSpmTJlSsrL/WgBAAAAAACHL0lHBzz77LP5zne+k71793Zq3927d+f73/9+nnrqqSbH9+7dm127dmX16tV57LHHcsUVV+Tiiy9ud9+HHnooDzzwQCHg22/dunVZt25d5s2bl6lTp+a6665L796929Xz+eefz6xZs7J9+/Ymx6uqqlJVVZUXXnghjz76aG688caMGDGi3WMFAAAAAADoToRoHbB79+5OD9Bqa2tz2223ZdGiRYVjxx13XMaMGZOampq89NJL2bJlS+rq6vLjH/84dXV1ueyyy9rs+5Of/CQPPvhgYf+oo47KKaeckoqKiqxcuTJr1qxJksyfPz87d+7MF77whZSVlbXac8GCBbntttsKoVzPnj0zceLEVFZWZv369XnxxRfT0NCQlStX5mtf+1q+8Y1vZNCgQQfzbQEAAAAAAOhSQrSDMGDAgJx44okZO3ZsTjzxxCxYsCCPPfbYQfV68MEHCwFaRUVFZs6cmalTpxYer62tzf33359f/OIXSZIHHngg48ePz/jx41vsuXDhwiYB2gUXXJC//Mu/bLLE4pNPPplZs2alpqYmCxYsyM9//vNWw7kdO3bkjjvuKARokyZNyo033pjKyspCzapVq3LrrbemqqoqmzZtyne/+918+ctf7uB3BAAAAAAAoOuVdvUADiennXZa7rrrrtxzzz35whe+kMsuuyynn356+vTpc1D9tm3bln//938v7H/yk59sEqAlSXl5ea6++upMmTIlSdLQ0JAf/ehHrfZt/PiUKVNy9dVXH3CPsnPPPTef+MQnCvuPPPLIAUs0Nvbwww9n165dSZJhw4blb//2b5sEaEly/PHH5/Of/3zhirZFixZlwYIFrY4VAAAAAACgOxKidcDAgQMzZMiQTus3d+7cwvKQw4cPzwc+8IEWa6+++uqUlJQkSZYtW5aVK1c2W7d8+fK88sorSZKSkpJcffXVLfb84Ac/mOHDhydJ9uzZk3nz5jVbV1tbm9/+9reF/SuvvDI9e/Zstnb06NGZNm1aYf+Xv/xli88PAAAAAADQXQnRutDvf//7wvb06dMLIVlzhgwZkokTJxb2n3322TZ7Tp48udXQr6SkpEng1fjcxpYsWVK4Cq137945++yzW+yZvPm17LdgwYJUV1e3Wg8AAAAAANDdCNG6yL59+7Js2bLC/oQJE9o8p3HN/vuoFVu8eHFhu7X7pjXXc+nSpampqTmgpvFzjRs3LhUVFa32HDt2bOFKtZqamiZfJwAAAAAAwOFAiNZF1q5dm4aGhiRvXhF2/PHHt3nOCSecUNh+/fXXm61pfHzMmDFt9mxcU19fn3Xr1r3lnuXl5Rk1alSbYwUAAAAAAOiuhGhdZO3atYXtysrK9OjRo81zGi/NuHPnzmzfvr3J49u2bSssu5gkQ4cObbNnjx49UllZWdhvLvBqPNb23hNu8ODBrfYEAAAAAADozsq7egBHqp07dxa2Bw4c2K5ziut27tzZJADbsWNHk8cHDBjQ7r77A7nG4+qssTbXsy2bNm1q13OUlZUlSUpL25cHN65r7znwTmYeANDdlZaWer1qg/e40H2Zn9B9mZ/QfZmfdCdCtC5SXV1d2G7PVWjN1TXu0dz+wfQt7lF8rLN6tuVTn/pUmzWzZs3K4MGDU1ZWlmOOOabDz3H00Ud3+Bx4p2lPYA0AXWnIkCEH9V7vSOU9LnRf5id0X+YndF/mJ11NjNtF9u3bV9guL29flllc17hHktTU1LRa35KKiooWexYfO5iexeMCAAAAAADo7lyJ1kUaX6lVW1vbrnOK64qvCmscXO2vb8+VY41Drubqe/Tokb1793ZorI17Fo+rPWbNmtVmzf4lI+vq6rJx48Z29S0tLS18emHDhg2pr6/v8NjgnaSqqqqrhwAAraqqqsobb7zR1cPo1rzHhe7L/ITuy/yE7sv85K0YOnRo4TZQnUGI1kV69epV2G7u6q/mFNc17tHc/r59+9oVojXuW9xj/7H9IdrBjLW5nm0ZPHhwh+oP5hdpfX29X8Ac8cwBALo779k6xvcLui/zE7ov8xO6L/OTrmY5xy7Sr1+/wvbWrVvbdU5xXeMeSdK/f/8m+9u2betw3+KexccOZqzN9QQAAAAAAOjOhGhdZMSIEYXt7du3t+sKr8bLrvXr1y+VlZVNHh8wYED69u1b2G/PEof79u3L9u3bC/vHHntsq2Nt79JvmzZtarUnAAAAAABAdyZE6yIjRoxISUlJkqShoSGrVq1q85wVK1YUtlsKphofb0/PlStXFrZLS0szfPjwVns2rm9JXV1dVq9e3eZYAQAAAAAAuishWhfp0aNHxo0bV9hfsmRJm+e8+OKLhe2JEyc2WzNhwoTC9uLFi9vs2fh5Tz755FRUVBxQ0/i5li1bltra2lZ7vvLKK4V7qFVUVDT5OgEAAAAAAA4HQrQudNZZZxW258yZ02ptVVVVFi5c2Oy5LfVcuHBhk2UVm9P4eVvqOX78+PTp0ydJsmfPnjzzzDPt7jl58uT06tWr1XoAAAAAAIDuRojWhaZNm5aePXsmSdauXZvf/va3Ldbed999qa+vT5KMGzcuJ5xwQrN1Y8eOzYknnpgkqa+vz3333ddiz9/85jdZt25dkqR3794577zzmq0rLy/P+9///sL+T3/60xbv4bZ69eomIdr555/f4vMDAAAAAAB0V0K0LjRgwIB85CMfKez/4Ac/yFNPPdWkpra2Nvfdd1/mz59fOHbVVVe12rfx408++WTuu+++A5ZgfOqpp/Kv//qvhf2PfvSjqaysbLHnRRddlL59+yZJ1q1bl1tvvTU7duxoUvPqq6/mm9/8ZuG5JkyYkNNOO63VsQIAAAAAAHRH5V09gMPNLbfcks2bNzc5tnXr1sL2K6+8ks997nMHnPfFL34xgwYNOuD4pZdemqVLl2bRokXZt29f7rjjjjz00EMZM2ZMampq8uKLL2bLli2F+iuuuCLjx49vdYyTJk3KJZdckoceeihJ8vDDD2fevHl517velYqKiqxYsSJr1qwp1E+ePDkXX3xxqz379++fG2+8Md/85jdTV1eXP/3pT5k5c2YmTZqUysrKrF+/PkuWLElDQ0OSZNCgQbn++utb7QkAAAAAANBdCdE66LXXXsvGjRtbfHzv3r159dVXDzhefCXYfuXl5fmbv/mb/NM//VOefvrpJG8uibh69eomdWVlZbn88stzySWXtGucV155ZSoqKvKzn/0sdXV12bJlywFXuSXJlClTct1116WsrKzNnqeddlo++9nPZtasWdmxY0f27t2b55577oC6MWPG5MYbb2w2NAQAAAAAADgcCNG6gT59+uQzn/lM3v/+92fu3LlZtmxZtm7dmrKysgwePDinnnpqZsyYkZEjR7a7Z0lJSS699NKcffbZmT17dhYsWJBNmzalrq4uAwcOzLhx4zJt2rRMnjy5Q2M988wz861vfStPPPFEnn322WzYsCG7du3KgAEDctxxx2Xq1KmZOnVqysv9aAEAAAAAAIcvSUcHfe973ztkvSdPntzhUKstI0eOzMc//vFO7VlZWZkLL7wwF154Yaf2BQAAAAAA6C5Ku3oAAAAAAAAA0N0I0QAAAAAAAKCIEA0AAAAAAACKCNEAAAAAAACgiBANAAAAAAAAigjRAAAAAAAAoIgQDQAAAAAAAIoI0QAAAAAAAKCIEA0AAAAAAACKCNEAAAAAAACgiBANAAAAAAAAigjRAAAAAAAAoIgQDQAAAAAAAIoI0QAAAAAAAKCIEA0AAAAAAACKCNEAAAAAAACgiBANAAAAAAAAigjRAAAAAAAAoIgQDQAAAAAAAIoI0QAAAAAAAKBIeVcPAAAAYL+6un1N9leuXNlFIzl8lJaWZtOmTUmSqqqq1NfXd/GIutbo0aPTq1evrh4GAADwDiBEAwAAuo2du9c32b/mmmu6aCQcrmbPnp2TTz65q4cBAAC8A1jOEQAAAAAAAIoI0QAAAAAAAKCI5RwBAIBu68Pn3Z4B/Y7r6mHQjW3buSaPz/tsVw8DAAB4BxKiAQAA3daAfsdl0MATu3oYAAAAHIEs5wgAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEWEaAAAAAAAAFBEiAYAAAAAAABFhGgAAAAAAABQRIgGAAAAAAAARYRoAAAAAAAAUESIBgAAAAAAAEXKu3oAQOeprq7Oq6++2tXD4DCycuXKrh4CAAAAAEC3JESDd5BXX301M2bM6OphAAAAAADAYc9yjgAAAAAAAFBEiAYAAAAAAABFLOcI72AfPu/2DOh3XFcPg27stfW/z5PP/0NXDwMAAAAAoNsRosE72IB+x2XQwBO7ehh0Y9t2rOnqIQAAAAAAdEuWcwQAAAAAAIAiQjQAAAAAAAAoIkQDAAAAAACAIkI0AAAAAAAAKCJEAwAAAAAAgCJCNAAAAAAAACgiRAMAAAAAAIAiQjQAAAAAAAAoIkQDAAAAAACAIkI0AAAAAAAAKCJEAwAAAAAAgCJCNAAAAAAAACgiRAMAAAAAAIAiQjQAAAAAAAAoUt7VAwAAAICDVVe3r8n+ypUru2gkHK5Gjx6dXr16dfUwAADohoRoAAAAHLZ27l7fZP+aa67popFwuJo9e3ZOPvnkrh4GAADdkOUcAQAAAAAAoIgQDQAAAAAAAIpYzhEAAIB3jA+fd3sG9Duuq4dBN7Zt55o8Pu+zXT0MAAAOA0I0AAAA3jEG9Dsugwae2NXDAAAA3gGEaHRYbW1tnnrqqcyfPz9r1qzJtm3b0rdv3xx99NF5z3vek+nTp6eysrKrhwkAAAAAAHDQhGh0yOuvv55vf/vbWbVqVZPjW7duzdatW7Ns2bI88sgj+dSnPpV3v/vdXTNIAAAAAACAt6i0qwfA4WPTpk35X//rfxUCtJKSkowfPz7ve9/7csYZZ6RHjx5Jkm3btuUf/uEfsmjRoi4cLQAAAAAAwMFzJRrtduedd2bLli1JkqFDh+Zzn/tcjj/++MLj27dvz7e//e0sXLgwdXV1+cd//Md85zvfSd++fbtoxAAAAAAAAAfHlWi0yx/+8Ie8+OKLSZLy8vJ8/vOfbxKgJUllZWU+97nPZdiwYUmSnTt35uGHH367hwoAAAAAAPCWuRKNdvnlL39Z2J42bVpGjRrVbF2vXr1yxRVX5Dvf+U6S5De/+U2uvPLKlJWVvS3jBAAAgNbU1e1rsr9y5cpD9lylpaXZtGlTkqSqqir19fWH7Ll4e4wePTq9evXq6mEAAG8TIRptqq6ubnJ/s/e9732t1p999tm55557Ul1dnZ07d+bFF1/MxIkTD/UwAQAAoE07d69vsn/NNdd00Ug4HM2ePTsnn3xyVw8DAHibWM6RNi1dujQ1NTVJkp49e+bEE09stb5Hjx4ZN25cYb9xAAcAAAAAAHA4EKLRptdff72wPWrUqHYtzThmzJjC9muvvXZIxgUAAAAAAHCoWM6RNq1du7awPXTo0HadM2TIkGbPBwAAgO7kw+fdngH9juvqYdBNbd6+Ir968guF/UN5Dz3eXofqnoX79u1r8oH0ESNGpGfPnp3Sm3cmPzMHck/RjnG/zkNLiEabduzYUdgeMGBAu84ZOHBgYXvnzp0dfs79vyTbeo79V8WVlrbvosrGde0953BS/DVt27mmi0bC4WLH7jea7PuZoS1+ZugoPzN0lJ8ZOsrPDB1V/DMDrdm9p+nfJ9xDD4DuZs6cOe7XeQgJ0WhTdXV1YbtHjx7tOqdxXePz2+tTn/pUmzU/+tGPkiRlZWU55phjOvwcRx99dIfP6e4GDx6cNWv80YCOeG+SG7p6EBxW/MzQUX5m6Cg/M3SUnxk6ys8MHeHnBYDubdiwYamoqOjqYbxjCdFoU01NTWG7vLx9PzKNJ+2+ffs6fUxJUlJSckj6Hs4qKioycuTIrh4GAAAAAAAc9oRotKlxIFZbW9uucxoHb+29eq2xWbNmtVlzMMsx1tXVZevWrUmaLgcJdA/mKHRf5id0X+YndF/mJ3Rf5id0X+Yn3YkQjTY1vilhe68qa1x3MDc1HDx4cIfPaY+tW7cWloqcNWvWIXse4OCYo9B9mZ/QfZmf0H2Zn9B9mZ/QfZmfdCcdv5SHI07//v0L29u2bWvXOfs/KZAk/fr16+whAQAAAAAAHFJCNNo0YsSIwvbGjRvbdU5VVVWz5wMAAAAAABwOhGi06dhjjy1sr169OnV1dW2es3LlysL2yJEjD8m4AAAAAAAADhUhGm06+eSTU1FRkSTZu3dvXnnllVbra2pq8vLLLxf2J06ceEjHBwAAAAAA0NmEaLSpV69eTYKwOXPmtFr/zDPPZM+ePUnevB/au971rkM5PAAAAAAAgE4nRKNdzj///ML23Llzs2bNmmbr9u7dm5/+9KeF/Q984AMpKys75OMDAAAAAADoTEI02uXd73534Yqympqa/P3f/31effXVJjU7duzIP/zDP+SNN95I8uZVaBdeeOHbPlYAAAAAAIC3qqShoaGhqwfB4WHTpk350pe+lC1btiRJSkpKMn78+AwbNizbt2/PwoULs3fv3iRJWVlZvvSlL2XSpEldOWQAAAAAAICDIkSjQ15//fV8+9vfzqpVq1qsqayszMyZM/Pud7/77RsYAAAAAABAJxKi0WG1tbWZP39+5s+fnzVr1mTbtm3p27dvjj766Jx99tmZPn16Kisru3qYAAAAAAAAB02IBgAAAAAAAEVKu3oAAAAAAAAA0N0I0QAAAAAAAKCIEA0AAAAAAACKCNEAAAAAAACgiBANAAAAAAAAigjRAAAAAAAAoEh5Vw8ADkZ9fX3WrFmTV155pfDfq6++mrq6uiTJ+PHj85WvfOWgei9cuDBz587Nyy+/nM2bN6e8vDyDBw/OqaeemhkzZuTYY4/txK8E3nk2bNiQP/3pT1myZEnWrFmTqqqqVFdXp1evXhk8eHDGjRuXc889N+PHj+9w7+XLl2fOnDlZvHhxNm/enCQZNGhQJkyYkOnTp2fs2LGd/eXAO8b27duzdOnSLF++PKtXr8769euzZcuWVFdXp6ysLH379s2oUaMyfvz4TJs2LYMGDepQf6+fcOjce++9efTRRwv7Q4cOzfe+9712n29+wsGbM2dO7rrrrg6dM2PGjPzVX/1Vu2rNT+hcK1asyNNPP52FCxdm8+bN2blzZ/r375+BAwdm9OjRmThxYiZPnpyBAwe22cv8hIO3ePHifPWrXz3o82fOnJnp06e3WmOO8nYpaWhoaOjqQUBHPPvss/nOd76TvXv3tlhzMCHa7t278/3vfz9PPfVUizVlZWW54oorcvHFF3eoNxwJVq5cmXvuuSfLly9vV/2ECRPy13/91xkyZEibtbW1tfk//+f/5P/+3/+bll62SkpK8uEPfzhXX311yst9RgSK/f3f/33+8Ic/tKu2oqIiF110US699NKUlra+cIHXTzi0li9fnptuuqnJ6197QzTzE966QxWimZ/QubZt25Z77703Tz75ZJu1559/fq655poWHzc/4a17qyHal770pZx22mnNPmaO8nbzV0YOO7t37241QDsYtbW1ue2227Jo0aLCseOOOy5jxoxJTU1NXnrppWzZsiV1dXX58Y9/nLq6ulx22WWdOgY43K1du/aAAG348OE57rjjUllZmV27dmXZsmXZtGlTkjffUN100035X//rf2XYsGGt9r777rszb968wv6wYcNy0kknJUlefvnlrF+/Pg0NDXnssceyZ8+efOpTn+rkrw7eWfr375+RI0dmyJAh6dWrV/bu3Zv169dn+fLlqaurS01NTR544IGsX78+n/70p1vs4/UTDq3a2trcfffdLX6ApK1zzU/oXMcee2wmTpzYZt3JJ5/c6uPmJ3SuqqqqfOUrX8mGDRsKx0aMGJFRo0alX79+2bdvX9avX59Vq1a1+fck8xM6x6BBg3L++ee3u/5Pf/pT1q1blyQZMGBAJk2a1GydOUpXEKJx2BowYEBOPPHEjB07NieeeGIWLFiQxx577KB6Pfjgg4VfvhUVFZk5c2amTp1aeLy2tjb3339/fvGLXyRJHnjggYwfP/6glqODd7pjjjkmM2bMyHnnnXfAcnD19fWZM2dOfvCDH2Tv3r3ZsmVL7rzzznz9619PSUlJs/1mz55dCNBKSkry8Y9/PB/+8IcLV8fU19fn8ccfzw9/+MM0NDTkiSeeKCxHB/w/48ePzxlnnJFJkyblmGOOabZm69atuffeezN//vwkybx583LmmWfmnHPOabbe6yccWg8//HBWr16dJDn33HPb9en6/cxP6Hxjx45t9eqV9jI/ofPs3r07X/3qVwsB2oQJE/LJT34yo0ePPqC2trY2ixYtyp49e1rsZ35C5xg+fHi7XzPr6+ubXMH9Z3/2ZykrK2u21hylK7S+Pg90Q6eddlruuuuu3HPPPfnCF76Qyy67LKeffnr69OlzUP22bduWf//3fy/sf/KTn2zyyzdJysvLc/XVV2fKlClJkoaGhvzoRz86+C8C3oGOOuqozJw5M3fccUcuuuiiZu+nVFpamhkzZuT6668vHHv55ZezYMGCZnvuvxpmvwsvvDB/8Rd/0WR5udLS0vzFX/xFLrjggsKxn/70p6mtre2MLwveMS644IJ88IMfbDFAS5KBAwfmhhtuaPIp+1//+tfN1nr9hEPr9ddfz0MPPZTkzQBt8uTJ7T7X/ITuy/yEzvXDH/4w69evT5JMmTIlN998c7MBWvLm3DrttNPy3ve+t9nHzU/oGn/84x+zdevWwn5LH4o2R+kqQjQOOwMHDmzXPZTaa+7cuYXL+YcPH54PfOADLdZeffXVhatlli1blpUrV3baOOBwN378+EyfPr3N+yclyXve856MHTu2sN/SfZqee+65wvKPffr0yaWXXtpiz8suuyy9e/dOkmzcuLHd934CmiopKWlyA+dVq1Y1W+f1Ew6dhoaG3H333ampqUnfvn3ziU98okPnm5/QfZmf0HlWrVqV2bNnJ0kGDx6c//bf/lu7/j3aEvMTusbcuXML22PGjGkxCDdH6SpCNI54v//97wvb06dPb3FJuSQZMmRIk0/nP/vss4d0bPBO1vheERs3bmy2pvH8nDJlSnr27Nliv549ezb5RKH5CQevsrKysN3ScjdeP+HQ+dWvfpWlS5cmST72sY9lwIABHTrf/ITuy/yEzvOrX/2qsH3++ecXPlR5sMxPePvt2rUrzz33XGG/tVtzmKN0FSEaR7R9+/Zl2bJlhf0JEya0eU7jmsY3sQQ6pvGbnfr6+mZrFi9eXNhuz/rVjd8gmZ9w8F577bXC9tChQw943OsnHDpVVVWFJWfe9a535X3ve1+Hzjc/ofsyP6Hz1NfXF+7jm6TFe/i2l/kJXePpp59OTU1NkqSsrCznnntus3XmKF2pvKsHAF1p7dq1aWhoSPLmH/SPP/74Ns854YQTCtuvv/76oRoavOOtXr26sD148OADHt+9e3e2bNlS2G8891oyZsyYwvbmzZuze/fug75fIhypNm/enEceeaSw39wfJLx+wqHzz//8z9mzZ0/Ky8tz7bXXtvoJ2+aYn3Do7Nq1K08//XTWrFlTeJ951FFHZdy4cRk1alSb89X8hM6zevXqwooJffr0ybBhw1JXV5d58+blP/7jP7JmzZrs2rUr/fv3z+jRo3PmmWfmfe97XyoqKprtZ35C12i8lOPpp5/eZFWUxsxRupIQjSPa2rVrC9uVlZXp0aNHm+c0vh/bzp07s3379hZ/wQPNq6qqavIpoMmTJx9Q03h+JmnXvRCLa9auXdvk3mtA8/bu3ZuNGzfmhRdeyC9+8Yts27YtSXLsscfmoosuOqDe6yccGvPnzy/c0/PCCy/MyJEjO9zD/IRD57nnnmuy5FRjw4cPz4UXXpj3ve99LYZp5id0nldeeaWwPXjw4GzatCn/+I//mOXLlzep27JlS7Zs2ZI//vGP+bd/+7f8j//xP5r9N6L5CW+/devWFZYwT9Lk3tzFzFG6khCNI9rOnTsL2wMHDmzXOcV1O3fu9AsYOujee+8tLOE4ZMiQnHHGGQfU7Nixo7Ddu3fvdr1B6tmzZ3r37l34RGLjOQ78Py+99FK+/OUvt1pz+umn54Ybbmj23hJeP6Hz7dixIz/4wQ+SvPnH+EsuueSg+pif0DXWrVuXu+++O88++2z++3//7+nVq9cBNeYndJ5NmzY12b/llluyZs2aJG9+EOzEE09MaWlpXn311axcuTLJmx/m/OpXv5qvfvWrB6x0Yn7C26/xVWj9+/fPu9/97hZrzVG6khCNI1p1dXVhuz1/oG+urnEPoG1z5szJM888U9i/6qqrml1S42Dm5/7a/SGa+Qkd17dv3/zX//pfM3Xq1BZrvH5C57v33nuzffv2JMm1117b4nJTbTE/ofMNGTIk55xzTiZNmpRRo0alsrIy9fX12bRpUxYtWpTHH3+8sEzUH/7wh9x55535m7/5m5SWNr0NvfkJnWfXrl2F7f3hWc+ePTNz5sy8973vbVK7aNGifOtb38qOHTuyd+/efOtb38q3vvWtlJf/vz+Lmp/w9mpoaMh//Md/FPanTp3aZE4WM0fpSkI0jmj79u0rbLf2i7qx4rrGPYDWvfLKK7nnnnsK+1OnTm3xprH7byybtH9+Ftean9C8o446Kueff36SN//xUl1dnbVr12blypXZtWtXvv3tb+c3v/lNrr322owYMeKA871+QudasGBB5s2blySZNm1aJk6ceNC9zE/oXGeddVbOO++8AwKxJBkxYkRGjBiRGTNm5Pvf/37mzJmT5M1lH5988smcd955TerNT+g8e/fuPeDY9ddfn/e85z0HHJ84cWI+//nP5+abb05DQ0PWr1+f//iP/8j73ve+Qo35CW+vJUuWZOPGjYX91pZyTMxRupYQjSNa408k1NbWtuuc4rqOXCEDR7INGzbkm9/8ZiEcGz16dK699toW6xt/Ar+987O41vyE5g0bNizXXHPNAcc3b96c+++/P3PmzMnixYtz00035Stf+UpGjx7dpM7rJ3Se6urqfP/730/y5jI2H/vYx95SP/MTOlffvn3brCkvL89f/dVfZf369XnxxReTJA8//PABIZr5CZ2n+IrtcePGNRugNX787LPPzu9+97skyVNPPdUkRDM/4e3VeCnH44477oAlVouZo3SlAz9KBUeQxuvUt/fTCMV1za11DzS1ZcuWfO1rX8vWrVuTvPkH/C996Uvp06dPi+cczPwsrjU/oWMGDRqUmTNn5sMf/nCSN5fJueOOOwr3MNzP6yd0nvvvv7/wKdyPfexjb/k+DeYndI3S0tJcdtllhf01a9YccM8m8xM6T/FcaC1Aa65m2bJlLfYzP+HQ2rt3b5PbfEybNq3Nc8xRupIQjSNav379Ctv7/7jfluK6xj2AA+3YsSNf//rXs379+iRvLiN3880356ijjmr1vP79+xe29+zZ0643SXv37i3cDy0xP+FgXXXVVendu3eS5PXXX88LL7zQ5HGvn9A5VqxYkccffzxJMmHChDaXsWkP8xO6zrve9a6UlZUV9vffJ20/8xM6T+N/LybJyJEj2zzn2GOPLWzv2bOnxX87mp9waD3zzDOF+VdaWpo/+7M/a/Mcc5SuZDlHjmiN7/Oyffv27Nu3r81Le6uqqgrb/fr1e8ufFoZ3st27d+cb3/hG4UbP/fv3z80335yjjz66zXOL78NUVVXV7L2Zimta6wG0T8+ePXPyySfnj3/8Y5Jk6dKlOeOMMwqPe/2EzrF69eo0NDQkeXOO3HTTTS3Wbt++vbC9ZcuWJrWXXnpp3v3udycxP6ErlZeXp7KyMlu2bEnSdN4m5id0puJ/67XnCpP9HxLbb8+ePYVj5ie8fRov5Xjqqae2+SHrxBylawnROKKNGDEiJSUlaWhoSENDQ1atWpVx48a1es6KFSsK240/xQQ0VV1dnVtuuaUwZ/r06ZObbrqpXZ8Q3F9/1FFHFf4IsXLlyjZDsZUrVxa2Bw0a1OpykUDrGt8DZseOHU0e8/oJnW/9+vWFq7bbUltbm5dffrmw3/gP9eYndK3q6urCdvEf9c1P6DyjRo1qst947rWk8ZVnSZr8e9H8hLfHpk2bsmjRosJ+e5ZyTMxRupblHDmi9ejRo8kv3CVLlrR5zv4bRSfJxIkTD8m44HC3b9++3HrrrVm6dGmSN69q+cIXvtDmjWKLTZgwobC9ePHiNusbz2HzE96axktfFC974fUTui/zE7rO+vXrm/yRvviT9eYndJ6jjz66yQonr732WpvnNF5itV+/fk2CbvMT3h7/8R//UViJoW/fvjnzzDPbdZ45SlcSonHEO+usswrbc+bMabW2qqoqCxcubPZc4E21tbW5/fbbC58sqqioyOc+97mccsopHe7VeI49/fTTrd4Xbd++fXn66aebPRfomB07djS52Xpzn9rz+glv3fTp0/PTn/60Xf/NnDmzcN7QoUObPFZ8LzXzE7rGE088Udju06dPjj/++ANqzE/oPO95z3sK27///e/brH/22WcL2+9617sOeNz8hEOv8VKO733ve9tckrExc5SuIkTjiDdt2rT07NkzSbJ27dr89re/bbH2vvvuS319fZJk3LhxHb6qBt7p6uvrc+edd+aFF15IkpSVleUzn/lMJk+efFD9zjzzzAwePDhJsmvXrjz00EMt1v7sZz/Lrl27krz5x8XG92+CI93OnTvbXVtfX59/+Zd/SU1NTZI3g/Dm5pPXT+i+zE/oHO1ZHm6/pUuX5pFHHinsT5kyJWVlZQfUmZ/Qef78z/+8MM+WLl2a5557rsXa5cuXNwnRij+AkpifcKgtX768yRWhzc3D1pijdBUhGke8AQMG5CMf+Uhh/wc/+EGeeuqpJjW1tbW57777Mn/+/MKxq6666m0bIxwOGhoaMmvWrPzud79LkpSUlOTTn/50uy/Nb05FRUUuv/zywv7Pf/7zPPbYY4U3Qsmbf/B/7LHH8vDDDxeOXXHFFSkvd9tP2G/u3Ln54he/mLlz52b37t0t1r366qu55ZZbmrwOfvSjH03//v0PqPX6Cd2X+Qmd43e/+12br5/79u3LY489lq997WuFD6D07du3yXvYxsxP6DzHHHNMzj///ML+t7/97TzzzDMH1C1ZsiR///d/X/h35EknndTsv1PNTzi0Gl89Nnz48DbvaVbMHKWrlDTsX4QUDiO33HJLNm/e3OTY1q1bs23btiRv3n/pmGOOOeC8L37xixk0aNABx2tra/N3f/d3TW5sOWrUqIwZMyY1NTV58cUXs2XLlsJjV1xxRS677LLO+nLgHeGXv/xl/uVf/qWwP3z48A5dgXbNNde0+Nh3v/vdzJs3r7A/bNiwnHTSSUmSl19+OevXry88Nn369CZLXgHJo48+mnvvvTfJm1eIjhgxIiNGjEjfvn1TUlKSHTt2ZPXq1XnjjTeanHf22Wfnv//3/97sJ+kTr5/wdpozZ07uuuuuJG9ecf29732v1XrzE966xvNu/+vnsccem759+6a+vj6bN2/OsmXLmtwHrUePHvnSl76U8ePHt9jX/ITOU1NTk69//etN7n107LHH5sQTT0xpaWlWr16dFStWFB476qij8o1vfCNDhgxptp/5CYdGbW1trrvuusIqKX/5l3+ZSy655KD6mKO83YRoHJb++q//Ohs3buzwed/97neb3Hi2sd27d+ef/umfmtxTqVhZWVkuv/zyg/olD+90P/3pT/Ozn/3sLZ3fktra2vzwhz/ML3/5y7T0slVSUpIPfehD+djHPuYqNCjyq1/9Kv/8z//c7vrevXvn8ssvz3/6T/8ppaWtL1zg9RPeHh0N0RLzE96qxvOuPcaOHZuZM2dm5MiRbdaan9B5du/enXvuuafJlSfNOemkk/KZz3ymxQCtcT/zEzrXM888k9tvvz3Jm3+/ueuuuwq37+goc5S3mxCNw9KhCNH2+9Of/pS5c+dm2bJl2bp1a8rKyjJ48OCceuqpmTFjRrv+QQRHokMZou23fPnyzJ49O0uWLClcjTpo0KCMHz8+M2bMyNixYw/6+eGdbu3atVm4cGFefvnlvPbaa6mqqircR7BPnz4ZOHBgjj/++EyaNCnnnHNOevXq1aH+Xj/h0DqYEG0/8xMOTk1NTVasWJGlS5cWVj/YsWNHduzYkYaGhvTp0ydHH310TjrppJxzzjk55ZRTOvwc5id0niVLlmTevHl56aWXsnnz5tTX12fAgAE56aSTMmXKlJx11lkpKSlpdz/zEzrPrbfeWrhv4aRJk3LzzTe/5Z7mKG8XIRoAAAAAAAAUaX19HgAAAAAAADgCCdEAAAAAAACgiBANAAAAAAAAigjRAAAAAAAAoIgQDQAAAAAAAIoI0QAAAAAAAKCIEA0AAAAAAACKCNEAAAAAAACgiBANAAAAAAAAigjRAAAAAAAAoIgQDQAAAAAAAIoI0QAAAAAAAKCIEA0AAAAAAACKCNEAAAAAAACgiBANAAAAAAAAigjRAAAAAAAAoIgQDQAAAAAAAIoI0QAAAAAAAKCIEA0AAAAAAACKCNEAAAAAAACgiBANAAAAAAAAigjRAAAAAAAAoIgQDQAAAAAAAIoI0QAAAAAAAKCIEA0AAAAAAACKCNEAAAAAAACgyP8PpsbQbOo5M30AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 458, "width": 872 } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABtEAAAOUCAYAAADU8hzuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AADGD0lEQVR4nOzdd3gU5f7//1capEAICb0kIAGkg1KkQwhSbCAWFCzI0SMW0ONRLMcudj8qYucIFkTlCCjSBEKRqiIgvSahJ4QkpJCQkMzvD37sNzO7SXY3ZZPwfFxXrmtnMvOeezc7u5t57X3fXoZhGAIAAAAAAAAAAABg4+3pBgAAAAAAAAAAAAAVDSEaAAAAAAAAAAAAYEGIBgAAAAAAAAAAAFgQogEAAAAAAAAAAAAWhGgAAAAAAAAAAACABSEaAAAAAAAAAAAAYEGIBgAAAAAAAAAAAFgQogEAAAAAAAAAAAAWhGgAAAAAAAAAAACABSEaAAAAAAAAAAAAYEGIBgAAAAAAAAAAAFgQogEAAAAAAAAAAAAWhGgAAAAAAAAAAACABSEaAAAAAAAAAAAAYEGIBgAAAAAAAAAAAFgQogEAAAAAAAAAAAAWhGgAAAAAAAAAAACABSEaAAAAAAAAAAAAYEGIBgAAAAAAAAAAAFgQogEAUMHNnDlTXl5eph8Al7acnBx99dVXuv3229W6dWuFhobKx8fH9DrxyCOPeLqZ8LB58+aZnhNvvvmmp5tUInfffbfp/gwYMOCSOr6nxcXF2X0eWbVqlaebVWE1a9bM9Fi98MIL5XLcVatW2f2d4uLiyuXYVRHP+6ppxYoVmjBhgrp06aJ69erJz8/P9Dfu3Lmzp5tYqT3++OOmx3Pt2rWebhIAlIivpxsAAAAAwHm//fabbr/9dh09etTTTUEFlpWVpUcffdS23LRpU02cONGDLQIAwLOOHj2qW2+9VevXr/d0UzwuKytLmzZt0t69e5WcnCxJCg0NVevWrdWjRw8FBAS4Xfvpp5/W9OnTlZqaKkl6+OGHtXnzZnl705cDQOXEqxcAABaOvsFbGt8edtSjbObMmSWuC+DSsX79eg0aNKjcAzRHr1/F/dSoUUONGjVSly5ddNddd2natGk6efJkmbShQ4cOpXI/H3nkkUKPcffddztVw9r7pFmzZqXSNle99tprio+Pty2/9NJL8vf390hbAADwtNOnT6tXr14eCdCsPZnd/alTp06J27Jjxw6NGTNGYWFhGjhwoO6//349/fTTevrpp3X//fdr4MCBCgsL05gxY7R9+3a3jlG7dm09+eSTtuWtW7fq008/LXHbAcBTCNEAAIBbGN4GKF95eXm64447lJuba1ofEhKiAQMG6MYbb9SoUaNsP54eiigzM1MnTpzQ1q1b9dVXX+nhhx9WkyZNNHLkSB06dKhUj7Vjxw79+eefJaqRm5urWbNmlVKLPOvkyZN65513bMvNmjXT2LFjPdgiz2FIZM8NKwgAFcljjz2mI0eOmNZVq1ZNPXr00A033GD6DDV48GAPtbLs5Ofn69lnn1Xnzp317bffKisrq9Bts7Ky9O2336pLly569tlnlZ+f7/LxHnzwQdWuXdu2/OKLL+rs2bNutR0API3hHAEAAIBKYOHChXbh0xNPPKGXXnpJ1atX91CrXJOXl6f58+dryZIlmj59usaMGVNqtWfOnKmuXbu6vf+CBQuUlJRUau3xpClTppguVD3++OPy9eVfPwDApenUqVOaPXu2aV10dLRmzZqlevXqeahV5ScvL09jx47Vd9995/J+r7zyig4cOKBZs2a5NBxjjRo19NBDD+nll1+WJCUkJGjq1KmmHmoAUFnwnxQAABXc3Xff7fQwYgCqrgULFpiW27dvr9dff91jPWu6du2qiIgIh7/Lz89Xenq6jhw5ogMHDigvL8/0++zsbN15552qVq2abr755lJpz+zZs/XOO++4HSjOmDGjVNrhaUePHtVnn31mWw4LC9M999zjwRaVnpkzZzIMMlCMAQMGyDAMTzejymjWrBmPZxXw66+/Kicnx7bs4+Ojr7/+2mMBWp06ddS/f3+X9wsODnbreE899ZTDAC0qKkpjx45Vy5YtZRiG9u/fr6+//tpudJHvvvtO4eHheuONN1w67sSJE/Xmm2/q3LlzkqQ333xTDz74oGrWrOnW/QAATyFEAwAAACqBzZs3m5aHDRvm0aHpHnzwQacC/tTUVM2ePVsvvPCCEhMTbevz8/P1wAMPKCoqSmFhYW61oWHDhjpx4oQkKTk5WT///LNbodzJkye1ZMkS23LNmjVlGIYyMjLcapcnvf/++6YLhXfddRdzoQEALmnWz1BXXHGFGjRo4KHWSO3atdP//ve/cjnWmjVr9Pbbb5vWBQQEaNasWRo5cqRpfd++fXXPPffoxx9/1NixY5WdnW373VtvvaVrr71Wffv2dfrYderU0Y033mjrBZiSkqIZM2Zo4sSJJbhHAFD+mBMNAAAAqASOHj1qWm7WrJlnGuKikJAQTZgwQVu2bFHz5s1Nv0tKSipRz6I77rjDtOxura+//lrnz5+3Ld9yyy2VZojMgjIyMvT555+b1t13330eag0AABVDZf0MVRomTZpk15vyu+++swvQCho1apRdzzXDMPTII4+4fPx7773XtDx16lS35lgDAE8iRAMAAAAqgbS0NNNyYGCgh1rinkaNGmnatGl263/66Se3a44aNco0JNDSpUttPdNcYR3Kcdy4cW63yZO++eYbnTlzxrbcvXt3tW7d2oMtAgDA8yr7Zyh3LVmyRFu3bjWtGzNmjK6//vpi973hhhvs5q7966+/tHTpUpfaMHDgQIWHh9uWDx48aOr9DwCVASEaAAAAUAlcnE+iMhs6dKhCQ0NN6w4cOOB2vcDAQN1yyy225by8PH399dcu1di0aZN2795tW27ZsqV69+7tdps86auvvjItjxo1ykMtAQCg4ig4LOGlZPr06Xbrnn76aaf3f/LJJ+3W/fe//3W5HTfeeKNp+csvv3S5BgB4EnOiAQBwiUhMTNS2bdsUGxurtLQ0ZWdnKyAgQDVq1FCTJk3UvHlztWrVSr6+FevjQXJysjZt2qSTJ0/q1KlT8vX1Vd26ddW4cWP17NlTAQEBpXq8vLw8bdy4UYcOHbL1aKlXr546dOigLl26yNu7/L6DtGfPHv399986evSozp49q8DAQHXs2FHR0dHF7nvmzBnt3r1b+/btU0pKijIyMhQUFKTatWurSZMm6t69e7lM6p2QkKCNGzcqNjZWGRkZqlmzplq3bq3evXs7ffxTp05p06ZNOnjwoDIyMhQaGqqIiAgNGDCgQn2TODs7Wxs3btSxY8eUmJionJwc1a1bV/Xr11f37t1Vt25dTzfR47y9vXXZZZcpOTnZti4pKalENceNG2e6oDNz5kw98cQTTu9vHQLSmXneKqIDBw5ow4YNpnXWi1YoH3v37tWff/6p48ePKy8vT3Xq1FGzZs3Up0+fS2J+uszMTG3YsEF79+5VamqqatSooXr16ql79+5q0aJFqR8vPz9fW7du1aFDh3Tq1CmlpKQoJCREdevWVfv27dWmTZtSP2ZpycrKsj1WKSkpCgoKUqNGjdS5c2e1bNnS082zk5OTo40bN2rXrl1KTk5WQECA6tatq86dO6t9+/aebp6kC8P2bdu2TUePHlVaWprOnTunwMBA1axZU+Hh4WrevLkiIyPL9fOcJ1S288IwDG3ZskUHDhxQYmKi0tLSFBoaavsMXhHPh4ouKytLCxcuNK3r1auX2rZt63SN9u3bq2fPnqbPF7/88ouys7Ndej8bNWqU3nvvPdvyzz//rDNnzqhWrVpO1wAAjzIAAIDJypUrDUmmn+eff77EdWfMmGFXd8aMGW7t56ysrCzj3XffNTp37mxXw9FPYGCg0bdvX+O1114zDh48aFfP0WPj6k9sbGyx7T5//rzx6aefGj169DC8vb0LreXv728MGTLEWLx4sdOPSWFSUlKMRx991KhXr16hx2vQoIHx0ksvGZmZmbb9+vfvb9rmrrvuKvZYd911l2mf/v37236XlZVlvPnmm0bz5s0dtqHgtgWdP3/eWLp0qfHQQw8Z7dq1M7y8vIr8O/j4+Bjdu3c3vv76ayM3N9flx8vRc6Hg33b16tXGoEGDCv37BQYGGg899JCRnJxc6DHWrVtnDBkyxPDx8Sn073/vvfcaSUlJLre/NC1fvtwYPny4ERAQUOjj7eXlZXTr1s348MMPnXq8Y2NjS3SelcZrVkHuvn450rVrV1OdWrVqud2G7du3G4ZhGC1btjSt37hxo1M1s7KyjJCQENt+3t7expEjRwzDMIywsDCXz23DMIyIiAjTfhEREU7tV1JvvfWW6bjNmjVzet9169bZPV8TEhKc2vfDDz+0+7vUqVPHyM/Pd2r/hx9+2LTvwIEDC922qNfOgp5//vkSnT+F/c2KOn5+fr7xxRdfGG3atCm0bkBAgHHXXXcZhw8fduqxKYmS3P/Czm9Hr0srV660/f7gwYPG3Xffbfj7+xdat3Xr1sasWbOcfn4U5c8//zRuv/12o06dOkXelyZNmhiPPfaYkZiYWOJjusL6WlDwdTk+Pt4YP358ke8bXbp0cet1trj358IU9RxISEgwJk6caAQHBxf5OH/wwQdufaYoqdTUVOPFF1+0ey8o7Cc4ONgYPHiwMXXqVOP48eNF1i7ueW9lfZ0o6Y+r7yEV/byw2rdvn3H33XcbdevWLbK9LVq0MCZPnmycPn3aqbrW88+Vn8LeW0rC2fev0vTrr7/a3beXXnrJ5TovvviiXZ1ly5a5VCM3N9eoWbOmqcbs2bNdbgsAeErV/uoNAACXsI0bN6pt27Z69NFH7cbCL8zZs2f122+/6amnntJ9991Xtg0sxPr169W+fXv985//1KZNm4qceDo7O1tLly7VsGHDFB0drSNHjrh1zIULF+ryyy/Xu+++q8TExEK3O3nypJ577jl16tTJNPxbadm5c6c6duyoJ554QrGxsU7v98cff6hhw4YaMmSIpk2bpp07d9pNIG6Vl5en33//XXfccYfat2+vXbt2lbT5ki588/lf//qXBgwYoBUrVhT69zt79qymTZumK664Qnv37rWr8fjjj6tPnz5aunSp8vLyHNbIzs7W559/rvbt22vPnj2l0n5XnDhxQkOHDlV0dLQWLVqkrKysQrc1DEN//PGHHnzwQbVt21arV68ux5ZWHPn5+Tp06JBpXfPmzUtc19p7zNq7rDDz5s1TamqqbTk6OlpNmjQpcXs8YfHixablAQMGOL2vtWeqYRhasWKFU/suX77cbl1SUpLT7zvW/Z3paVvRnDp1SgMHDtQ999xT5HtDVlaWvvzyS7Vt29bh41aZzZw5Ux06dNDMmTOLHDZt7969GjNmjEaOHOn2ELUnT57UzTffrG7duunbb78ttjfr0aNH9c477+iyyy7TJ5984tYxS9PcuXPVvn17/fe//y3yfWPLli0aN26cBg0apJMnT5ZjC82WLFmiNm3aaOrUqXbzShV09OhRPfzww+rXr59SUlLKrX0LFixQq1at9Pzzz2v//v1O7ZOWlqZly5Zp4sSJevbZZ8u4heWjsp0Xubm5mjRpktq2bauZM2fq1KlTRW5/8OBBvfHGG2rRooU+/vjjcmpl5WbtnS5Jffr0cbmOo302btzoUg1fX1+7obIXLVrkclsAwFMI0QAAqII2bdqkwYMHuxTEVARz587VoEGD3ApEVqxYoZ49e2rHjh0u7Tdv3jyNHDlSCQkJTu9z4MAB9evXTwcPHnS1mYXatWuX+vbt6/QFoIISEhKKvfhQlL1796pHjx5au3at2zUuGj9+vN59991iQ7yL4uLiNGTIENvFHsMwdNddd+ntt992usbJkycVFRWl06dPu91uV+3evVtXXXWVy5OrS9L+/ft19dVX6/vvvy+DllVsy5YtMw3lKEn9+vUrcd0777zTNDTXd99959T8JzNmzDAtjxs3rsRt8YSsrCy787dv375O7+/r66v+/fub1jkT8uTn52vlypUOf+fM/sePH7cLnSpbiJaYmKg+ffq4FIxnZGTommuu0e+//16GLSs/7733nsaNG6ezZ886vc9PP/2k0aNHu3ysHTt2qEePHvrf//7n9HvERRkZGZowYYIeffRRl49bWubNm6ebb75Z6enpTu8TExOjqKioIr/kU1Z+/PFHXXvttXav20XZsGGDhgwZovPnz5dhyy6YP3++brzxRo88NhVJZTsv0tLSNGzYME2dOtXl50lqaqoeeOABPfrooy7f10uNoy+zXHnllS7X6dq1q1O1i2P9vOfOZ2gA8JSKNekJAAAosZycHN19993KyMgwrQ8PD9dNN92kbt26qWnTpqpRo4bOnTun9PR0xcXFaefOnfrtt9+0efPmQv8prVu3rkaNGiXpQk8ia8+Hfv36FTvvU1BQkMP1q1ev1s0332zXc6lWrVq69dZbNWTIEDVu3Fi5ubmKi4vTTz/9pPnz55v++T527JgGDhyo7du3q0GDBkW2Q7rwD+Ctt96q3Nxc0/qQkBCNHj1agwcPVuPGjZWXl6fDhw9r0aJFmjNnjrKzs5WUlKRbbrmlVOZky8rK0siRI23f3Pb399dNN92kIUOGKDw8XIGBgTp+/Lg2b96suLi4ImtVq1ZNvXv3VteuXdWuXTs1btxYwcHB8vPzU3p6ug4cOKCNGzfqxx9/NF0Uy8jI0K233qqtW7e6PXfX+++/b+sB5OXlpeuuu07XX3+9WrZsqRo1aujEiRNaunSpPv/8c1PAER8fr8mTJ+u///2vXn31VX3zzTe2Gtdee62tRs2aNXXy5EktXbpUn332manGiRMn9Pjjj+uLL75wq+2uOHXqlKKioux6Bvj4+Oj666/XiBEj1Lx5c1WvXl3Hjh3TsmXL9N1335m+mZ+Tk6PbbrtNoaGhGjx4sN0xgoKCbOfaRT/++KNpuWvXroqIiHDYRlfmuygvJ0+e1EMPPWRa5+3trXvvvbfEtZs0aaLo6Gj9+uuvki5cZJs/f36RF+mPHDli6m0VEhKiESNGlLgtnrBlyxbl5OSY1nXq1MmlGtHR0frll19sy870RPvzzz9NPfkKWr58uR5//PEi97cGbSEhIW5d4LNq27at7fyJj4/Xn3/+afq99dyyqlevnlPHOX/+vG688Ubt27dPkhQYGKhbb71V0dHRCg8PV0BAgI4fP67ly5dr+vTpppApJydH48aN09atW+Xn5+fK3XNKwfu4ePFi07HbtGlT7GtEs2bNnDrOokWL9Pbbb9uWr7jiCo0aNUpdu3ZVnTp1lJGRoR07duirr77Spk2bTPvOnz9fs2bN0pgxY5w61t69e9WnTx+dOXPGtL5OnTq65ZZb1LNnT4WHhys4OFhnzpzR3r17tXDhQv3yyy+mzxbvvfeemjRposcee8yp45aWuLg4vfPOO7a2hIWF6bbbbtPgwYPVqFEjZWZmav/+/frf//5nd3F59+7dGj58uDZu3Fhuc9du3bpVn3zyia03eKtWrWyPc7169XTu3Dnt27dP3333ne2196I//vhDb7zxhp555pkya9/p06d177332oUwl19+uUaNGqXOnTurcePGCgwMVFZWltLS0nTo0CHt2LFDK1euLLUe+FbdunWz+wzurMzMTC1ZssSlfSrbeWEYhm666SaH7zFXXXWVRo8erXbt2ik0NFQJCQnatGmTZs2apQMHDpi2fe+99xQUFKRXXnnF4XGGDx9uCldXr15t6p0XERHhMBySpHbt2rlz11xy8uRJTZ48WevWrVNsbKxOnz4tPz8/2zxw3bp1U79+/TR06FCFhIS4dQzrY1a7dm0FBwe7XCc4OFi1atUyPcfc+SJhx44dTcuJiYmKjY0tlREJAKDMeWgYSQAAKqzKPifa/Pnz7bZ/8sknnZ6j4uTJk8Ybb7xhjB8/vsjtXJ0joigpKSlG06ZN7eoNHz7cOHHiRKH7bdmyxeH8M0OGDCl2vpXc3FyHc8Vdc801xsmTJwvdb//+/Ub37t1t21vn/HJnTrSCPwMGDHBq7pKCFi5caERFRRk//PCDkZGR4dQ+mZmZxpNPPmk3d9o///lPp/Z3dJ5crBUREWH8/vvvhe67e/duo2HDhqZ9fXx8jAULFhi+vr6GdGE+p6Jq7Nq1y6hfv76phre3t3H06FGn2l8S1113nd19b9WqlfHnn38Wuk9CQoJx/fXX2+3XsGFD49SpU04d153Xj9JSkjnRUlNTjU8//dTuby7JmDx5conacHFONMMwjNmzZ9u9DhTl5ZdfNm1///33m35fmeZEe//99+3OhbNnz7pUY/v27XaP7759+4rc59VXXzVtX61aNdvtwMBAIzs7u8j977zzTtP+I0aMKHJ7d+aUKcm8osUdv+Dr5zXXXFPk3EpxcXEO52v64Ycf3G6Ps4qam8sVjt73Lz4GQUFBxrffflvovvn5+XbPF0lGu3btnDr22bNnjQ4dOpj2rV69uvHaa68V+zzbtm2bcfnll5v29fX1LfI1uzRYH/eCz5cRI0YU+dq/ZMkSh3Navfbaa8Uet7TmRLvYXl9fX+P99983zp8/X+i+X375pd38paGhocX+bUrivffes2vvBx984PR8e7GxscYzzzxjPP3008VuZ31s3P28W5Tc3Fxj+PDhdsf697//Xeg+lfG8ePvtt+3uY40aNYp8/cjJyTGeffZZu/18fHyMNWvWOHVcd+YwLk3uzpVXs2ZN41//+leR/w8VplatWqZanTp1crv91udZ7dq1Xa5x+PBhu/v3/fffu90mAChPhGgAAFg4uvjQpk0bY9SoUSX66dq1q13dsgjRJkyYYNp28ODBpfTImJXmRYUnn3zSrtbw4cONnJycYvc9ceKE0aJFC7v9582bV+R+//3vf+32GTJkiFPHTE1NNTp16uTwn92ShGgDBgwwsrKyit3fytkLRo68++67pjYEBAQ4NWm7o/NEktGgQQPjyJEjxe6/cOFCu339/PwM6UKwdOzYsWJrLFiwwK7GG2+84dT9dteSJUvsjtmsWTOn2pubm2vccMMNdvtPmjTJqWO78/pRWhy9DnXt2rXQ17uRI0caV199tdGmTRu7C6vShZBn8uTJLj13iwvRsrKyjJCQENMxigpVra8bGzduNP2+MoVo//jHP0zHDA8Pd6tOgwYNTHU++uijIrePiooyXcx88MEHTfvHxMQUuX/jxo1N20+bNq3I7StaiHbxZ9SoUUUGDBft2LHD9jp38WfYsGFut8dZZRmiSRcu2lvPn8Lcfvvtdvtv2rSp2P0mT55s2sff399Yvny5021PTk62CzGvu+46p/d3h/Vxv/hzzTXXOPXFpj/++MMICgqyu9+JiYlF7ldaIZp0IZiaO3euU/f36aefttu/LC+QDxs2zHSsf/zjH2VynPIK0caNG2d3nNGjRxf5PlnZzovk5GQjMDDQdLxq1aoV+15x0VtvvWX3GDkbDFXWEO3iT926dY2lS5c6fbzc3Fy7GldffbXb7Y+OjrZ7bXDmfc8qICDAVOeZZ55xu00AUJ4I0QAAsCgsHCiLn7II0a699lrTtu+//34pPTJmpXVR4ezZs3YXq8PCwpzunWMYhrFmzRq7HlXFXVy1hpo1a9Z0Kgi56K+//nIYDrgbotWoUcOIj493+vilJT8/3+jYsaOpLV988UWx+xV2nvz8889OH9tRL0JJxi+//OJ0Deu3qIcPH+70vu6wXrSTig8KCkpOTjbq1q1r99w7c+ZMsfu68/pRWhy9DrnzExkZaTzwwAPG33//XSptKBiiGYZh3H///abfv/rqqw5rrVmzxrRdmzZt7LapTCGa9eJWr1693KozZswYU50bb7yx0G2zsrIMf39/27Y9evQwYmJiTPsX1cNj165ddn/PPXv2FNm+ihiiNWrUyEhNTXW6xm233WZ3/pfkixDOKOsQ7a233nK6xp49e1zePzU11QgODjbt895777nc/nXr1plqeHl5FfucKwlHIVpISEixIVhBb775pl2N4r4sUpoh2oMPPuh0W1NTU02vCa7u76r27dubjvXTTz+VyXHKI0R75pln7I4xcOBA49y5c4XuUxnPizfeeMPufj733HMu1bC+3zn796iIIVqTJk2Mvn37Gtdee60xbNgwo0ePHna9x6x/G2c/+yUlJdntf8MNN7jdfkejMDjzpTuryMhIU43bb7/d7TYBQHn6f7NvAwCAKuHi3BUXGRV80u358+fr9OnTpnWTJ09WnTp1nK7Rt29f3XDDDaZ1q1evtpsL4KI9e/bYzZFz3333qVGjRk4fs0uXLnbHLIk77rhD4eHhpVbPWV5eXnb3Y8OGDW7V6tixo6677jqntx82bJjduk6dOumaa65xusbw4cNNy1u2bHF6X1cdO3bMbq6S4cOHa+DAgU7XqF27tt0cMenp6frhhx9KpY0V3enTp5WSkmI3d0tpGTdunGn5yy+/dLjdjBkzityvsomPjzctu/JaVtCgQYNMyytXrrSbp/Ki3377zTQvYXR0tHr16qXAwEDbOuucZwVZf9ekSRO1bt3anWZ71KRJk1SrVi2ntx85cqRpOT093TanWmUUFhamBx980OntW7dubTcf2+bNm4vcZ/r06UpLS7MtN23a1G5+RWf06tVLPXr0sC0bhmE3t2tZe+SRR1yad/SRRx5R/fr1TevKY+5PSfLz89NTTz3l9Pa1atVSVFSUaV1xf9uSqGyfdwvzySefaMqUKaZ1HTt21Pz581WtWrVC96uM58V///tf03JoaKhLzzFJpjkYL5o+fXqJ2lVegoOD9Y9//ENz585VSkqKjhw5ojVr1mjBggVatGiRNm7cqOTkZP3++++6++677ebLNAxD9913n1auXFnssQq+P1/k7+/vdtsdzQF97tw5l+s0btzYtGz9/AIAFRUhGgAAVYz1n5NZs2bZTbpekaxZs8a07OPjozvuuMPlOuPHj7db99tvvzncdt26dXbrxo4d6/Ix3dmnPGq5qmnTpqZldy96jRo1yqXtHU3cXtIaJ06cKLPn+9q1a+0u0rkTvowdO9buwlhhz9WqJiUlRbNnz7YF36dOnSrV+t27dzddoN+7d6/Wr19v2iYzM1Nz5syxLbv7mlORJCcnm5aDg4PdqhMdHW1aTklJKfT1wBqCRUdHq3r16urTp49t3ebNm5WamurU/tYAr7K45ZZbXNq+U6dOduuOHj1aWs0pd9dee63Di6tFsT4Gxd1/65cXbr31Vvn4+Lh0zIusIY/1M0hZu/POO13a3s/PT7fddptp3d69e5WYmFiazXKoV69edp8pi+Pq37YkrG0r7EsTFdn8+fPtgq/w8HAtXry42NfxynZeJCQk2H1h4LbbbnM52OnUqZOuvPJK07rK8Blq4sSJOnHihD7//HONHDlSISEhDrfz9vZWt27dNGPGDK1bt07NmjUz/T43N1f33HOPcnJyijyeo8/CRYWyxalevbrdutzcXJfrWJ/X1s8vAFBREaIBAOCE559/XsaFYZDd/rH2fCgr1guRf/zxh4YOHapt27aVy/FdZe311KFDBzVo0MDlOoMGDbK7eFBYj6pNmzaZlmvWrOnwwmZxCl4sLgk/Pz9dccUVpVJLko4cOaIPPvhA48aNU9euXdW0aVPVqlVLPj4+8vLysvu57777TPu7G2wU/CazMxx9G780ahT8ZnZpcvR8soYOzggLC1PXrl2LrV3RzZgxo8jXvKysLJ08eVKrVq3SSy+9pObNm5v2//nnn9WzZ08dP368VNt19913m5ZnzpxpWp4zZ44yMjJsy0OHDnXrNaciOXv2rGnZ1VDjoqZNm6pVq1amdYX1JluxYoXtdmBgoHr16iXJ/B6Ul5fn8BvzeXl5Wr16tWmdO+eSp9WvX9/uAqcz+1iVVc/M8nDVVVe5vI/1MSjq/ufm5toF4dbXT1c0adLEtLx79263a7mqefPmdq+DznAUMFs/x5SFsv7blpT1cZk3b55Gjx6tgwcPltkxS9O6det02223mXrUhYaGasmSJcX2Jq6M54WjzzmDBw92q9aQIUNMy4cPHy71zxKl7YorrjD11HZGt27dFBMTo3r16pnWx8XF6ZNPPilyX19fX7t1xQVvRXHU68zaU84Z1s8nmZmZbrcJAMoTIRoAAFXMqFGj1KJFC9O6FStWqHPnzurSpYueffZZrVixosL807J//37TsrthUkBAgNq0aWNaV9gQWbGxsabl9u3by8vLy+Vj1q1bt1QuvkdERJRoiJWL/vrrL0VHRysiIkITJ07UzJkztXnzZh09elRpaWmFDstmlZKS4tbxGzZs6NL2NWrUsFvn6uPpqEbBgKQ0WZ+rl112WaHfJC6O9Xl+4MABp/8+lYW/v7/q16+v/v3769lnn9WePXv02GOPmbY5ePCgrr/++lLtPXjHHXeYAvUffvhBWVlZtmXrFxqsoVtlZL24VZJvm1svTDsK0ZKTk01Dp/br1892TGsY5mj/P/74w+7iemXsiebqa5504UsbVmX1mlUeSuMxKOr+79271y4kHj16tMMvhDjzYx160jqcdFnq3Llzqe23Z8+ekjXGCWX9ty2p++67z+49+Pvvv1fLli3Vu3dvvfrqq1q3bp1bQ86Vtd27d+v66683Dbnn7++vn3/+2e6zrCOV8bywfoaS3P/M72i/yjwsblGaN2+ujz76yG59ccO6Ouo55miIR2cV/BxV1DGKY92nJG0CgPJEiAYAQBXj5+en//3vf6pdu7bd77Zu3apXXnlF0dHRqlWrlrp06aJJkyZp3rx5HgnVcnJy7C4CWL8N6wrrvoWFQdbhxVyZn8TKlbnbCuNuEFPQK6+8om7dumnFihUlnhfE3Yteji4OF8VRcFkaNcoqjLI+n0rzuWoYRqXujeKMatWq6e2339Y999xjWr9582Z9+OGHpXacBg0aaOjQobblM2fOaO7cuZIuhHYFh30KCwvT9ddfX2rH9hTrRamSfNvcGoKtX7/e7iJXTEyM6TwruE+XLl0UFhZmW3YUolnXtW3b1q0L9p7mzrCZ3t72/4JX5gC9NB6Dou5/UlKSy/Vd4e6XRtzh7nPc0X7l0e7S+NuW5TxloaGh+u677+y+hGQYhtavX69nnnlGffr0UXBwsHr27KnJkydryZIlJXp9LA3Hjx/X0KFDTcPYeXt769tvv1Xv3r2dqlEZzwtrTS8vL5eHC73I0eev8jyXy9uoUaPs5pL8+++/dfLkyUL3cTRXp6MgzFnWfb28vFyaD/Qia6jtbs95AChvhGgAAFRBnTt31ubNm3X11VcXuk1eXp62bt2qqVOn6sYbb1S9evU0duxYbd++vdza6egfXnfn8pHs/2EsbJx9a4jmanBTUEnae1FQUFCJ9n/11Vf17LPPOrwQ6eXlpfr166tr166Kjo7Wtddeq1GjRpl+SjIEkPVYFaFGWbE+X0vzuSpdOvNCTJkyxa6n1HvvvVeqF1utc9VdHNJx5syZpuPcfvvtJeq1VVFYh4gqyYWyqKgo04Xw7Oxsu/lmHM2HdpGXl5dpfp19+/bpyJEjTu9fmVTk16vyUtaPQVn3FCvPOWPdfc/w8fGx63VdHoFBZXh+DxkyROvXr1f37t0L3SYnJ0cbN27Um2++qWHDhql+/fqaMGGC3agE5eHMmTMaNmyYDh8+bFo/bdo0jRw50uk6lfG8sD5ng4KCHH6pwBmX4meo6667zrRsGIZ+//33Qrf38/Oze5wSEhLcPr5134vDxLvK+uVJV4e4BABPsR8kFwAAVAnNmzfX0qVLtWnTJn355ZdasGBBkRO8nz17VrNmzdK3336rBx98UG+//bZbw3RUBqXZa8PT32jevXu3XnjhBbv11157rcaPH6++ffuaeoU4MmPGDLveQUBZadCggXr06GEKZuLi4rRz5061b9++VI5x3XXXKSwszHahMSYmRvHx8frqq69M21WFoRwlme6rVLJ5iEJCQnTllVfqjz/+sK1bvny5ae6agiFYvXr11LFjR1ON6OhozZkzx7T9xWDz7NmzdnPjVMahHFE+HL3H9uvXr0Q9yFG1dOnSRZs2bdLy5cv19ddfa/HixUXO7ZqamqpPPvlE06dP1/PPP6+nn37a7TDHFefOndOIESP0999/m9Y//fTTmjBhgku1OC8uPR06dLBbl5iYWOQ+4eHhpi9HxsfHu318a/AbERHhVh3rvMXF/Y8CABUFIRoAAFVcjx491KNHD3300Uc6dOiQ1qxZo7Vr12rdunXau3evXe8PwzA0bdo0HT16VD/++GOZXlhwNOSk9Z8rV1gvHIeGhjrczjp8YkmOWZJ9S8Obb76p3Nxc07oZM2a4FA5U9WEES4v1+Vqaz1Wp8OdrVdS+fXu73k2bN28utRCtWrVquv322/XBBx9IujBc3D333GO6CNSxY0e352OpaCIiIkzzwRw7dqxE9QYNGmQXol0UHx+vgwcP2pajoqLseqw4mhftYoj222+/mS4A+/r6asCAASVqL6ouR6+Ljz32WKUchtXd94y8vDy7YZYdfX661EVHR9tee3bt2qU1a9Zo3bp1Wrt2reLi4uy2P3/+vJ599lklJiZq6tSpZdo2wzB05513atWqVab1d911l6ZMmeJyvcp4Xlifs5mZmcrPz3fr/4xL8TOUo+HjixvWs0WLFqYQLTU1VWlpaS73ik1LS7N7zCMjI12qcZH184m7YRwAlDeGcwQA4BJy2WWX6e6779b06dO1e/duHT9+XNOnT1efPn3stp0/f75mzZpVpu2pVq2a3TAeJbn4a923sItM1n9EDx065Nbxzp8/b/fNzPKUn5+vX375xbTutttuc7l3TVnPrVFVWJ9PpflcdXduicrK0blZVM8Bd1iHdIyJiSny95VZ8+bNTctF9Tp2hjUE27p1q62nmzNDMV522WWmNq1YscJ227p/t27dSmVYXFRN7lw4rqhOnDhRavsRohWtbdu2uv/++/X1118rNjZWsbGxmjp1ql2vWUn64IMP7L7UUdoeffRR/fDDD6Z1Q4cO1fTp092qVxnPC+tz1jAMHT9+3K1ajj5/VfVzwtEwzcXNJ9alSxe7dZs3b3b52AW/VHNRp06dXK4j2f/trJ9fAKCiIkQDAOAS1qBBA40fP16//fab5syZYzc30Mcff1zmbWjZsqVp+a+//nKrTnZ2tnbv3m1a16pVK4fbdu7c2bR84MABt74hvnv3bmVnZ7u8X2k5evSo3UWTMWPGuFzHnX+oL0XW5+qhQ4fc7sVnfcwjIyPLZTipiiIzM9NuXWnOiSZduHjk6IKpdGGuEHfOlYrKOszTsWPHHD7Gzurdu7f8/f1ty/n5+bYQ0tn5zAquT0hIsH0bvqrMh4byERkZaTfvjrufEzxt69atpbbf5ZdfXrLGXGKaNWumhx9+2DYXsFVZft5966239P7775vWde3aVf/73//k6+ve4FCV8bywfoaS3G+zo8+thX3mryocBYf16tUrcp+rrrrKbt3atWtdPrajfRzVLs7hw4ft/m8q7HMaAFQ0l85/6gAAoEg33XSTHnzwQdO633//3W6owIscXfB35yJ4r169TMvbt28vdox/R2JiYuwmQrfWvsj6j59hGFqwYIHLx5w/f77L+5QmR4/TZZdd5lKNrKwsrV+/vrSaVKVZn0+GYZh62DgrJSXF7gJQYc/VqsrR0Fr169cv9eMU1tvsmmuuqVJzx3Tt2tW0bBiGdu7c6XY9f39/9e7d27Ru+fLlMgzD1KMvMjKy0KGYHA3pmJSUpG3btpnWl/V8aKX1XlWZWR+DynT/a9WqZff8dud1tyK42CPKVdZetNKFobrhOi8vLz388MMaOXKkab07wYIzZs2apcmTJ5vWtWjRQgsXLlRQUJDbdSvjeeHoc471SxXOWrZsmWk5IiJCjRo1cqtWZeHodaC4oRD79u1rNw/0kiVLXD720qVLTcv+/v7q27evy3Ws8wFKF3qjA0BlQIgGAABsrBcz8/LybEN4WVmHYZQcDzVSnH79+pmWz58/r6+//trlOv/973/t1hX2D16fPn1Uo0YN07pPP/3UpePl5ORo5syZLu1T2vLy8uzWWYPE4nzzzTcen9etsujTp4/d3E8zZsxwuc4333yjc+fOmdZZz4OqLCcnR2vWrLFb36JFi1I/1pgxY+Tn52e33tUhTyu6zp07210os4ZVrnIUgv3999+m8H7w4MGF7j9o0CDT+bJ8+XKtWLHCFOAEBQWpZ8+eJWpncUrrvaoysz4Gle3+DxkyxLS8Z88ety4EVwTffPONS9vn5uZq9uzZpnWtW7cutgcKimb9vOvOl7eKc3EuyIKveXXr1tWSJUtK5e9X2c6LevXqqXXr1qZ1s2fPtvs8VJzt27fbDS9Y1T9DnThxwu5vGxwcrO7duxe5X0BAgK655hrTuvXr12vXrl1OH3vHjh3asGGDad21115r6q3uLOvnkvr166tZs2Yu1wEATyBEAwAANo7+kbWGTRc5mr/JnbkNRowYYTe3w+uvv67k5GSna6xfv17z5s0zrRs4cGChF+Vr1KihsWPHmtb99ttvdheqivL222+7PZdaaXHUk8aVoXGSk5P1wgsvlGKLqrZGjRpp+PDhpnW//PKLw0CoMKmpqZoyZYppXXBwsG6++eZSaWNl8PnnnyslJcW0LjQ01K2hgYpTt25drVy5UosXLzb9WC8qVXb+/v7q37+/aZ0rz0tHrCHaoUOH7ObvKWooxrCwMNPQuWvWrLG7CNi3b1+7YYRLW2m9V1Vm1segst3/CRMm2M398/jjjysjI8NDLXLfu+++69LcVVOnTtXJkydN6+65557SbtYlx/p5t7DPuu7asmWLbrzxRtNoDkFBQVq4cKEiIyNL5RiV8bz4xz/+YVpOSkrSG2+84VKNxx9/vNi6Vc0TTzyhs2fPmtZdffXVTg0HOn78eLt1r776qtPHfv31152q6Qzr5xJrEAwAFRkhGgAAVcx3333n8rc6L/r+++9Nyw0aNCj0woKfn5/dtwfdGQ7H399f9913n2ldUlKSxo0b51SvqsTERN199912w1M98sgjRe43ceJEux4q9957r1OTy//www967rnnit2urDVr1kyhoaGmde+//75Tj1t2drbGjBlT6S6metqkSZPs1o0bN87uIqcjeXl5uueee5SQkGBaP378eNWsWbPU2liRrV692uEFsLFjx9rN71JaevfuraFDh5p+3J2HpiIbNmyYaXn16tUlqnfFFVeodu3apnWfffaZ7ba3t7eioqKKrFEwZMvIyNC3335r+n1ZD+UoOZ4np6yGbquorI/BunXrKtWQjg0aNNCECRNM63bs2KHRo0e7Pfdfdna2XShcHlJSUjR+/HiHPcmttmzZYvdFF39//0KHqb2UZGVl6ccff3TqcbTKz8/XnDlzTOsczdflrtjYWA0fPlzp6em2db6+vpozZ06pDl1XGc+Lf/zjH3bDWL722mtOffaWLoTQ1qEFu3TpUqF7oqWlpbk9H6IkvfDCC3Y9WL28vPT00087tf+wYcPUqVMn07pZs2Y5NYz9zz//rFmzZpnWde7cWUOHDnXq2AWdP39e69ats2sbAFQWhGgAAFQx999/v8LDw/Wf//zH4djzjuTm5uq5557TDz/8YFpfXO8Y65wc3377rX766SfXGqwL37C0juv/888/a9SoUUUOsfP3338rKipK+/fvN60fOnSorrvuuiKP2aZNG7t/QDMzMxUdHa3//Oc/dkGHdOHCyD//+U+NHj1aeXl5qlatmpo2bVrc3Ssz3t7edj1qtmzZojvvvLPI4boOHDigq6++2tYrpCoGCmVl8ODBGjFihGndoUOHFBUVVeRFkqSkJN188812PSYbNWqk//znP2XQ0opl9+7dmjhxogYNGmT33KxTpw49IkvBiBEjTMMnHjlyRLt373a7nre3twYOHGhal5OTY7t95ZVXKiQkpMga1p5qBfd39PuyEBERYTff3ksvvVSiOeMqG+t7dVxcnJ577jm7v0dF9sILL6hdu3amdQsXLlT37t21cuVKp+ts375dzz77rCIiInT//feXdjOLdPH8/Pnnn3XLLbcUOly2dGHOpyFDhtj1Knruueeq1HyO7jp37pxuuukmRUZG6vXXX9eBAwec2u/s2bO69957tXHjRtP60uoNnpKSoqFDh9p9seazzz4rk8Cgsp0XISEheuWVV0zrsrOzde2119oFmwXl5ubqxRdf1GOPPWZa7+Pjow8++KBM2lpakpOT1aVLFw0fPlzz589Xdna2U/vFxsbqxhtv1Isvvmj3uzvvvFNdunRxqo6Xl5fee+89u/W33nprkXM7z507V7feeqvdeke1nLFhwwZTuOvv70+IBqBS4YoJAABVUGJioqZMmaIpU6bosssuU58+fXTFFVcoMjJStWvXVlBQkLKysnTkyBH98ccf+v7773X48GFTjdq1a9tNhm41duxYU++13NxcjRgxQg0bNlTbtm0VHBwsb2/zd3Y+/vhjuwtAtWrV0tdff62BAweavlX8888/a82aNbrttts0ePBgNW7cWLm5uYqLi9NPP/2k+fPnm4bKkS7MuTBz5ky7uasceeaZZ7Rq1SpTj42cnBxNmTJFr732mtq3b6/GjRsrLy9Phw8f1p49e0z7v/TSS1q8eLGOHDliW+fMcUvTU089pVmzZik/P9+2bvbs2Vq7dq3Gjx+vnj17qm7dusrIyFBsbKwWLVqkefPm2S6eBgQEaOLEiS4Pp3Mpmz59un7//XdTL77du3erW7duuuGGG3TDDTeoefPmql69uo4fP65ly5Zp9uzZdkOUent766uvvrLrTVhZfPjhh/rll18K/f25c+d05swZ7dmzR6dOnXK4TWBgoH788Ue7Hk9wXbNmzdSnTx/TN/rnzp2rZ555xu2a0dHRmjt3bqG/K07fvn1VvXp1h72j69SpY/ft+LIyduxYvfPOO7bl2NhYtW/fXq1bt1bz5s0VGBhoeu2uV6+ePvroo3JpW3m4+eab9cgjj5j+Dq+88oqmTp2qjh07KiwszO7LFA899JAGDBhQzi0tXM2aNbVgwQJ1797dNBzirl27FBUVpU6dOmno0KHq3r276tWrp5o1ayo9PV2pqak6ePCgtmzZovXr15u+dFNWvV8Lc8cdd+jHH39UZmam5s6dq9WrV2vMmDGKjo5Ww4YNlZWVpf3792vOnDkO57a68sorHfbkvZTFxcXpqaee0lNPPaX27durZ8+e6tKli5o1a6batWsrICBAmZmZiouL04YNG/T999/bvR9ddtlldiMiuGvbtm3at2+faV1oaKgWLlyohQsXulWzqNejynheTJo0SUuWLDH1KEtLS9Mtt9yiXr16afTo0WrXrp1CQkKUmJio33//Xd98843dF+akC5/je/fuXabtLS0Xh5OuUaOGBgwYoC5duqhDhw6qU6eOatWqpby8PCUnJ2vnzp2KiYnRkiVLHPa07Nmzp8vvTwMGDNC//vUv/d///Z9tXVZWlkaOHKlBgwbpjjvuUGRkpAzD0IEDB/TVV185DGEfe+wxu6GjnfXjjz+alq+//nqHwy0DQIVlAAAAk5UrVxqSTD/PP/98ievOmDHDru6MGTPc2q8otWrVstve1Z+AgABj8eLFxbYtLy/PGDRokEu1Y2NjC603b948w9/f3+12N2nSxNixY0ex7S4oIyPD6N+/v8vHevDBBw3DMIy+ffua1j/wwAPFHvOuu+4y7dO/f3+X2mz1+uuvu/V4+fj4GHPnznX5OWYYjs+Tov62FbmGO/bs2WNERES4/VytXr268cMPP7h0THdeP0qLo+dISX/Cw8ONNWvWlKgN27dvL7P7HBYWZjrWXXfd5dR+1udFREREmbXRavr06aZjd+7cuUT19u7dW+jfb8WKFU7VGDhwoMP9b7nlFpfb4+5r58mTJ40GDRo4/dws7G9WWq/dnjiXX3zxRZfOT0dtio2Ntdtu5cqVLrfl+eefd/sc2b9/v9GhQ4dSeQ3y8fFxue2usL4WPP/888acOXMMLy8vl9vapk0b4+TJk04d1933xdJ4XrrzecIdKSkppfIcqFOnjvHnn38WeSxXnveOHvuS/jhzflSm88IwDCMtLc0YPHhwidr5r3/9y8jPz3f6mNbP+s6+p5eUo+ePuz/9+/c3Tp8+7VY7zp8/b9x8881uH/vmm282zp8/7/bj0LRpU1O9BQsWuF0LADyB4RwBAKhiSjq3Urt27bRq1Sqnxrv39vbWDz/8YDe8nbtGjBihFStWqE2bNi7vGx0drQ0bNtgNa1OcoKAgLVu2TFOmTLGboN2RkJAQffrpp5o2bZok6cyZM6bfe+JblZMnT9aLL75o1+uvKKGhoVqwYIFGjhxZhi2rulq3bq0NGza4NS9Eq1at9Ouvv5ba8FGVTVhYmJ544gnt3LlTffv29XRzqpTbbrvN1Ktv69at2r59u9v1WrVq5XDI2oCAAKe//V9Yj7XyGMrxovr16+vXX391+f2hKvnPf/6j//znP+Xe+6q0RUZGauPGjXr44YdVvXp1t+sEBARo9OjRpdgy59x000367rvv7OaFKsqAAQMUExNjNyzppczHx8epz2xF6dWrl9atW6crr7yylFrlOZXtvKhZs6YWLlyoSZMmuTykeEhIiD766CO988475T76g6fUrFlTb731lmJiYtwevcDHx0ezZ8/WU0895dL7gI+Pj5588knNnj3b7fePVatWmUbtaN68uYYPH+5WLQDwFEI0AACqmEOHDmnFihV67LHH1L17d/n5+RW7j7e3t6KiojRz5kxt27ZN3bt3d/p4oaGhmjdvnjZv3qzJkycrOjpaTZs2dTiUozN69eql7du367PPPlOPHj2KrOHv768hQ4Zo8eLFWrZsmZo0aeLy8STJz89PTz/9tA4dOqSpU6dq0KBBat68uQICAlS9enU1bdpU11xzjT788EPFx8ebhv0pOHyOpGLnCCorzz33nNasWaOrr766yIsKderU0WOPPaa9e/cyF0EJNWzYUIsXL9by5cs1fPjwIi/oeXl5qWvXrvrwww+1c+dO9evXrxxb6hm+vr4KDQ1V8+bNFRUVpX//+9+aN2+ejh8/rjfeeEM1atTwdBOrnMDAQP3zn/80rfvss89KVNNR2NWnTx+nL9RWhBBNkjp06KBt27Zp0aJF+uc//6mrrrpKDRo0UFBQ0CVxIdbb21svv/yy4uLi9MYbb+iGG26wDfHszOeEiiQwMFBTp05VbGysnnzySbVr186pv2GDBg10++2368svv9TJkyf1zTfflENr7d1yyy3avn277rzzTvn7+xe6XefOnfXFF19o5cqVatCgQTm2sOKrWbOmTp8+rQULFuiBBx5Qp06dnLrAX61aNV1//fWaO3eu1q1bp1atWpVDa8tHZTsv/Pz89N5772nXrl0aN25csXP9XXbZZZo8ebIOHjyoCRMmlEsbS0OTJk20aNEiPfHEE+rdu7fTX3asVq2arrrqKk2bNk3Hjh3Tv//9b7f+ryrIx8dHr776qv766y+NHj26yNcff39/jR49Wn/99Zdee+21En0Bw/o5ZOLEiSW+LwBQ3rwMwzA83QgAAFB2srOztW/fPh06dEjHjx9Xenq6cnNzVaNGDdWuXVutW7dWhw4dXPpWdHk6ffq0Nm7cqISEBJ06dUq+vr6qW7euGjdurJ49eyowMNBjbUtISLC7sPXjjz/qxhtv9FCLLkhKStLatWt19OhRpaamqnr16mrQoIHatWunzp07849rGcnOztaGDRt09OhRnTp1Sjk5Oapbt67q169vm48EKGvHjx/XZZddZpv/KiQkRMeOHfPoayVQ1k6dOqU///xTp06d0unTp5WZmakaNWooODhYzZo1U5s2bdSwYUNPN9PO2bNntWHDBu3du1cpKSkKCgpSo0aN1Llz5yoV8JSHjIwM7du3TwcPHlRCQoLS09OVn5+vmjVrKjQ0VG3btlW7du1K1FOrsqlM50V+fr7++usvHTx4UImJiUpPT1ft2rVVr149dejQocqcD4ZhKDY2VrGxsTp69KiSk5N19uxZeXt7KyQkRCEhIWrevLm6dOlS5s/Vs2fPatOmTdq7d69t3t7Q0FC1bt1aPXr0KJXPDUlJSWrSpInpM8nhw4dLPHIKAJQ3QjQAAAA3ffvttxozZoxp3eHDhx0OfwYA5eWRRx7R+++/b1t+//33NXHiRA+2CAAAXGqee+45vfzyy7blKVOm6Omnn/ZgiwDAPYRoAAAAburVq5c2bNhgW27UqJGOHTvmwRYBwIVesi1atFBmZqYkKTw8XAcPHnR57hkAAAB3ZGRkKCIiwtbLrV69ejp06FCFHf0EAIrCWD4AAABu+Oyzz0wBmiTdddddHmoNAPw/9evX17///W/b8uHDh/XVV195sEUAAOBS8tFHH9kCNEl6/vnnCdAAVFr0RAMAAJe0OXPmqHv37oqIiHB6n2+//Vbjx49Xdna2bZ23t7cOHjyoZs2alUErAcA1WVlZatu2reLi4iRJTZo00f79++Xv7+/ZhgEAgCotJSVFLVq0UEpKiiSpU6dO2rx5s3x8fDzcMgBwDz3RAADAJe37779XZGSkRo4cqe+++870jcmCcnNztXr1at1www0aM2aMKUCTpCeeeIIADUCFERAQoHfffde2fPToUU2dOtWDLQIAAJeCV1991RagSdK0adMI0ABUavREAwAAl7SbbrpJP/74o2lds2bNFB4erpCQEOXk5Oj06dPauXOnzp4967BGjx499Ntvv8nPz688mgwAAAAAAIBywMzSAAAAFnFxcbYh0Ipz7bXXavbs2QRoAAAAAAAAVQzDOQIAgEta9+7dVatWLZf3a968uT777DP99NNPqlGjRhm0DAAAAAAAAJ7EcI4AAOCSl5OTo99++03r1q3TX3/9pbi4OB0/flwZGRnKyclRzZo1FRoaqsaNG6t3794aMGCABg0aJF9fOvUDAAAAAABUVYRoAAAAAAAAAAAAgAXDOQIAAAAAAAAAAAAWhGgAAAAAAAAAAACABSEaAAAAAAAAAAAAYEGIBgAAAAAAAAAAAFgQogEAAAAAAAAAAAAWhGgAAAAAAAAAAACABSEaAAAAAAAAAAAAYOHr6QYAJWUYhvLz853e3sfHR5KUl5dXVk0CUAKco0DFxfkJVFycn0DFxfkJVFycn0DFxfkJd3l7e8vLy6vU6hGiodLLz89XQkKCU9t6e3urQYMGkqRTp065FL4BKHuco0DFxfkJVFycn0DFxfkJVFycn0DFxfmJkqhfv74thC0NDOcIAAAAAAAAAAAAWBCiAQAAAAAAAAAAABaEaAAAAAAAAAAAAIAFIRoAAAAAAAAAAABgQYgGAAAAAAAAAAAAWBCiAQAAAAAAAAAAABaEaAAAAAAAAAAAAIAFIRoAAAAAAAAAAABgQYgGAAAAAAAAAAAAWBCiAQAAAAAAAAAAABaEaAAAAAAAAAAAAIAFIRoAAAAAAAAAAABgQYgGAAAAAAAAAAAAWBCiAQAAAAAAAAAAABaEaAAAAAAAAAAAAIAFIRoAAAAAAAAAAABgQYgGAAAAAAAAAAAAWBCiAQAAAAAAAAAAABaEaAAAAAAAAAAAAIAFIRoAAAAAAAAAAABgQYgGAAAAAAAAAAAAWBCiAQAAAAAAAAAAABaEaAAAAAAAAAAAAIAFIRoAAAAAAAAAAABgQYgGAAAAAAAAAAAAWBCiAQAAAAAAAAAAABaEaAAAAAAAAAAAAIAFIRoAAAAAAAAAAABgQYgGAAAAAAAAAAAAWBCiAQAAAAAAAAAAABaEaAAAAAAAAAAAAICFr6cbAAAA3Jedna34+HiPHT8iIkL+/v4eOz4AAAAAAABQVgjRAACoxOLj4xUVFeWx48fExKh169YeOz4AAAAAAABQVhjOEQAAAAAAAAAAALAgRAMAAAAAAAAAAAAsGM4RAIAqZP40KTK87OofOCyNeKjs6gMAAAAAAAAVBSEaAABVSGS41K6lp1sBAAAAAAAAVH4M5wgAAAAAAAAAAABYEKIBAAAAAAAAAAAAFoRoAAAAAAAAAAAAgAUhGgAAAAAAAAAAAGBBiAYAAAAAAAAAAABYEKIBAAAAAAAAAAAAFoRoAAAAAAAAAAAAgAUhGgAAAAAAAAAAAGBBiAYAAAAAAAAAAABYEKIBAAAAAAAAAAAAFoRoAAAAAAAAAAAAgAUhGgAAAAAAAAAAAGBBiAYAAAAAAAAAAABYEKIBAAAAAAAAAAAAFoRoAAAAAAAAAAAAgAUhGgAAAAAAAAAAAGBBiAYAAAAAAAAAAABYEKIBAAAAAAAAAAAAFoRoAAAAAAAAAAAAgAUhGgAAAAAAAAAAAGBBiAYAAAAAAAAAAABYEKIBAAAAAAAAAAAAFoRoAAAAAAAAAAAAgAUhGgAAAAAAAAAAAGBBiAYAAAAAAAAAAABYEKIBAAAAAAAAAAAAFoRoAAAAAAAAAAAAgAUhGgAAAAAAAAAAAGBBiAYAAAAAAAAAAABYEKIBAAAAAAAAAAAAFoRoAAAAAAAAAAAAgAUhGgAAAAAAAAAAAGBBiAYAAAAAAAAAAABYEKIBAAAAAAAAAAAAFoRoAAAAAAAAAAAAgAUhGgAAAAAAAAAAAGBBiAYAAAAAAAAAAABYEKIBAAAAAAAAAAAAFoRoAAAAAAAAAAAAgAUhGgAAAAAAAAAAAGBBiAYAAAAAAAAAAABYEKIBAAAAAAAAAAAAFoRoAAAAAAAAAAAAgAUhGgAAAAAAAAAAAGDh6+kGAAAAFCY7O1vx8fEeO35ERIT8/f09dnwAAAAAAAB4DiEaAACosOLj4xUVFeWx48fExKh169YeOz4AAAAAAAA8h+EcAQAAAAAAAAAAAAtCNAAAAAAAAAAAAMCC4RwBAEClMX+aFBledvUPHJZGPFR29QEAAAAAAFB5EKIBAIBKIzJcatfS060AAAAAAADApYDhHAEAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACx8Pd0AAACqkuzsbMXHx5fb8WJjY8vtWAAAAAAAAMClhBANAIBSFB8fr6ioKE83AwAAAAAAAEAJMZwjAAAAAAAAAAAAYEGIBgAAAAAAAAAAAFgwnKOLEhMT9ffff2vXrl06cuSIkpKSlJ2dLX9/f4WFhalVq1bq06eP2rZt63LtAwcOaNWqVdq5c6eSk5MlSaGhoWrXrp0GDBigyMhIl2smJSUpJiZGmzdvtrU1NDRUzZo1U9++fdWtWzd5eXm5VDM7O1tr1qzRhg0bdOLECaWlpSk4OFgNGzZUz5491a9fP/n7+7vcVgCoiuZPkyLDy65+zCZp4pSyqw8AAAAAAABcqgjRnBQbG6vPP/9cBw4ccPj7zMxMZWZm6vDhw1q+fLnatWunBx98UHXq1Cm29vnz5/X1119ryZIlMgzD9Ltjx47p2LFjWrZsmYYNG6axY8fK19e5P1tMTIxmzJihc+fOmdYnJCQoISFBmzZtUocOHfTwww8rJCTEqZr79u3T1KlTlZiYaFqfnJys5ORk7dy5UwsWLNDEiRPVsmVLp2oCQFUWGS61K8OXwwOHy642AAAAAAAAcCljOEcnHT9+3C5Aa9iwobp3767o6Gj17NlTYWFhtt/t3LlTzzzzjBISEoqt/cknn2jx4sW2AK1+/frq06eP+vTpo/r160uSDMPQokWL9PnnnzvV3piYGH3yySe2AC0oKEjdu3fXgAED1KJFC9t227dv15QpU5SdnV1szbi4OL3yyiu2AM3Hx0edOnVSVFSUOnXqJB8fH0kXQrpXXnlFhw9zZRcAAAAAAAAAAFRO9ERzUYMGDRQVFaV+/fopNDTU9Lv8/HytWrXK1vsrJSVFU6dO1SuvvFLokIkxMTFas2aNJMnLy0t33nmnhg0bJm9vb1vNxYsX66uvvpJhGFq5cqXatm2r/v37F9rG48ePm8K2Pn366L777jMNsbhjxw698847yszMVHx8vL744gs98MADhdY8f/683nnnHVvYFhERoccff1z16tWzbZOYmKi33npL8fHxysrK0jvvvKP/+7//s4VrAAAAAAAAAAAAlQU90ZxUu3ZtPfDAA3rvvfc0YsQIuwBNkry9vRUVFaWHH37Ytm7//v3atm2bw5q5ubmaM2eObfmGG27QNddcYwvQLta85pprdP3119vW/fDDDzp//nyhbf3uu++Ul5cnSWrdurUeeughuznK2rdvr4kTJ9qW16xZo6NHjxZac8WKFbZedUFBQXrmmWdMAZok1atXT08//bSCgoIkSSdOnNDKlSsLrQkAAAAAAAAAAFBREaI5qW3bthowYIAp4CpM9+7dFRkZaVv+66+/HG73559/6vTp05KkwMBAjRo1qtCaN910kwICAiRJp06dKrRmamqqNm3aZFseO3ZsoW3u0qWLOnToIOlCj7dly5YVevylS5fabl933XWFzqFWu3ZtXXfddQ73AwAAAAAAAAAAqCwI0cpI69atbbdPnTrlcJs//vjDdrtXr16qXr16ofWqV6+unj172pZ///13h9v9+eeftrnVGjZsaGqHIwMGDHDYnoJOnjxp6qVWcJ/iasbHxzs1LxwAAAAAAAAAAEBFQohWRgrOgZafn+9wm507d9put23bttia7du3t93esWNHsTXbtWtXbM2C2yQlJenkyZN22xQ8VsOGDR0OZVlQaGioGjZsWGxbAQAAAAAAAAAAKipCtDJy+PBh2+2wsDC73589e1YpKSm25csuu6zYms2bN7fdTk5O1tmzZ+22OXbsmMPtCxMaGqpatWrZlh3Ni1ZwnTM1rdsVbBMAAAAAAAAAAEBlQIhWBpKSkky9rzp27Gi3zfHjx03LderUKbaudRtrDeu6unXrFlvTWtdRzRMnTpSoJiEaAAAAAAAAAACobHw93YCq6Msvv7QN4VinTh1deeWVdtukp6fbbgcEBKhatWrF1q1evboCAgKUlZUlScrIyDD9PicnRzk5Obblgj3MihISEmK7ba1pbWtp1SzO6dOnnTqGj4+PJMnb27k8uOB2zu4DoPxUhXO0srbbXd7e3mV6nz39eJb1/atMqsL5CVRVnJ9AxcX5CVRcnJ9AxcX5iYqEEK2UrVq1Sps2bbIt33777fLz87PbLjs723bbmQCt4LYXQ7SCNRwtO1u34HbWGu62tbiaxZkwYUKx23z88ccKCwuTj4+PGjRo4PIx6tWr5/I+AMpPZT1HnfkSQFVSp04dt16DneXpx7Os719lVVnPT+BSwPkJVFycn0DFxfkJVFycn/A0YtxSdPDgQX3++ee25d69e6tPnz4Ot83NzbXd9vV1PsssuG3BXmeOlp2tWzDks9aQ3GtrUe0EAAAAAAAAAACo6OiJVkoSExP1xhtv2AKniIgI3XvvvYVuXzC4On/+vNPHKbittVeYddnZugVDMkc9zdxpa1HtdMbHH39c7DYXh4zMy8vTqVOnnKrr7e1t+/ZCYmKibdhNABVDVThHk5KSPN2EcpWUlKSTJ0+WaX1PKuv7V5lUhfMTqKo4P4GKi/MTqLg4P4GKi/MTJVG3bl3bNFClgRCtFKSkpOjll19WamqqJKl+/fp6+umnFRgYWOg+/v7+ttuu9NQquG3BGo6Wna1bVE3rutKqWZywsDCXtnfnhTQ/P58XYKACq6znaGVsc0mU9d/J049nZX0eljUeF6Di4vwEKi7OT6Di4vwEKi7OT3gaIVoJpaen65VXXlFCQoIkqXbt2nr22WdVu3btIverWbOm7XZWVpZycnKK7bF17tw523xoklSjRg3T76tVq6Zq1arZAqwzZ844dR8uhn+OalrbWlo1AQCV0znLdyliY2PL9HhlXR8AAAAAAAAoDCFaCZw9e1ZTpkzRkSNHJF0Im5599lmnJjts1KiRaTkpKclunZV1SCtH2zdq1EhxcXGS5PQQhwXrOqrZsGFDbdmyxe2ajRs3dmofAEDFd8QysuH48eM90xAAAAAAAACgjHl7ugGVVXZ2tl577TUdOnRIkhQYGKhnnnlGTZo0cWr/wMBAU281Z75pX3Cb0NBQh8NFFgysnKmZnJxs6l3mqP0F110M6FxpKyEaAAAAAAAAAACobAjR3JCTk6M333xTe/fulSRVr15dTz75pC677DKX6rRr1852e+fOncVuv2vXLtvt9u3bF1uz4PbO1KxTp44aNGhQZM3jx48rJSWlyJrJyck6ceJEsW0FAAAAAAAAAACoqBjO0UXnz5/XO++8ox07dkiS/Pz89Pjjj+vyyy93uVa3bt20du1aSdKGDRt09913FzovWk5OjjZs2GDa15GuXbvq888/l2EYOn78uPbt26dWrVoV2obVq1eb9nWkYcOGatKkiY4ePWrbZ8SIEU7VDA8PV/369QvdFgBQuc2fJkWGl139mE3SxCllVx8AAAAAAAAoDCGaC/Lz8zV16lTb/GA+Pj569NFH1bFjR7fqde3aVWFhYTp9+rQyMzM1d+5cjR492uG2//vf/5SZmSlJqlu3rq688kqH24WEhKhHjx7auHGjJGnWrFl64YUX5OXlZbfttm3btG3bNkmSt7e3rr766kLbevXVV+uLL76QJC1YsEADBgxQSEiI3XapqalasGCBbXnIkCGF1gQAVH6R4VK7lmVX/8DhsqsNAAAAAAAAFIXhHJ1kGIY+/vhjWzjl5eWlhx56qNDeW87w8/PTzTffbFueN2+eFi1apPz8fNu6/Px8LVq0SD/99JNt3S233CJf38Lzz1tvvVU+Pj6SpN27d+vDDz9Udna2aZsdO3Zo6tSptuV+/foVOZ9bdHS0rUdZenq6XnvtNZ06dcq0zalTp/Taa68pIyND0oUebFFRUYXWBAAAAAAAAAAAqKjoieakX3/91TRMYYMGDbRnzx7t2bPHqf3Hjx/vcH1UVJR27dqlNWvWyDAMzZw5U4sXL1bLlhe+1r9//34lJCTYth8wYID69+9f5LEaN26se++9V5988okkac2aNdq8ebPat2+vgIAAHTt2TPv377dtHxERoXHjxhVZ09fXV4899piee+45ZWdnKzY2VhMnTlSHDh0UGhqq06dPa8eOHcrLy5MkBQQE6LHHHrOFeQAAAAAAAAAAAJUJIZqTzpw5Y1o+ceKETpw44fT+hYVoknT//fcrMDBQS5culWEYSkhIMAVn0oWeb0OHDtUdd9zh1PGioqJsody5c+eUmZmpTZs22W3XoUMHPfTQQwoICCi2ZrNmzfSf//xHU6dOVWJiovLy8rR161a77erXr6+HH35Y4eFlOEkOAAAAAAAAAABAGSJEqwB8fX11zz33qF+/foqJidGuXbuUnJwsSQoNDVXbtm0VFRWlyMhIl+oOGjRInTp1UkxMjDZv3qykpCRlZ2crJCREzZs3V79+/dStWzeH86UVplWrVnr77be1evVqbdiwQSdOnFB6erpq1qyphg0bqmfPnurfv7/8/f1daisAAAAAAAAAAEBFQojmpFtuuUW33HJLmR4jMjLS5aCsOHXq1Cn1tvv7+2vIkCEaMmRIqdUEAAAAAAAAAACoSLw93QAAAAAAAAAAAACgoiFEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAghANAAAAAAAAAAAAsCBEAwAAAAAAAAAAACwI0QAAAAAAAAAAAAALQjQAAAAAAAAAAADAwtfTDQAAoKxkZ2crPj6+XI8ZGxtbrscDAAAAAAAAUDYI0QAAVVZ8fLyioqI83QwAAAAAAAAAlRDDOQIAAAAAAAAAAAAWhGgAAAAAAAAAAACABcM5AgAuGfOnSZHhZXuMmE3SxCllewwAAAAAAAAAZY8QDQBwyYgMl9q1LNtjHDhctvUBAAAAAAAAlA+GcwQAAAAAAAAAAAAsCNEAAAAAAAAAAAAAC4ZzBAAA+P+dyzEvx8bGluvxIyIi5O/vX67HBAAAAAAAgGOEaAAAAP+/IyfNy+PHjy/X48fExKh169blekwAAAAAAAA4xnCOAAAAAAAAAAAAgAUhGgAAAAAAAAAAAGDBcI4AAACFmD9Nigwvu/oHDksjHiq7+gAAAAAAAHAfIRoAAEAhIsOldi093QoAAAAAAAB4AsM5AgAAAAAAAAAAABaEaAAAAAAAAAAAAIAFIRoAAAAAAAAAAABgQYgGAAAAAAAAAAAAWBCiAQAAAAAAAAAAABaEaAAAAAAAAAAAAIAFIRoAAAAAAAAAAABgQYgGAAAAAAAAAAAAWBCiAQAAAAAAAAAAABaEaAAAAAAAAAAAAIAFIRoAAAAAAAAAAABgQYgGAAAAAAAAAAAAWBCiAQAAAAAAAAAAABaEaAAAAAAAAAAAAIAFIRoAAAAAAAAAAABgQYgGAAAAAAAAAAAAWBCiAQAAAAAAAAAAABaEaAAAAAAAAAAAAIAFIRoAAAAAAAAAAABgQYgGAAAAAAAAAAAAWBCiAQAAAAAAAAAAABaEaAAAAAAAAAAAAIAFIRoAAAAAAAAAAABgQYgGAAAAAAAAAAAAWBCiAQAAAAAAAAAAABaEaAAAAAAAAAAAAIAFIRoAAAAAAAAAAABgQYgGAAAAAAAAAAAAWBCiAQAAAAAAAAAAABaEaAAAAAAAAAAAAIAFIRoAAAAAAAAAAABg4evpBlQ2+fn5OnLkiA4ePGj7iY+PV15eniSpbdu2euGFF5yqlZiYqIceesil49evX18ffPCB09sfPXpUK1eu1LZt23T69GmdP39eoaGhatmypfr3768OHTq4dHxJSktL06pVq/T7778rMTFRmZmZqlWrlpo2barevXurV69e8vXlqQUAAAAAAAAAACovkg4X/P777/rggw907tw5TzfFKXPnztWcOXNsAd9FJ06c0IkTJ7RmzRr17t1b9913nwICApyquXnzZn388cdKS0szrU9KSlJSUpK2bNmihQsXatKkSWrUqFGp3RcAAAAAAAAAAIDyRIjmgrNnz5ZZgBYQEKB+/foVu11wcLBT9b7//nv9+OOPtuXatWvr8ssvl5+fn2JjY3XkyBFJ0rp165SRkaEnn3xSPj4+Rdbctm2b3n77bVsoV716dbVv317BwcFKSEjQ7t27ZRiGYmNj9fLLL2vKlCkKDQ11qr0AAAAAAAAAAAAVCSGaG2rVqqUWLVooMjJSLVq00LZt27Ro0aIS1axRo4bGjx9fKu3bvn27KUC7/vrrNXr0aNMQi2vXrtXHH3+s3Nxcbdu2TfPmzdNNN91UaM309HS99957tgCtQ4cOmjRpkinUi4uL05tvvqmkpCSdPn1a06ZN03PPPVcq9wkAAAAAAAAAAKA8EaK5oHPnzvroo49Up04d0/r9+/d7qEWOffvtt7bbvXr10tixY+226dOnj86ePavp06dLkhYsWKCrr7660J5uP/30kzIzMyVdmJftiSeeUPXq1U3bNGvWTJMnT9aTTz6pvLw87dixQ9u2bVOnTp1K664BAAAAAAAAAACUC29PN6AyCQkJsQvQKpoDBw7o4MGDkiQvLy+HAdpFgwcPVsOGDSVJWVlZWrNmjcPtzp8/rxUrVtiWb731VrsA7aKIiAj179/ftrx06VKX7wMAAAAAAAAAAICneTxEmzt3rpKTkz3djCrjjz/+sN3u2LFjkaGfl5eXKfAquG9Bu3btsvVCCwgIUI8ePYpsw4ABA2y3t23bpuzsbGeaDgAAAAAAAAAAUGF4fDjH77//XnPmzFGnTp0UHR2tK664Qt7eHs/2Kq2dO3fabrdt27bY7du1a2e7vXfvXuXm5srPz8+0zY4dO2y3W7VqZfd7q8jISFWvXl3nzp1Tbm6u9u3bp44dOzp7FwAAuGScyzEvx8bGlnsbIiIi5O/vX+7HBQAAAAAAqOg8HqJJUn5+vrZs2aItW7YoJCREAwYM0MCBA9WgQQNPN63c5OXl6e+//9bBgweVnp4uPz8/1axZUy1atFBkZGSxwdVFx44ds91u3rx5sdsX3CY/P18nTpxQeHh4iWr6+voqPDzcNlfcsWPHCNEAAHDgyEnz8vjx48u9DTExMWrdunW5HxcAAAAAAKCiqxAhWkGpqamaP3++5s+fr3bt2mnQoEHq0aOHfH0rXFNLVXJysl555RWHvwsKCtKQIUM0YsSIIr8pfubMGduwi5JUt27dYo9brVo1BQcHKy0tTdKFwMsaoh0/ftx229k54cLCwkwhGgAAAAAAAAAAQGXi8WTq8ccfV0xMjLZs2aL8/HzT73bu3KmdO3eqRo0a6tu3r6KiouwCnktBZmam5s6dq40bN+qJJ55Qo0aNHG6Xnp5uWq5Vq5ZT9UNCQmwhWkZGht3vC64LCQlxuqaj/Z11+vRpp47h4+MjSU4PAVpwO4YNBSqe0j5HOc+B4nl7ezt1rvAeClRcnJ9AxcX5CVRcnJ9AxcX5iYrE4yFa165d1bVrV6WmpiomJkarVq1SQkKCaZuMjAwtXrxYixcvVmRkpAYNGqRevXpVifk7AgIC1KNHD3Xu3FnNmjVTaGiofH19debMGe3fv1/Lli3T9u3bJV3oEfbqq6/q1VdfVXBwsF2t7Oxs03K1atWcakPB7aw1rOtKq2ZxJkyYUOw2H3/8scLCwuTj4+PW0J/16tVzeR8A5ac0zlFnAnmgIpk/TYos4+8LHTgsjXjo/y3XqVPH5fdR3kOBiovzE6i4OD+BiovzE6i4OD/haR4P0S4KCQnRjTfeqBtvvFE7duxQTEyMfv/9d+Xm5pq2O3DggA4cOKAvv/xSvXr1UlRUlFq2bOmhVpdM7dq19emnnzoMA8PCwhQWFqarrrpKy5cv1+effy7DMJSYmKhvv/1W999/v90+1sfK2SEwC863lpOTY/f7guvcqWltFwAAcCwyXGpXOT/WAAAAAAAAVDkVJkQrqH379mrfvr0yMzO1Zs0arVy5UvHx8aZtsrOzFRMTo5iYGDVt2lSDBg1S3759VaNGDQ+12nV+fn6msKkw0dHROnXqlObNmydJWrVqlUaPHm03tKK11vnz553qOVYw5HK0fbVq1XTu3DlbTWcUrOnMfbT6+OOPi93m4v3Py8vTqVOnnKrr7e1t+/ZCYmKi3RCiADyrtM/RpKSk0mgWUKUlJSXp5MmTxW7HeyhQcXF+AhUX5ydQcXF+AhUX5ydKom7durZpoEpDhQzRLgoKCtKwYcM0bNgwHTx4UCtWrND69euVlZVl2u7IkSOaOXOmZs2ape7duysqKkrt27f3UKvLxsiRI7Vw4ULl5OQoPz9ff//9t/r162faxtqjLScnx6kQrWBPM0e94vz9/W0hmqOeau7ULE5YWJhL27vzQpqfn88LMFCBlcY5yjkOFM+dc433UKDi4vwEKi7OT6Di4vwEKi7OT3hahQ7RCmrRooVatGihu+66Sxs2bFBMTIz27t1r2iY3N1fr1q3TunXrVL9+fUVFRWnAgAF2PbYqI39/f7Vs2VI7d+6UJB07dsxum5o1a5qWz5w541TPvNTUVNttR9vXqFFDZ86csdu2JDUBAAAAAAAAAAAqskoTol1UvXp1DRgwQAMGDNDx48e1YsUKrV69Wunp6abtEhISNHv2bP3www/q2rWrhg4dqrZt23qo1aWjYBhovb+SVKtWLQUFBSkzM1OSdOrUKTVu3LjImjk5OUpLS7MtO9q+UaNGttDO2aHRTp8+XWRNAAAAAAAAAACAiszb0w0oiTNnzujMmTO2oQYdycvL06ZNm/Tiiy/qpZde0tGjR8uxhaWr4P2sXr26w20KBlZxcXHF1oyNjbXd9vb2VsOGDYusWXD7wuTl5enw4cMO9wcAAAAAAAAAAKgMKl2Ilpqaqp9++kmPPPKIXnjhBf32229283QFBgY6HMJx586dmjx5stasWVNOrS1dBQOs2rVrO9ymXbt2ttsXh34syq5du2y3W7duLT8/P7ttCs4vt2/fPp0/f77ImgcPHrQFfn5+fmrVqlWx7QAAAAAAAAAAAKhIKsVwjoZhaMuWLVqxYoW2bNmivLw8h9u1bNlS0dHR6tWrl3x9fW37/PXXXzIMQ5J0/vx5ffzxx2ratKmaN29ennejRP7++2/TEIkFw7KCunXrpnnz5kmStm/frtOnTyssLKzQuqtWrTLt60jbtm0VGBios2fPKisrS5s2bVLv3r2dqtmxY0f5+/sXui0AAAAAAAAAAEBFVKFDtMTERMXExGj16tVKTk52uE1gYKD69u2r6OhohYeHm3535ZVX6sorr9SJEyf01Vdf6a+//pIk5efna+HChXrooYfK/D4U5mJvLl/f4v8EaWlp+vzzz23LjRs3LjQAjIyMVIsWLXTw4EHl5+dr1qxZmjhxosNtly9frhMnTkiSAgIC1K9fP4fb+fr6atCgQVqwYIEk6YcfflC3bt1UrVo1u20PHz5sCtGGDBlS7P0DAAAAAAAAAACoaCrccI7nz5/X2rVr9dJLL2nixImaN2+ewwAtMjJS999/vz799FPdc889dgFaQQ0bNtTkyZPVpUsX2zpnhjosS8nJyXr44Yf1008/6dSpUw63MQxDf/31l5566iklJCRIkry8vHTHHXfI27vwP93tt99uu7127VrNmjXLbgjG9evXa+bMmbbl6667TsHBwYXWHDFihIKCgiRJJ06c0Jtvvqn09HTTNvHx8XrjjTdsx2rXrp06d+5caE0AAAAAAAAAAICKqsL0RIuPj9eKFSu0du1aZWZmOtwmICDA1ussIiLC5WMMHz5cW7ZskSSdOXPGrXa+9tprdqFeamqq7fbBgwf1+OOP2+331FNPKTQ01LTu9OnTmjVrlmbNmqW6desqPDxcNWvWlK+vr9LS0rR//36lpKSY9hkzZoyuuOKKItvYoUMH3XjjjZo7d64k6aefftKaNWvUpk0b+fn56dChQzpy5Iht+44dO2rkyJFF1qxZs6YmTZqkN954Q3l5efr777/1wAMPqEOHDgoODlZCQoJ27dplGzYzNDRUDz/8cJE1AQAAAAAAAAAAKiqPh2jLli1TTEyMDh06VOg2kZGRGjRokHr37q3q1au7fax69erZbhc2r1pxjh49WmjPMUk6d+6c4uPj7dZbe4JZnTp1qsi6oaGh+sc//qGuXbs61c5bb71Vfn5++t///qe8vDylpKRo/fr1dtv16tVL9913n3x8fIqt2blzZz322GP6+OOPlZ6ernPnzunPP/+026558+aaNGmSXWgIAAAAAAAAAABQWXg8RJs+fbrD9QEBAerTp4+io6PVrFmzUjmWM0FRealbt67efvtt7du3T/v27dORI0eUnp6u9PR05eTkKCAgQLVr11aLFi3UuXNnde/e3an50y7y8vLSqFGj1KNHD8XExGjbtm06ffq08vLyFBISolatWql///7q2LGjS+3u2rWr3n33Xa1cuVK///67EhMTlZmZqVq1aqlp06bq3bu3evfu7VJbAQAAAAAAAAAAKpoKl3S0aNFC0dHRJe515oi/v7/69+9fohoffvhhqbTFy8tL4eHhCg8PV3R0dKnUdKRJkya68847S7VmcHCwbrjhBt1www2lWhcAAAAAAAAAAKCiqBAhmr+/v/r06aPBgweXWq8zR2rWrKkHHnigzOoDAAAAAAAAAACgavB4iHbfffepd+/e8vf393RTAAAAAAAAAAAAAEkVIEQbNGiQp5sAAAAAAAAAAAAAmHh7ugEAAAAAAAAAAABARUOIBgAAAAAAAAAAAFh4fDjHgwcP6rPPPpMkeXt766mnnlJwcLBLNc6cOaPXX39d+fn5kqQHH3xQ4eHhpd5WAAAAAAAAAAAAXBo83hPt119/VVxcnOLi4lS3bl2XAzRJqlWrlsLCwmx1fv311zJoKQAAAAAAAAAAAC4VHg3RDMPQ5s2bbcsDBgxwu1ZUVJTt9h9//FGSZgEAAAAAAAAAAOAS59EQ7ejRo0pPT5ck+fn5qWPHjm7X6tixo3x9L4xOmZqaqmPHjpVKGwEAAAAAAAAAAHDp8WiIduTIEdvt8PBwWwjmDl9fX0VERDisDQAAAAAAAAAAALjCoyFaSkqK7XZoaGiJ6xWskZycXOJ6AAAAAAAAAAAAuDR5NEQ7d+6c7Xb16tVLXK9atWq229nZ2SWuBwAAAAAAAAAAgEuTR0O0oKAg2+2Lc6OVREZGhu22v79/iesBAAAAAAAAAADg0uTREC04ONh2Oz4+vsT1CtYoWBsAAAAAAAAAAABwhUdDtGbNmtlup6amav/+/W7X2rdvn1JTU23LTZs2LUHLAAAAAAAAAAAAcCnzaIjWsGFDhYWF2Za//fZbt2t99913ttshISGKiIgoUdsAAAAAAAAAAABw6fJoiCZJ/fr1s93etWuXZsyY4XKNL7/8Ujt37rQt9+3bt1TaBgAAAAAAAAAAgEuTx0O066+/XoGBgbblJUuW6OWXX9bhw4eL3ffIkSOaMmWKFi1aZFsXEBCgESNGlEVTAQAAAAAAAAAAcInw9XQDAgMDNWHCBL3zzju2dTt27NDjjz+uyMhIXX755WrcuLGCgoLk5eWlzMxMHTt2TLt379aBAwdMtby8vHT//ferRo0a5X03AAAAAAAAAAAAUIV4PESTpO7du+vOO+/U119/LcMwbOsPHDhgF5QVxsvLS3fccYeuuuqqsmomAAAAAAAAAAAALhEVIkSTpGuuuUaNGzfWhx9+qLS0NJf2rVWrlh566CF17NixjFoHAAAAAAAAAACAS0mFCdEkqXPnzvrwww+1fPlyrVixQkePHi1y+6ZNmyo6OlpRUVGqVq1aObUSAAAAAAAAAAAAVV2FCtEkqVq1aho+fLiGDx+utLQ0HThwQKmpqUpPT5ck1ahRQyEhIWrZsqWCg4M93FoAAAAAAAAAAABURRUuRCsoODhYV1xxhaebAQAAAAAAAAAAgEuMt6cbAAAAAAAAAAAAAFQ0hGgAAAAAAAAAAACABSEaAAAAAAAAAAAAYEGIBgAAAAAAAAAAAFj4eroBBRmGoW3btmnXrl2Kj49XWlqazp49q7y8PJfqeHl56YMPPiijVgIAAAAAAAAAAKCqqzAh2tq1azVr1iwlJyd7uikAAAAAAAAAAAC4xFWIEO3LL7/UokWLPN0MAAAAAAAAAAAAQFIFCNHWrFnjMEDz9fVVgwYNFBgYKF9fjzcTAAAAAAAAAAAAlxCPp1OzZ882Lbdu3Vo33XST2rdvL29vbw+1CgAAAAAAAAAAAJcyj4Zohw4dMs2B1rNnT02aNEleXl4ebBUAAAAAAAAAAAAudR7t6hUXF2e7Xa1aNd17770EaAAAAAAAAAAAAPA4j4ZoaWlpttutWrVSUFCQB1sDAAAAAAAAAAAAXODREC0wMNB2OyQkxHMNAQAAAAAAAAAAAArwaIgWFhZmu52VleXBlgAAAAAAAAAAAAD/j0dDtMsvv1x+fn6SzPOjAQAAAAAAAAAAAJ7k0RAtKChIPXr0kCSdPn1au3bt8mRzAAAAAAAAAAAAAEkeDtEk6Y477lBwcLAkaebMmcrOzvZwiwAAAAAAAAAAAHCp83iIFhISokcffVQBAQGKj4/XlClTlJSU5OlmAQAAAAAAAAAA4BLm6+kGJCUlqV69epo0aZKmTZumffv26ZFHHlHPnj3VuXNnNW7cWIGBgfL2di3vq1OnThm1GAAAAAAAAAAAAFWdx0O0Bx980G5dbm6u1qxZozVr1rhV08vLS999911JmwYAAAAAAAAAAIBLlMeHcywLhmF4ugkAAAAAAAAAAACoxKpkiAYAAAAAAAAAAACUhMeHc7zppps83QQAAAAAAAAAAADAxOMh2s033+zpJgAAAAAAAAAAAAAmDOcIAAAAAAAAAAAAWBCiAQAAAAAAAAAAABaEaAAAAAAAAAAAAIAFIRoAAAAAAAAAAABg4evpBjiSk5OjPXv2aO/evTp16pQyMjKUnZ0tSXruuec83DoAAAAAAAAAAABUdRUqRMvIyND8+fMVExOjzMxMp/dbu3atvv76a0lSjRo19NZbb8nbm052AAAAAAAAAAAAcE+FSZp27Nihf//731qwYIFLAZokde/eXefPn1dqaqqOHj2qzZs3l1ErAQAAAAAAAAAAcCmoECHazp079frrryslJcW03sfHRzVr1ix2/2rVqql379625Y0bN5Z6GwEAAAAAAAAAAHDp8PhwjmlpaXr77beVm5trW9ejRw8NHz5ckZGRSk5O1sMPP1xsne7du2vp0qWSpO3bt5dZewEAAAAAAAAAAFD1eTxEmzNnjs6ePStJ8vLy0v33368BAwbYfu/l5eVUncsvv1ze3t7Kz8/XmTNnlJiYqHr16pVFkwEAAAAAAAAAAFDFeXQ4x7y8PK1Zs8a2fMMNN5gCNFf4+vqqcePGtuWjR4+WtHkAAAAAAAAAAAC4RHk0RNu7d6+ys7MlSX5+fho5cmSJ6oWFhdlunz59ukS1AAAAAAAAAAAAcOnyaIiWkJBgu92yZUv5+/uXqF5gYKDtdlZWVolqAQAAAAAAAAAA4NLl0RDtzJkzttu1a9cucT3DMGy38/PzS1wPAAAAAAAAAAAAlyaPhmjVqlWz3c7JySlxvfT0dNvtmjVrlrgeAAAAAAAAAAAALk0eDdGCg4Ntt0+dOlXienFxcbbbtWrVKnE9AAAAAAAAAAAAXJo8GqI1adLEdvvw4cNKS0tzu9bevXuVkZFhW27ZsmWJ2gYAAAAAAAAAAIBLl0dDtGbNmikkJETShTnMfvnlF7drzZ0713Y7PDycnmgAAAAAAAAAAABwm0dDNEnq27ev7faCBQv0999/u1zjl19+0datW23L0dHRpdE0AAAAAAAAAAAAXKI8HqKNHDlSgYGBki70RnvjjTe0YMEC5eXlFbtvRkaGvvjiC3399de2daGhoRo0aFCZtRcAAAAAAAAAAABVn6+nGxAUFKQJEybo//7v/2QYhs6fP69vvvlGP/30k6688kqFhoaatl+2bJnS09O1f/9+7dy5U+fOnbP9ztfXV5MmTZKvr8fvFgAAAAAAAAAAACqxCpE2de/eXePHj9cXX3yh/Px8SVJ6erpWrVplt+306dMd1vDx8dF9992nyy+/vCybCgAAAAAAAAAAgEtAhQjRJGnw4MFq2rSpPvjgAyUlJbm0b+3atTVp0iS1adOmjFoHAAAAAAAAAACAS0mFCdEk6fLLL9f777+v3377TcuWLdOhQ4dkGEah2zdp0kTR0dGKjo6Wn59fObYUAAAAAAAAAAAAVVmFCtGkC/OaDRw4UAMHDlRWVpb279+v06dPKyMjQ3l5eapRo4aCg4PVsmVL1a5d29PNBQAAAAAAAAAAQBVU4UK0ggICAtSxY0dPNwMAAAAAAAAAAACXGG9PNwAAAAAAAAAAAACoaAjRAAAAAAAAAAAAAAtCNAAAAAAAAAAAAMCCEA0AAAAAAAAAAACw8PV0Az766KNSr+nl5aUJEyaUel0AAAAAAAAAAABcGjweoq1evbpM6hKiAQAAAAAAAAAAwF0M5wgAAAAAAAAAAABYEKIBAAAAAAAAAAAAFh4fzvH77793aXvDMJSZmamjR49q69atWrFihdLS0hQUFKQHHnhAXbt2LaOWAgAAAAAAAAAA4FJR6XqieXl5qUaNGrr88ss1evRovffee7riiiuUmZmpd955R7/99punmwgAAAAAAAAAAIBKrtKFaFZBQUF67LHH1KpVK+Xn5+uTTz5RXFycp5sFAAAAAAAAAACASqzSh2iS5Ovrq3HjxkmSzp8/7/IQkQAAAAAAAAAAAEBBVSJEk6TLLrtMDRo0kCRt3bpVKSkpHm4RAAAAAAAAAAAAKqsqE6JJUpMmTSRJ+fn52r9/v4dbAwAAAAAAAAAAgMqqSoVo1atXt91OSkryYEsAAAAAAAAAAABQmVWpEO306dO22+fPn/dgSwAAAAAAAAAAAFCZVZkQLTk52TSEY3BwsAdbAwAAAADA/9fevYd5Wdb74v/MCYYBhrPKwQFkAOWkpqaBCZIta6/yiNblpsPe7NzJUqu1c1d62cpVZrVcKyuT0tV26b4oyzQPSbsTAgkeopQ4CQIjg4LIDKfhMOf5/cGP75rvw5yAmfkOw+t1XV3X83y/9/O57zHu+c7M+3nuGwAAOJF1ixCttrY2Hnjggairq0u9VlxcnMERAQAAAAAAcCLLzfQAjsfOnTvjtddei2eeeSa2bduWev3000+PESNGZHBkAAAAAAAAnMgyHqLdfPPNR31NXV1dHDhwICorK494LysrK2bPnt0eQwMAAAAAAOAklfEQbceOHe1a71Of+lScc8457VoTgPZRWVkZmzdvbvb97OzsKC8vj4iIsrKyqK+vP67+SkpKjut6AAAAAODklfEQrb2MHTs2Zs+eHWeeeWamhwJAMzZv3hwzZ87M9DAAAAAAAFqV8RDtrLPOiqysrKO6Jjs7O3r16hWFhYUxatSomDhxYgwfPryDRggAAAAAAMDJJuMh2te+9rVMDwEAAAAAAADSZDxEA+Dk9dT9EcVFHVd/4csRt97dcfUBAAAAgO5LiAZAxhQXRUwc23H1N5R2XG0AAAAAoHvLzvQAAAAAAAAAoKsRogEAAAAAAECCEA0AAAAAAAASMr4n2po1azLW94QJEzLWNwAAAAAAAF1XxkO0u+66KyP9ZmVlxWOPPZaRvgEAAAAAAOjaTtrlHBsaGjI9BAAAAAAAALqokzZEAwAAAAAAgOZkfDnHm266KSIi9u7dG0899VTs378/9d6oUaNizJgxcdppp0VBQUFERBw4cCDeeeed2LhxY7z55puptr17946rr746+vbt26njBwAAAAAAoPvJeIg2Y8aMKC0tjXvuuScVoF188cUxa9asGDp0aIvXbtu2LR5//PFYunRp7N+/P5577rn4yle+EiNHjuyMoQMAAAAAANBNZXw5xz179sTdd98dO3fujJycnLjlllvilltuaTVAi4gYOnRo3HrrrXHLLbdETk5O7Nq1K775zW/G7t27O37gAAAAAAAAdFsZD9F+/vOfp0Kva6+9Ni6++OKjrnHxxRfHNddcExERu3fvjscee6w9hwgAAAAAAMBJJqMhWmVlZSxdujQiIvLz8+OjH/3oMde64oorIj8/PyIili1bFpWVle0yRgAAAAAAAE4+GQ3RXn/99VTYNXbs2OjRo8cx1+rRo0eMGzcuIiKqqqpi7dq17TJGAAAAAAAATj4ZDdHKyspSx4WFhcddr2/fvqnj8vLy464HAAAAAADAySmjIdq+fftSxxUVFcddr3GNxrUBAAAAAADgaGQ0ROvXr1/qeP369VFTU3PMtaqrq2P9+vVN1gYAAAAAAICjkdEQbcSIEanjysrKeO6554651nPPPZfaXy1ZGwAAAAAAAI5GRkO0sWPHxuDBg1Pnjz/+eLz00ktHXeell16Kxx9/PHU+ePDgGDt2bLuMEQAAAAAAgJNPRkO0iIhrr702dVxbWxv33XdfzJs3L959991Wr92+fXs88MADcd9990VdXV3q9VmzZnXIWAEAAAAAADg55GZ6ADNnzozly5fHX/7yl4iIaGhoiEWLFsWiRYvijDPOiDFjxsSpp54avXr1ioiIgwcPxvbt22Pjxo2xadOmI+qdd955cemll3bq1wAAAAAAAED3kvEQLSLiH//xH+O73/1uLF++PO31TZs2NRmUNef888+PL3zhC+09PAAAAAAAAE4yXSJEy83Njdtuuy1+97vfxc9+9rM4cODAUV1fUFAQN9xwQ3zwgx/soBECAAAAAABwMukSIdphf/d3fxcXX3xxLFmyJJYuXRqbNm2K2traJtvm5ubGGWecERdffHG8//3vj4KCgk4eLQAAAAAAAN1VlwrRIg49VfahD30oPvShD0VtbW289dZbsXv37tTTaQUFBdG/f/8YMWJE5OZ2ueEDAAAAAADQDXTpFCo3NzdGjRqV6WEAAAAAAABwksnO9AAAAAAAAACgqxGiAQAAAAAAQEKXXs6xtrY2du3aFfv27YvKyspoaGiICRMmZHpYAAAAAAAAdHNdLkTbt29f/OEPf4i//OUvsWnTpqitrU29l5WVFY899tgR12zatCk2bdoUEREFBQUxderUThsvAAAAAAAA3U+XCtGeeuqpeOKJJ6K6urrJ9xsaGpp8PTs7Ox566KGIOBS0jR07NoYMGdJh4wQAAAAAAKB76xJ7otXW1sY3v/nN+NnPftZsgNaSUaNGxZlnnhkRh4K2JUuWtPcQAQAAAAAAOIl0iRDtBz/4QaxYsSLttUmTJsWsWbPiYx/7WJtqNF7C8dVXX23X8QEAAAAAAHByyfhyjsuXL4+XXnopdV5UVBS33HJLFBUVRUTEjh074uc//3mrdc4777z4P//n/0RExMaNG6OysjLy8/M7ZtAAAAAAAAB0axkP0R5//PHU8YgRI+Kuu+6KgoKCo64zePDg6Nu3b1RUVER9fX289dZbUVxc3J5DjYiI+vr62LJlS2zcuDH1v82bN0ddXV1EREyYMCG+9rWvHVPtlStXxuLFi+ONN96InTt3Rm5ubgwaNCjOPvvsmDlzZgwfPvyoa7711lvx/PPPx4oVK6K8vDxqa2tj4MCBMXbs2Jg+fXpMnjz5qGvu3bs3Fi1aFK+88kq8++67sX///ujXr1+cfvrpMW3atJg6dWrk5mb8nxYAAAAAAMAxy2jSUV5eHm+++Wbq/DOf+cwxBWiHjRgxItauXRsREVu3bm33EO2VV16JH/zgB1FVVdWudQ8cOBAPPvhgLFu2LO31qqqq2L9/f5SWlsaCBQvi+uuvj6uvvrrNdZ988sl4/PHHUwHfYdu2bYtt27bFkiVLYtq0aXHjjTdGr1692lTzL3/5S8ybNy/27t2b9npZWVmUlZXFq6++Gs8991x87nOfi2HDhrV5rABA56hKbD9bUlLSpuuys7OjvLw8Ig597tfX1x9T/yNHjrRaAAAAAHBCyGiItn79+tTxKaecEmeeeeZx1evTp0/qeN++fcdVqykHDhxo9wCttrY27r333li1alXqtdNPPz1Gjx4dNTU18frrr8euXbuirq4ufvazn0VdXV3MmjWr1bo///nP44knnkidDxgwIM4888zIy8uLkpKS2LJlS0RELF26NPbt2xdf/vKXIycnp8WaK1asiHvvvTcVyvXs2TMmTZoUhYWFsX379li7dm00NDRESUlJfP3rX4+77747Bg4ceCz/WQCADrLlnfTzOXPmdGr/CxcujPHjx3dqnwAAAADHIqMh2u7du1PHh/dAOx6N72pu77CrsX79+sWYMWOiuLg4xowZEytWrIgFCxYcU60nnngiFaDl5eXF3LlzY9q0aan3a2tr47HHHotnnnkmIg4tfzlhwoSYMGFCszVXrlyZFqBdccUV8fGPfzxticUXXngh5s2bFzU1NbFixYr41a9+1WI4V1FREffdd18qQJs8eXJ87nOfi8LCwlSbN998M77zne9EWVlZlJeXx/333x9f/epXj/K/CAAAAAAAQOZlZ7LzxkFXz549j7vegQMH2rVe0jnnnBMPPPBAPPTQQ/HlL385Zs2aFeeee+4xL0G5Z8+e+PWvf506//SnP50WoEVE5ObmxuzZs2Pq1KkREdHQ0BA//elPW6zb+P2pU6fG7Nmzj9ij7OKLL45PfepTqfNnn332iCUaG3v66adj//79ERFx6qmnxv/+3/87LUCLiBg1alR86UtfSj3RtmrVqlixYkWLYwUAAAAAAOiKMvokWt++fVPHFRUVx12vrKysydrtpX///u1ab/HixakgcejQoXHZZZc123b27Nnx4osvRkNDQ6xfvz5KSkpi9OjRR7TbsGFDbNy4MSIisrKyYvbs2c3W/OAHPxjPPfdcbNu2LQ4ePBhLliyJj3zkI0e0q62tjT/+8Y+p84997GPNhpQjR46M6dOnx8KFCyMi4re//W2cffbZzY4BAMisp+6PKD7+BQGataE04qqbO64+AAAAQEfJaIg2YMCA1HFbN7Vvzv79+6O0tDR1PnTo0OOq1xn+/Oc/p45nzJgRWVlZzbYdPHhwTJo0KVauXBkREa+88kqTIVrjmlOmTInBgwc3WzMrKyumT58ejz32WOrapkK0NWvWpJ5C69WrV1x44YUtfl0zZsxIhWgrVqyIysrKtKU2AYCuo7goYuLYTI8CAAAAoOvJ6HKOZ555ZmRnHxpCRUVFvPbaa8dc6/nnn4+GhoaIiCgoKIgzzjijPYbYYaqrq2P9+vWp84kTJ7Z6TeM2h/dRS1q9enXquKV905qquW7duqipqTmiTeO+xo0bF3l5eS3WLC4uTj2pVlNTk/Z1AgAAAAAAnAgyGqIVFBTE+PHjU+fz589vMsRpTVlZWfzqV79KnZ977rmpcK6r2rp1ayr0y8rKilGjRrV6TeNg8O23326yTePXm3pSLalxm/r6+ti2bdtx18zNzY2iov9cF6q5sQIAAAAAAHRVGU+arr766tRxaWlp3HvvvVFZWdnm63fs2BH33HNP7Nu3LyIOBVJXXXVVew+z3W3dujV1XFhYGD169Gj1msZLM+7bty/27t2b9v6ePXtSyy5GRAwZMqTVmj169IjCwsLUeVOBV+OxtrQ8ZGODBg1qsSYAAAAAAEBXltE90SIizj777DjvvPPiL3/5S0REvPbaa/G5z30urrjiihb33tq0aVO8+OKL8bvf/S4tdJs5c2baU1Bd1eHQLyKif//+bbom2W7fvn1pAVhFRUXa+/369Wtz3cOBXONxtddYm6rZmvLy8jb1kZOTExHR5icPG7fr6k8rQndk3gHZ2dm+F0A78zMudF3mJ3Rd5id0XeYnXUnGQ7SIiFtvvTW++tWvxubNmyMiYvfu3fHoo4/Go48+Gvn5+Wltb7zxxti3b1/U1dUdUae4uDj++3//750y5uPVOPhry1NoTbVLPrGXPD+Wuk09BXi8Yz2aJwsPu+mmm1ptM2/evBg0aFDk5OTEaaeddtR9nHLKKUd9DXB82hKQA93b4MGDj+lzG2gbP+NC12V+QtdlfkLXZX6SaV0ixs3Pz48777wzzj777CPeSwYwe/bsaTJAO+ecc+KOO+6I3NwukQu2qrq6OnXc1jEn2zWuERFH7CfX1rp5eXnN1ky+diw1j2WfOwAAAAAAgEzqMolT37594/bbb4/f//738cwzz8S7777bpuv69+8fV111VXzoQx+KrKysDh5l+2n8pFZtbW2brkm2Sz4V1ji4Oty+LU+ONQ65mmrfo0ePqKqqOqqxNq6ZHFdbzJs3r9U2h5eMrKurix07drSpbnZ2duruhXfffTfq6+uPemzAsSsrK8v0EIAMKysri3feeSfTw4Buxc+40HWZn9B1mZ/QdZmfHI8hQ4aktoFqD10mRDvsgx/8YHzgAx+IFStWxOrVq2PdunVRXl6eWsKxT58+UVhYGGPHjo0pU6bEeeedd0whTaY1Xqayqae/mpJsl1zqMnleXV3dphCtcd1kjcOvHQ7RjmWsTdVszaBBg46q/bF8I62vr/cNGDqZOQf4/IWOZY5B12V+QtdlfkLXZX6SaV0uRIs4lDSfe+65ce6552Z6KB2mT58+qePdu3e36Zpku8Y1Ig49zdfYnj17jmjTWt2m2vfp0yf27NlzzGNtyxgAAAAAAAC6koyGaCUlJbFkyZLU+Uc/+tEYOHBgBkfUeYYNG5Y63rt3b5ueGmu8DNrhJ/Ia69evX/Tu3Tv2798fERE7duyI4cOHt1izuro69u7dmzpvqv2wYcPi7bffPmIMLSkvL2+xJgAAAAAAQFeWncnOV69eHQsWLIgFCxbESy+9FAMGDMjkcDrVsGHDUnu4NTQ0xJtvvtnqNZs2bUodNxdMNX69LTVLSkpSx9nZ2TF06NAWazZu35y6urooLS1tdawAAAAAAABdVUZDtNra2tRxUVFRKlQ6GfTo0SPGjRuXOl+zZk2r16xduzZ1PGnSpCbbTJw4MXW8evXqVms27nf8+PFN7i/XuK/169en/f/WlI0bN6b2UMvLy0v7OgEAAAAAAE4EGQ3R+vfvnzru3bt35gaSIRdccEHqeNGiRS22LSsri5UrVzZ5bXM1V65cmbasYlMa99tczQkTJkRBQUFERBw8eDBefvnlNtecMmVK5Ofnt9geAAAAAACgq8loiDZ48ODUceN9uU4W06dPj549e0ZExNatW+OPf/xjs23nz58f9fX1ERExbty4OOOMM5psV1xcHGPGjImIiPr6+pg/f36zNf/whz/Etm3bIiKiV69ecckllzTZLjc3Nz7wgQ+kzn/xi19EdXV1k21LS0vTQrTLL7+82f4BAAAAAAC6qoyGaGeeeWbqCacNGzZEXV1dJofT6fr16xcf+chHUucPP/xwLFu2LK1NbW1tzJ8/P5YuXZp67YYbbmixbuP3X3jhhZg/f/4RSzAuW7Ys/uM//iN1/tGPfjQKCwubrXnVVVelnhbctm1bfOc734mKioq0Nps3b45vf/vbqb4mTpwY55xzTotjBQAAAAAA6IpyM9p5bm5MmzYtfv/738fBgwfj+eefj8suuyyTQ2rVPffcEzt37kx7bffu3anjjRs3xm233XbEdV/5yldi4MCBR7x+7bXXxrp162LVqlVRXV0d9913Xzz55JMxevToqKmpibVr18auXbtS7a+//vqYMGFCi2OcPHlyXHPNNfHkk09GRMTTTz8dS5YsibPOOivy8vJi06ZNsWXLllT7KVOmxNVXX91izb59+8bnPve5+Pa3vx11dXXxt7/9LebOnRuTJ0+OwsLC2L59e6xZsyYaGhoiImLgwIFxyy23tFgTAAAAAACgq8poiBZx6KmpV199NcrKymL+/PlRXFwco0aNyvSwmvXWW2/Fjh07mn2/qqoqNm/efMTrySfBDsvNzY0vfvGL8eMf/zhefPHFiDi0JGJpaWlau5ycnLjuuuvimmuuadM4P/axj0VeXl788pe/jLq6uti1a9cRT7lFREydOjVuvPHGyMnJabXmOeecE//rf/2vmDdvXlRUVERVVVUsX778iHajR4+Oz33uc02GhgAAAAAAACeCjIdoBQUFcdttt8V3vvOdKC8vj3/6p3+Kj33sY3HZZZdFjx49Mj28TlFQUBBf+MIX4gMf+EAsXrw41q9fH7t3746cnJwYNGhQnH322TFz5swYMWJEm2tmZWXFtddeGxdeeGEsXLgwVqxYEeXl5VFXVxf9+/ePcePGxfTp02PKlClHNdbzzz8/vvvd78bzzz8fr7zySrz77ruxf//+6NevX5x++ukxbdq0mDZtWuTmZvyfFgAAAAAAwDHLeNKxePHiiIj48Ic/HL/85S+jsrIyHnnkkfj5z38ekyZNilGjRkVhYWHk5+cfVd3p06d3xHDjhz/8YYfUjTi0rOLRhlqtGTFiRHzyk59s15qFhYVx5ZVXxpVXXtmudQEAAAAAALqKjIdoDzzwQJOvV1ZWxvLly5tcLrAtOipEAwAAAAAAoPvLzvQAAAAAAAAAoKsRogEAAAAAAEBCxpdz/Kd/+qdMDwEAAAAAAADSZDxEmzBhQqaHAAAAAAAAAGk6PER74IEHUsef/OQno0+fPh3dJQAAAAAAAByXDg/RFi9enDq+/vrrWw3RGre/6KKLomfPnh02NgAAAAAAAGhKxpdzTGr85NrEiROFaAAAAAAAAHS67EwPAAAAAAAAALoaIRoAAAAAAAAkCNEAAAAAAAAgQYgGAAAAAAAACUI0AAAAAAAASBCiAQAAAAAAQIIQDQAAAAAAABKEaAAAAAAAAJAgRAMAAAAAAIAEIRoAAAAAAAAk5HZmZ3feeWfk5OR0WPvDsrKy4gc/+MFRXwcAAAAAAAARnRyi7dy5s0PbAwAAAAAAQHuwnCMAAAAAAAAkCNEAAAAAAAAgocOXc7z//vs7ugsAAAAAAABoVx0eog0ZMqSjuwAAAAAAAIB2ZTlHAAAAAAAASBCiAQAAAAAAQIIQDQAAAAAAABKEaAAAAAAAAJAgRAMAAAAAAIAEIRoAAAAAAAAkCNEAAAAAAAAgQYgGAAAAAAAACUI0AAAAAAAASBCiAQAAAAAAQIIQDQAAAAAAABKEaAAAAAAAAJAgRAMAAAAAAIAEIRoAAAAAAAAkCNEAAAAAAAAgQYgGAAAAAAAACUI0AAAAAAAASBCiAQAAAAAAQIIQDQAAAAAAABJyMz0AAAC6r6rq9POSkpJO7X/kyJGRn5/fqX0CAAAA3YMQDQCADrPlnfTzOXPmdGr/CxcujPHjx3dqnwAAAED3YDlHAAAAAAAASBCiAQAAAAAAQILlHAEA6DRP3R9RXNRx9TeURlx1c8fVBwAAAE4eQjQAADpNcVHExLGZHgUAAABA6yznCAAAAAAAAAlCNAAAAAAAAEgQogEAAAAAAECCEA0AAAAAAAAShGgAAAAAAACQIEQDAAAAAACABCEaAAAAAAAAJAjRAAAAAAAAIEGIBgAAAAAAAAlCNAAAAAAAAEgQogEAAAAAAECCEA0AAAAAAAAShGgAAAAAAACQIEQDAAAAAACABCEaAAAAAAAAJAjRAAAAAAAAIEGIBgAAAAAAAAlCNAAAAAAAAEgQogEAAAAAAECCEA0AAAAAAAAShGgAAAAAAACQIEQDAAAAAACAhNxMDwCAzKmsrIzNmzd3Wn8lJSWd1hcAAAAAwPEQogGcxDZv3hwzZ87M9DAAAAAAALocyzkCAAAAAABAghANAAAAAAAAEiznCEDKU/dHFBd1XP2FL0fcenfH1QcAAAAAaC9CNABSiosiJo7tuPobSjuuNgAAAABAe7KcIwAAAAAAACQI0QAAAAAAACBBiAYAAAAAAAAJQjQAAAAAAABIEKIBAAAAAABAghANAAAAAAAAEoRoAAAAAAAAkCBEAwAAAAAAgAQhGgAAAAAAACTkZnoAAADQXqqq089LSko6tf+RI0dGfn5+p/YJAAAAdAwhGgAA3caWd9LP58yZ06n9L1y4MMaPH9+pfQIAAAAdw3KOAAAAAAAAkCBEAwAAAAAAgATLOQIA0G09dX9EcVHH1d9QGnHVzR1XHwAAAMgcIRoAAN1WcVHExLGZHgUAAABwIrKcIwAAAAAAACQI0QAAAAAAACBBiAYAAAAAAAAJQjQAAAAAAABIEKIBAAAAAABAghANAAAAAAAAEoRoAAAAAAAAkCBEAwAAAAAAgAQhGgAAAAAAACQI0QAAAAAAACBBiAYAAAAAAAAJQjQAAAAAAABIEKIBAAAAAABAghANAAAAAAAAEoRoAAAAAAAAkCBEAwAAAAAAgAQhGgAAAAAAACQI0QAAAAAAACBBiAYAAAAAAAAJQjQAAAAAAABIEKIBAAAAAABAghANAAAAAAAAEoRoAAAAAAAAkCBEAwAAAAAAgAQhGgAAAAAAACQI0QAAAAAAACBBiAYAAAAAAAAJQjQAAAAAAABIEKIBAAAAAABAghANAAAAAAAAEoRoAAAAAAAAkCBEAwAAAAAAgAQhGgAAAAAAACQI0QAAAAAAACBBiAYAAAAAAAAJQjQAAAAAAABIEKIBAAAAAABAghANAAAAAAAAEoRoAAAAAAAAkCBEAwAAAAAAgAQhGgAAAAAAACTkZnoAJ7tFixbFAw88cFTXzJw5Mz772c+2qe3KlStj8eLF8cYbb8TOnTsjNzc3Bg0aFGeffXbMnDkzhg8fftRjfuutt+L555+PFStWRHl5edTW1sbAgQNj7NixMX369Jg8efJR1wQAAAAAAOhKhGjd1IEDB+LBBx+MZcuWpb1eVVUV+/fvj9LS0liwYEFcf/31cfXVV7e57pNPPhmPP/541NXVpb2+bdu22LZtWyxZsiSmTZsWN954Y/Tq1atdvhYAAAAAAIDOJkTrQoYPHx6TJk1qtd348eNbfL+2tjbuvffeWLVqVeq1008/PUaPHh01NTXx+uuvx65du6Kuri5+9rOfRV1dXcyaNavVfn/+85/HE088kTofMGBAnHnmmZGXlxclJSWxZcuWiIhYunRp7Nu3L7785S9HTk5Oq3UBAAAAAAC6GiFaF1JcXBxz5sw57jpPPPFEKkDLy8uLuXPnxrRp01Lv19bWxmOPPRbPPPNMREQ8/vjjMWHChJgwYUKzNVeuXJkWoF1xxRXx8Y9/PHJz//Of0AsvvBDz5s2LmpqaWLFiRfzqV79qUzgHAAAAAADQ1WRnegC0rz179sSvf/3r1PmnP/3ptAAtIiI3Nzdmz54dU6dOjYiIhoaG+OlPf9pi3cbvT506NWbPnp0WoEVEXHzxxfGpT30qdf7ss8/G3r17j/lrAQAAAAAAyBQhWjezePHiqKqqioiIoUOHxmWXXdZs29mzZ0dWVlZERKxfvz5KSkqabLdhw4bYuHFjRERkZWXF7Nmzm635wQ9+MIYOHRoREQcPHowlS5Yc09cBAAAAAACQSUK0bubPf/5z6njGjBmpkKwpgwcPTtuD7ZVXXmm15pQpU2Lw4MHN1szKyorp06c3eS0AAAAAAMCJQojWjVRXV8f69etT5xMnTmz1msZtDu+jlrR69erUcUv7pjVVc926dVFTU9PqNQAAAAAAAF1JbutN6Cz79++PF198MbZs2RIHDhyIgoKCGDBgQIwbNy6KiopafKosImLr1q3R0NAQEYeeCBs1alSrfZ5xxhmp47fffrvJNo1fHz16dKs1G7epr6+Pbdu2RVFRUavXAQAAAAAAdBVCtC5k+fLlsXz58ibfGzp0aFx55ZVx6aWXNhumbd26NXVcWFgYPXr0aLXPxksz7tu3L/bu3RuFhYWp1/bs2RP79+9PnQ8ZMqTVmj169IjCwsLYu3dvRBwK4YRoAAAAAADAiUSIdoLYtm1b/OhHP4pXXnklPv/5z0d+fv4Rbfbt25c67t+/f5vqJtvt27cvLUSrqKhIe79fv35trns4RGs8rrYqLy9vUx85OTkREZGd3baVSRu3a+s10J2ZBwDtKzs72/dWOp2fcaHrMj+h6zI/oesyP+lKhGhdwODBg+Oiiy6KyZMnR1FRURQWFkZ9fX2Ul5fHqlWr4je/+U1qScW//vWv8f3vfz+++MUvHvENpLKyMnXclqfQmmrXuEZT58dSN1mjLW666aZW28ybNy8GDRoUOTk5cdpppx11H6eccspRXwPdTVsCawDabvDgwcf0cwm0Fz/jQtdlfkLXZX5C12V+kmlCtAy74IIL4pJLLmkyUR82bFgMGzYsZs6cGQ8++GAsWrQoIg4t+/jCCy/EJZdckta+uro6dZyb27b/a5PtGteIiKipqWmxfXPy8vKarQkAAAAAANDVCdEyrHfv3q22yc3Njc9+9rOxffv2WLt2bUREPP3000eEaI2f/qqtrW1T/8l2ySfNGodhh9u35Wm0xuFbW59ea2zevHmttjm8FGVdXV3s2LGjTXWzs7NTdy+8++67UV9ff9Rjg+6krKws00MA6FbKysrinXfeyfQwOMn4GRe6LvMTui7zE7ou85PjMWTIkNQ2UO1BiHaCyM7OjlmzZsXXv/71iIjYsmVLlJeXx6BBg1JtGu+T1tanv5LtknutJc+rq6vbFIo1rtvU/m2tafx1tcWxfCOtr6/3DZiTnjkA0L78fEGm+TcIXZf5CV2X+Qldl/lJptmV7wRy1llnpSWoh/dJO6xPnz6p4927d7epZrJd4xoREX379k0737Nnz1HXTdYEAAAAAADo6oRoJ5Dc3NwoLCxMne/duzft/WHDhqW915an0Rov5danT5+0+hER/fr1S1tysi3LJlZXV6eNbfjw4a1eAwAAAAAA0JUI0U4wlZWVqePkMonDhg2LrKysiIhoaGiIN998s9V6mzZtSh03F3Y1fr0tNUtKSlLH2dnZMXTo0FavAQAAAAAA6EqEaCeQ7du3x8GDB1PnAwYMSHu/R48eMW7cuNT5mjVrWq25du3a1PGkSZOabDNx4sTU8erVq1ut2bjf8ePHR15eXqvXAAAAAAAAdCVCtBPI888/nzouKCiIUaNGHdHmggsuSB0vWrSoxXplZWWxcuXKJq9trubKlSujvLy8xbqN+22uJgAAAAAAQFcmRMugxksztmbdunXx7LPPps6nTp0aOTk5R7SbPn169OzZMyIitm7dGn/84x+brTl//vyor6+PiIhx48bFGWec0WS74uLiGDNmTERE1NfXx/z585ut+Yc//CG2bdsWERG9evWKSy65pJWvDAAAAAAAoOsRomXQSy+9FF/5yldi8eLFceDAgSbbVFdXx4IFC+LrX/961NTURERE796947rrrmuyfb9+/eIjH/lI6vzhhx+OZcuWpbWpra2N+fPnx9KlS1Ov3XDDDS2OtfH7L7zwQsyfPz9qa2vT2ixbtiz+4z/+I3X+0Y9+NAoLC1usCwAAAAAA0BXlZnoAJ7uNGzfGD3/4w8jJyYlhw4bF8OHDo3fv3lFfXx87d+6M9evXp+2D1qNHj7jtttuO2A+tsWuvvTbWrVsXq1atiurq6rjvvvviySefjNGjR0dNTU2sXbs2du3alWp//fXXx4QJE1oc5+TJk+Oaa66JJ598MiIinn766ViyZEmcddZZkZeXF5s2bYotW7ak2k+ZMiWuvvrqY/3PAgAAAAAAkFFCtC6irq4utmzZkhZEJRUXF8fcuXNjxIgRLdbKzc2NL37xi/HjH/84XnzxxYiIKC0tjdLS0rR2OTk5cd1118U111zTpjF+7GMfi7y8vPjlL38ZdXV1sWvXriOecos4tNTkjTfe2ORykwAAAAAAACcCIVoGTZs2LYYOHRrr1q2LN954I7Zv3x4VFRVRUVERDQ0NUVBQEKecckqMHTs2LrroojjzzDPbXLugoCC+8IUvxAc+8IFYvHhxrF+/Pnbv3h05OTkxaNCgOPvss2PmzJmtBnKNZWVlxbXXXhsXXnhhLFy4MFasWBHl5eVRV1cX/fv3j3HjxsX06dNjypQpx/KfAwDghFNVnX5eUlLSqf2PHDky8vPzO7VPAAAAOFkI0TIoLy8vxo8fH+PHj++wPqZMmdLuodaIESPik5/8ZLvWBAA4EW15J/18zpw5ndr/woULO/RnSQAAADiZZWd6AAAAAAAAANDVCNEAAAAAAAAgwXKOAADQTp66P6K4qOPqbyiNuOrmjqsPAAAA/CchGgAAtJPiooiJYzM9CgAAAKA9WM4RAAAAAAAAEoRoAAAAAAAAkCBEAwAAAAAAgAQhGgAAAAAAACQI0QAAAAAAACBBiAYAAAAAAAAJQjQAAAAAAABIEKIBAAAAAABAghANAAAAAAAAEoRoAAAAAAAAkCBEAwAAAAAAgAQhGgAAAAAAACQI0QAAAAAAACBBiAYAAAAAAAAJQjQAAAAAAABIEKIBAAAAAABAghANAAAAAAAAEoRoAAAAAAAAkCBEAwAAAAAAgAQhGgAAAAAAACQI0QAAAAAAACBBiAYAAAAAAAAJQjQAAAAAAABIEKIBAAAAAABAghANAAAAAAAAEoRoAAAAAAAAkCBEAwAAAAAAgAQhGgAAAAAAACQI0QAAAAAAACBBiAYAAAAAAAAJQjQAAAAAAABIEKIBAAAAAABAQm6mBwAAALRNVXX6eUlJSaePYeTIkZGfn9/p/QIAAEBnE6IBAMAJYss76edz5szp9DEsXLgwxo8f3+n9AgAAQGeznCMAAAAAAAAkCNEAAAAAAAAgwXKOAABwgnrq/ojioo7tY0NpxFU3d2wfAAAA0BUJ0QAA4ARVXBQxcWymRwEAAADdk+UcAQAAAAAAIEGIBgAAAAAAAAlCNAAAAAAAAEgQogEAAAAAAECCEA0AAAAAAAAShGgAAAAAAACQIEQDAAAAAACABCEaAAAAAAAAJAjRAAAAAAAAIEGIBgAAAAAAAAlCNAAAAAAAAEgQogEAAAAAAECCEA0AAAAAAAAShGgAAAAAAACQIEQDAAAAAACABCEaAAAAAAAAJORmegAA/KfKysrYvHlzp/VXUlLSaX0BAAAAAJxIhGgAXcjmzZtj5syZmR4GAKRUVaefd/YNGCNHjoz8/PxO7RMAAAAihGgAAEALtryTfj5nzpxO7X/hwoUxfvz4Tu0TAAAAIuyJBgAAAAAAAEfwJBpAF/bU/RHFRR1Xf+HLEbfe3XH1AQAAAABOVEI0gC6suChi4tiOq7+htONqA9A9dfQNHhtKI666uePqAwAAQFsJ0QAAgDbr6Bs8AAAAoKuwJxoAAAAAAAAkCNEAAAAAAAAgQYgGAAAAAAAACUI0AAAAAAAASBCiAQAAAAAAQIIQDQAAAAAAABKEaAAAAAAAAJAgRAMAAAAAAIAEIRoAAAAAAAAkCNEAAAAAAAAgQYgGAAAAAAAACUI0AAAAAAAASBCiAQAAAAAAQIIQDQAAAAAAABKEaAAAAAAAAJAgRAMAAAAAAIAEIRoAAAAAAAAk5GZ6AAAAAIdVVaefl5SUdGr/I0eOjPz8/E7tEwAAgK5JiAYAAHQZW95JP58zZ06n9r9w4cIYP358p/YJAABA12Q5RwAAAAAAAEgQogEAAAAAAECC5RwBAIAu66n7I4qLOq7+htKIq27uuPoAAACcuIRoAABAl1VcFDFxbKZHAQAAwMnIco4AAAAAAACQIEQDAAAAAACABCEaAAAAAAAAJAjRAAAAAAAAIEGIBgAAAAAAAAlCNAAAAAAAAEgQogEAAAAAAECCEA0AAAAAAAAShGgAAAAAAACQIEQDAAAAAACABCEaAAAAAAAAJAjRAAAAAAAAIEGIBgAAAAAAAAm5mR4AAABAplRVp5+XlJR0av8jR46M/Pz8Tu0TAACAthGiAQAAJ60t76Sfz5kzp1P7X7hwYYwfP75T+wQAAKBtLOcIAAAAAAAACUI0AAAAAAAASLCcIwAAwP/vqfsjios6rv6G0oirbu64+gAAALQfIRoAAMD/r7goYuLYTI8CAACArsByjgAAAAAAAJAgRAMAAAAAAIAEyzkCAAB0kqrq9POSkpLjrpmdnR3l5eUREVFWVhb19fXNth05cmTk5+cfd58AAAAnAyEaAABAJ9nyTvr5nDlzOrX/n/zkJzF69OhO609oBwAAnMiEaAAAACeJzg7tFi5cGOPHj+/UPgEAANqLEA2gBZWVlbF58+ZO6689lnQCAAAAAOD4CdEAWrB58+aYOXNmpocBAHRTT90fUVzUcfUXvhxx690dVx8AAKA7E6IBAABkSHFRxMSxHVd/Q2n6eUeHdhtKI666uePqAwAAdCYhGgAAwEmio0M7AACA7kSIBnAULLkEAAAAAHByEKIBHIXOXnIJAAAAAIDMyM70AAAAAAAAAKCrEaIBAAAAAABAghANAAAAAAAAEuyJBgAAQLuoqk4/Lykp6fQxjBw5MvLz8zu9XwAAoPsRogEAANAutryTfj5nzpxOH8PChQtj/Pjxnd4vAADQ/QjRAAAA6DY6++k3T74BAED3JUQDAACg2+jsp988+QYAAN2XEA0AAIAO8dT9EcVFHdvHwpcjbr27Y/sAAABOTkI0AAAAOkRxUcTEsR3bx4bSjq0PAACcvIRoAAAAdBsd/fTbhtKIq27uuPoAAEDXIUQDAACg2+iMp98AAICTQ3amBwAAAAAAAABdjRANAAAAAAAAEiznCAAAAG1UVZ1+XlJS0qn9jxw5MvLz8zusfmVlZWzevLnD6remo78+AAA4GkI0AAAAaKMt76Sfz5kzp1P7/8lPfhKjR4/usPolJSWd/jU1tnDhwhg/fnzG+gcAgMaEaBy12traWLZsWSxdujS2bNkSe/bsid69e8cpp5wS733ve2PGjBlRWFiY6WECAAB0O5kMuAAA4GQjROOovP322/G9730v3nzzzbTXd+/eHbt3747169fHs88+GzfddFO85z3vycwgAQAAAAAAjpMQjTYrLy+Pf/7nf45du3ZFRERWVlacddZZceqpp8bevXtj5cqVUV1dHXv27Il/+Zd/iTvuuCMmTZqU4VHTnWRif4bO3uMCAIATy1P3RxQXdVz9hS9H3Hp3x9VvTUd/fRtKI666uePqAwDA8RCi0Wbf//73UwHakCFD4rbbbotRo0al3t+7d29873vfi5UrV0ZdXV3827/9W/zgBz+I3r17Z2jEdDebN2+OmTNnZnoYAACQUlwUMXFsx9XfUJp+3tmhXUd/fZnQmTfnZWdnR3l5eURElJWVRX19fYwcOTLy8/M7pX8AAI6PEI02+etf/xpr166NiIjc3Nz40pe+FEVF6b+5FRYWxm233Ra33XZbbN++Pfbt2xdPP/103HDDDZkYMgAAQLfT2aFdd5Tpm/MWLlwY48ePz1j/AAC0XXamB8CJ4be//W3qePr06UcEaIfl5+fH9ddfnzr/wx/+EHV1dR0+PgAAAAAAgPbkSTRaVVlZGatWrUqdX3rppS22v/DCC+Ohhx6KysrK2LdvX6xdu9beaN1UZ+9RltyfrKOXsonI/B4UAADQnVVVp593xp7E9j0GAKCthGi0at26dVFTUxMRET179owxY8a02L5Hjx4xbty4+Nvf/hYREatWrRKidVOZXgalM/ZnOBmWswEAgEzZ8k76+Zw5czp9DB19c96G0oirbu64+pnW2TdXVldXx9tvv506HzZsWPTs2bPT+renHQCcXIRotKrxD6dFRUWRk5PT6jWjR49OhWhvvfVWh42NdJl+MgwAAOBE09E353X203adHTKVlJRkJPzMFHvaAcDJRYhGq7Zu3Zo6HjJkSJuuGTx4cJPX07Ey/WQYAAAA6brC03a0n864mbSzg9Du/nRfczccZ2dnR3l5eURElJWVRX19fbv0l4n/nv7NQGZ19oMNSeZExxKi0aqKiorUcb9+/dp0Tf/+/VPH+/btO+o+D/8Q01ofh5+Ky87OblPdxu3aes2JJNNf073/O+L00zqu/p9XRdz7f/7zvDOWWizdln7e0X3q78TuLxN96k9/Xb1P/Z3Y/WWiT/3pr6v3qb+O7a+jf6eI6PzfK5JfIyc2IWj7e/jhh2P06NEdVr+kpCT+23/7bx1Wn87X0f9myLysrKzU34fLy8ujoaEhwyNqWaa/zyxatMhT0h0oq6Gr/wsk4+6555549dVXIyLiyiuvjP/6X/9rq9e8+uqrcc8990RERH5+fjz66KNH1ef111/fapuf/vSnkZsrB26spqYmtm/fnulhAAAAAMAJrWfPnlFVVaW/E7jPTHyNmXDqqadGXl5epofRbUkgaFVNTU3quK2hVeNJW11d3ULLY5eVldUhdU9keXl5MWLEiEwPAwAAAAAATnhCNFrVOBCrra1t0zWNg7cePXocdZ/z5s1rtc2xLF1YV1cXu3fvjoj05SCBrsEcha7L/ISuy/yErsv8hK7L/ISuy/ykKxGi0arGmxK29amyxu2OZVPDQYMGHfU1bbF79+646aabIuJQUNdR/QDHxhyFrsv8hK7L/ISuy/yErsv8hK7L/KQrOfpHeTjp9O3bN3W8Z8+eNl1z+E6BiIg+ffq095AAAAAAAAA6lBCNVg0bNix1vGPHjjZdU1ZW1uT1AAAAAAAAJwIhGq0aPnx46ri0tDTq6upavaakpCR1PGLEiA4ZFwAAAAAAQEcRotGq8ePHR15eXkREVFVVxcaNG1tsX1NTE2+88UbqfNKkSR06PgAAAAAAgPYmRKNV+fn5aUHYokWLWmz/8ssvx8GDByPi0H5oZ511VkcODwAAAAAAoN0J0WiTyy+/PHW8ePHi2LJlS5Ptqqqq4he/+EXq/LLLLoucnJwOHx8AAAAAAEB7EqLRJu95z3tST5TV1NTEt771rdi8eXNam4qKiviXf/mXeOeddyLi0FNoV155ZaePFQAAAAAA4HhlNTQ0NGR6EJwYysvL4/bbb49du3ZFRERWVlZMmDAhTj311Ni7d2+sXLkyqqqqIiIiJycnbr/99pg8eXImhwwAAAAAAHBMhGgclbfffju+973vxZtvvtlsm8LCwpg7d2685z3v6byBAQAAAAAAtCMhGkettrY2li5dGkuXLo0tW7bEnj17onfv3nHKKafEhRdeGDNmzIjCwsJMDxMAAAAAAOCYCdEAAAAAAAAgITvTAwAAAAAAAICuRogGAAAAAAAACUI0AAAAAAAASBCiAQAAAAAAQIIQDQAAAAAAABKEaAAAAAAAAJCQm+kBwLGor6+PLVu2xMaNG1P/27x5c9TV1UVExIQJE+JrX/vaMdVeuXJlLF68ON54443YuXNn5ObmxqBBg+Lss8+OmTNnxvDhw9vxK4Hu5913342//e1vsWbNmtiyZUuUlZVFZWVl5Ofnx6BBg2LcuHFx8cUXx4QJE4669oYNG2LRokWxevXq2LlzZ0REDBw4MCZOnBgzZsyI4uLi9v5yoNvYu3dvrFu3LjZs2BClpaWxffv22LVrV1RWVkZOTk707t07ioqKYsKECTF9+vQYOHDgUdX3+Qkd55FHHonnnnsudT5kyJD44Q9/2ObrzU84dosWLYoHHnjgqK6ZOXNmfPazn21TW/MT2temTZvixRdfjJUrV8bOnTtj37590bdv3+jfv3+MHDkyJk2aFFOmTIn+/fu3Wsv8hGO3evXquOuuu475+rlz58aMGTNabGOO0lmyGhoaGjI9CDgar7zySvzgBz+IqqqqZtscS4h24MCBePDBB2PZsmXNtsnJyYnrr78+rr766qOqDSeDkpKSeOihh2LDhg1taj9x4sT4h3/4hxg8eHCrbWtra+P//t//G//v//2/aO5jKysrKz784Q/H7NmzIzfXPSKQ9K1vfSv++te/tqltXl5eXHXVVXHttddGdnbLCxf4/ISOtWHDhrjjjjvSPv/aGqKZn3D8OipEMz+hfe3ZsyceeeSReOGFF1pte/nll8ecOXOafd/8hON3vCHa7bffHuecc06T75mjdDZ/ZeSEc+DAgRYDtGNRW1sb9957b6xatSr12umnnx6jR4+OmpqaeP3112PXrl1RV1cXP/vZz6Kuri5mzZrVrmOAE93WrVuPCNCGDh0ap59+ehQWFsb+/ftj/fr1UV5eHhGHfqC644474p//+Z/j1FNPbbH2j370o1iyZEnq/NRTT42xY8dGRMQbb7wR27dvj4aGhliwYEEcPHgwbrrppnb+6qB76du3b4wYMSIGDx4c+fn5UVVVFdu3b48NGzZEXV1d1NTUxOOPPx7bt2+Pm2++udk6Pj+hY9XW1saPfvSjZm8gae1a8xPa1/Dhw2PSpEmtths/fnyL75uf0L7Kysria1/7Wrz77rup14YNGxZFRUXRp0+fqK6uju3bt8ebb77Z6t+TzE9oHwMHDozLL7+8ze3/9re/xbZt2yIiol+/fjF58uQm25mjZIIQjRNWv379YsyYMVFcXBxjxoyJFStWxIIFC46p1hNPPJH65puXlxdz586NadOmpd6vra2Nxx57LJ555pmIiHj88cdjwoQJx7QcHXR3p512WsycOTMuueSSI5aDq6+vj0WLFsXDDz8cVVVVsWvXrvj+978f3/jGNyIrK6vJegsXLkwFaFlZWfHJT34yPvzhD6eejqmvr4/f/OY38eijj0ZDQ0M8//zzqeXogP80YcKEOO+882Ly5Mlx2mmnNdlm9+7d8cgjj8TSpUsjImLJkiVx/vnnx0UXXdRke5+f0LGefvrpKC0tjYiIiy++uE131x9mfkL7Ky4ubvHplbYyP6H9HDhwIO66665UgDZx4sT49Kc/HSNHjjyibW1tbaxatSoOHjzYbD3zE9rH0KFD2/yZWV9fn/YE9/vf//7Iyclpsq05Sia0vD4PdEHnnHNOPPDAA/HQQw/Fl7/85Zg1a1ace+65UVBQcEz19uzZE7/+9a9T55/+9KfTvvlGROTm5sbs2bNj6tSpERHR0NAQP/3pT4/9i4BuaMCAATF37ty477774qqrrmpyP6Xs7OyYOXNm3HLLLanX3njjjVixYkWTNQ8/DXPYlVdeGX//93+ftrxcdnZ2/P3f/31cccUVqdd+8YtfRG1tbXt8WdBtXHHFFfHBD36w2QAtIqJ///5x6623pt1l//vf/77Jtj4/oWO9/fbb8eSTT0bEoQBtypQpbb7W/ISuy/yE9vXoo4/G9u3bIyJi6tSpceeddzYZoEUcmlvnnHNOvO9972vyffMTMuO1116L3bt3p86buynaHCVThGiccPr379+mPZTaavHixanH+YcOHRqXXXZZs21nz56delpm/fr1UVJS0m7jgBPdhAkTYsaMGa3unxQR8d73vjeKi4tT583t07R8+fLU8o8FBQVx7bXXNltz1qxZ0atXr4iI2LFjR5v3fgLSZWVlpW3g/OabbzbZzucndJyGhob40Y9+FDU1NdG7d+/41Kc+dVTXm5/QdZmf0H7efPPNWLhwYUREDBo0KP7n//yfbfp9tDnmJ2TG4sWLU8ejR49uNgg3R8kUIRonvT//+c+p4xkzZjS7pFxExODBg9Puzn/llVc6dGzQnTXeK2LHjh1Ntmk8P6dOnRo9e/Zstl7Pnj3T7ig0P+HYFRYWpo6bW+7G5yd0nN/97nexbt26iIj4xCc+Ef369Tuq681P6LrMT2g/v/vd71LHl19+eeqmymNlfkLn279/fyxfvjx13tLWHOYomSJE46RWXV0d69evT51PnDix1Wsat2m8iSVwdBr/sFNfX99km9WrV6eO27J+deMfkMxPOHZvvfVW6njIkCFHvO/zEzpOWVlZasmZs846Ky699NKjut78hK7L/IT2U19fn9rHNyKa3cO3rcxPyIwXX3wxampqIiIiJycnLr744ibbmaNkUm6mBwCZtHXr1mhoaIiIQ3/QHzVqVKvXnHHGGanjt99+u6OGBt1eaWlp6njQoEFHvH/gwIHYtWtX6rzx3GvO6NGjU8c7d+6MAwcOHPN+iXCy2rlzZzz77LOp86b+IOHzEzrOv//7v8fBgwcjNzc3PvOZz7R4h21TzE/oOPv3748XX3wxtmzZkvo5c8CAATFu3LgoKipqdb6an9B+SktLUysmFBQUxKmnnhp1dXWxZMmS+NOf/hRbtmyJ/fv3R9++fWPkyJFx/vnnx6WXXhp5eXlN1jM/ITMaL+V47rnnpq2K0pg5SiYJ0Tipbd26NXVcWFgYPXr0aPWaxvux7du3L/bu3dvsN3igaWVlZWl3AU2ZMuWINo3nZ0S0aS/EZJutW7em7b0GNK2qqip27NgRr776ajzzzDOxZ8+eiIgYPnx4XHXVVUe09/kJHWPp0qWpPT2vvPLKGDFixFHXMD+h4yxfvjxtyanGhg4dGldeeWVceumlzYZp5ie0n40bN6aOBw0aFOXl5fFv//ZvsWHDhrR2u3btil27dsVrr70WTz31VPzjP/5jk78jmp/Q+bZt25Zawjwi0vbmTjJHySQhGie1ffv2pY779+/fpmuS7fbt2+cbMBylRx55JLWE4+DBg+O88847ok1FRUXquFevXm36Aalnz57Rq1ev1B2Jjec48J9ef/31+OpXv9pim3PPPTduvfXWJveW8PkJ7a+ioiIefvjhiDj0x/hrrrnmmOqYn5AZ27Ztix/96EfxyiuvxOc///nIz88/oo35Ce2nvLw87fyee+6JLVu2RMShG8HGjBkT2dnZsXnz5igpKYmIQzdz3nXXXXHXXXcdsdKJ+Qmdr/FTaH379o33vOc9zbY1R8kkIRontcrKytRxW/5A31S7xjWA1i1atChefvnl1PkNN9zQ5JIaxzI/D7c9HKKZn3D0evfuHf/jf/yPmDZtWrNtfH5C+3vkkUdi7969ERHxmc98ptnlplpjfkL7Gzx4cFx00UUxefLkKCoqisLCwqivr4/y8vJYtWpV/OY3v0ktE/XXv/41vv/978cXv/jFyM5O34be/IT2s3///tTx4fCsZ8+eMXfu3Hjf+96X1nbVqlXx3e9+NyoqKqKqqiq++93vxne/+93Izf3PP4uan9C5Ghoa4k9/+lPqfNq0aWlzMskcJZOEaJzUqqurU8ctfaNuLNmucQ2gZRs3boyHHnoodT5t2rRmN409vLFsRNvnZ7Kt+QlNGzBgQFx++eURceiXl8rKyti6dWuUlJTE/v3743vf+1784Q9/iM985jMxbNiwI673+Qnta8WKFbFkyZKIiJg+fXpMmjTpmGuZn9C+LrjggrjkkkuOCMQiIoYNGxbDhg2LmTNnxoMPPhiLFi2KiEPLPr7wwgtxySWXpLU3P6H9VFVVHfHaLbfcEu9973uPeH3SpEnxpS99Ke68885oaGiI7du3x5/+9Ke49NJLU23MT+hca9asiR07dqTOW1rKMcIcJbOEaJzUGt+RUFtb26Zrku2O5gkZOJm9++678e1vfzsVjo0cOTI+85nPNNu+8R34bZ2fybbmJzTt1FNPjTlz5hzx+s6dO+Oxxx6LRYsWxerVq+OOO+6Ir33tazFy5Mi0dj4/of1UVlbGgw8+GBGHlrH5xCc+cVz1zE9oX7179261TW5ubnz2s5+N7du3x9q1ayMi4umnnz4iRDM/of0kn9geN25ckwFa4/cvvPDCeOmllyIiYtmyZWkhmvkJnavxUo6nn376EUusJpmjZNKRt1LBSaTxOvVtvRsh2a6pte6BdLt27Yqvf/3rsXv37og49Af822+/PQoKCpq95ljmZ7Kt+QlHZ+DAgTF37tz48Ic/HBGHlsm57777UnsYHubzE9rPY489lroL9xOf+MRx79NgfkJmZGdnx6xZs1LnW7ZsOWLPJvMT2k9yLrQUoDXVZv369c3WMz+hY1VVVaVt8zF9+vRWrzFHySQhGie1Pn36pI4P/3G/Ncl2jWsAR6qoqIhvfOMbsX379og4tIzcnXfeGQMGDGjxur59+6aODx482KYfkqqqqlL7oUWYn3CsbrjhhujVq1dERLz99tvx6quvpr3v8xPax6ZNm+I3v/lNRERMnDix1WVs2sL8hMw566yzIicnJ3V+eJ+0w8xPaD+Nf1+MiBgxYkSr1wwfPjx1fPDgwWZ/dzQ/oWO9/PLLqfmXnZ0d73//+1u9xhwlkyznyEmt8T4ve/fujerq6lYf7S0rK0sd9+nT57jvFobu7MCBA3H33XenNnru27dv3HnnnXHKKae0em1yH6aysrIm92ZKtmmpBtA2PXv2jPHjx8drr70WERHr1q2L8847L/W+z09oH6WlpdHQ0BARh+bIHXfc0WzbvXv3po537dqV1vbaa6+N97znPRFhfkIm5ebmRmFhYezatSsi0udthPkJ7Sn5u15bnjA5fJPYYQcPHky9Zn5C52m8lOPZZ5/d6k3WEeYomSVE46Q2bNiwyMrKioaGhmhoaIg333wzxo0b1+I1mzZtSh03vosJSFdZWRn33HNPas4UFBTEHXfc0aY7BA+3HzBgQOqPECUlJa2GYiUlJanjgQMHtrhcJNCyxnvAVFRUpL3n8xPa3/bt21NPbbemtrY23njjjdR54z/Um5+QWZWVlanj5B/1zU9oP0VFRWnnjedecxo/eRYRab8vmp/QOcrLy2PVqlWp87Ys5RhhjpJZlnPkpNajR4+0b7hr1qxp9ZrDG0VHREyaNKlDxgUnuurq6vjOd74T69ati4hDT7V8+ctfbnWj2KSJEyemjlevXt1q+8Zz2PyE49N46Yvkshc+P6HrMj8hc7Zv3572R/rknfXmJ7SfU045JW2Fk7feeqvVaxovsdqnT5+0oNv8hM7xpz/9KbUSQ+/eveP8889v03XmKJkkROOkd8EFF6SOFy1a1GLbsrKyWLlyZZPXAofU1tbGv/7rv6buLMrLy4vbbrstzjzzzKOu1XiOvfjiiy3ui1ZdXR0vvvhik9cCR6eioiJts/Wm7trz+QnHb8aMGfGLX/yiTf+bO3du6rohQ4akvZfcS838hMx4/vnnU8cFBQUxatSoI9qYn9B+3vve96aO//znP7fa/pVXXkkdn3XWWUe8b35Cx2u8lOP73ve+VpdkbMwcJVOEaJz0pk+fHj179oyIiK1bt8Yf//jHZtvOnz8/6uvrIyJi3LhxR/1UDXR39fX18f3vfz9effXViIjIycmJL3zhCzFlypRjqnf++efHoEGDIiJi//798eSTTzbb9pe//GXs378/Ig79cbHx/k1wstu3b1+b29bX18dPfvKTqKmpiYhDQXhT88nnJ3Rd5ie0j7YsD3fYunXr4tlnn02dT506NXJyco5oZ35C+/m7v/u71Dxbt25dLF++vNm2GzZsSAvRkjegRJif0NE2bNiQ9kRoU/OwJeYomSJE46TXr1+/+MhHPpI6f/jhh2PZsmVpbWpra2P+/PmxdOnS1Gs33HBDp40RTgQNDQ0xb968eOmllyIiIisrK26++eY2P5rflLy8vLjuuutS57/61a9iwYIFqR+EIg79wX/BggXx9NNPp167/vrrIzfXtp9w2OLFi+MrX/lKLF68OA4cONBsu82bN8c999yT9jn40Y9+NPr27XtEW5+f0HWZn9A+XnrppVY/P6urq2PBggXx9a9/PXUDSu/evdN+hm3M/IT2c9ppp8Xll1+eOv/e974XL7/88hHt1qxZE9/61rdSv0eOHTu2yd9TzU/oWI2fHhs6dGire5olmaNkSlbD4UVI4QRyzz33xM6dO9Ne2717d+zZsyciDu2/dNpppx1x3Ve+8pUYOHDgEa/X1tbGN7/5zbSNLYuKimL06NFRU1MTa9eujV27dqXeu/7662PWrFnt9eVAt/Db3/42fvKTn6TOhw4delRPoM2ZM6fZ9+6///5YsmRJ6vzUU0+NsWPHRkTEG2+8Edu3b0+9N2PGjLQlr4CI5557Lh555JGIOPSE6LBhw2LYsGHRu3fvyMrKioqKiigtLY133nkn7boLL7wwPv/5zzd5J32Ez0/oTIsWLYoHHnggIg49cf3DH/6wxfbmJxy/xvPu8Ofn8OHDo3fv3lFfXx87d+6M9evXp+2D1qNHj7j99ttjwoQJzdY1P6H91NTUxDe+8Y20vY+GDx8eY8aMiezs7CgtLY1Nmzal3hswYEDcfffdMXjw4CbrmZ/QMWpra+PGG29MrZLy8Y9/PK655ppjqmOO0tmEaJyQ/uEf/iF27Nhx1Nfdf//9aRvPNnbgwIH48Y9/nLanUlJOTk5cd911x/RNHrq7X/ziF/HLX/7yuK5vTm1tbTz66KPx29/+Npr72MrKyooPfehD8YlPfMJTaJDwu9/9Lv793/+9ze179eoV1113XfyX//JfIju75YULfH5C5zjaEC3C/ITj1XjetUVxcXHMnTs3RowY0Wpb8xPaz4EDB+Khhx5Ke/KkKWPHjo0vfOELzQZojeuZn9C+Xn755fjXf/3XiDj095sHHnggtX3H0TJH6WxCNE5IHRGiHfa3v/0tFi9eHOvXr4/du3dHTk5ODBo0KM4+++yYOXNmm34hgpNRR4Zoh23YsCEWLlwYa9asST2NOnDgwJgwYULMnDkziouLj7l/6O62bt0aK1eujDfeeCPeeuutKCsrS+0jWFBQEP37949Ro0bF5MmT46KLLor8/Pyjqu/zEzrWsYRoh5mfcGxqampi06ZNsW7dutTqBxUVFVFRURENDQ1RUFAQp5xySowdOzYuuuiiOPPMM4+6D/MT2s+aNWtiyZIl8frrr8fOnTujvr4++vXrF2PHjo2pU6fGBRdcEFlZWW2uZ35C+/nOd76T2rdw8uTJceeddx53TXOUziJEAwAAAAAAgISW1+cBAAAAAACAk5AQDQAAAAAAABKEaAAAAAAAAJAgRAMAAAAAAIAEIRoAAAAAAAAkCNEAAAAAAAAgQYgGAAAAAAAACUI0AAAAAAAASBCiAQAAAAAAQIIQDQAAAAAAABKEaAAAAAAAAJAgRAMAAAAAAIAEIRoAAAAAAAAkCNEAAAAAAAAgQYgGAAAAAAAACUI0AAAAAAAASBCiAQAAAAAAQIIQDQAAAAAAABKEaAAAAAAAAJAgRAMAAAAAAIAEIRoAAAAAAAAkCNEAAAAAAAAgQYgGAAAAAAAACUI0AAAAAAAASBCiAQAAAAAAQIIQDQAAAAAAABL+PzQMTK0JxbGUAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 458, "width": 872 } }, "output_type": "display_data" } ], "source": [ "bmi.plot(kind = 'hist', color = 'slateblue', edgecolor = 'black', \n", " linewidth = 1.2, title = 'Histogram of BMI')\n", "plt.show(); \n", "\n", "bmi.plot(kind = 'hist', color = 'gold', edgecolor = 'black', \n", " linewidth = 1.2, title = 'Histogram of BMI (with the bin size of 50)', bins = 50)\n", "plt.show(); " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "How do these two histograms compare?\n", "\n", "At this point, we've done a good first pass at analyzing the information in the BRFSS questionnaire. We've found an interesting association between smoking habit and gender, and we can say something about the relationship between people's assessment of their general health and their own BMI. We've also picked up essential computing tools – summary statistics, subsetting, and plots – that will serve us well throughout this course." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "## On Your Own\n", "\n", "
    \n", "
  1. Make a scatterplot of weight versus desired weight. Describe the relationship between these two variables.

  2. \n", "
  3. Let's consider a new variable: the difference between desired weight (wtdesire) and current weight (weight). Create this new variable by subtracting the two columns in the DataFrame and assigning them to a new object called wdiff.

  4. \n", "
  5. What type of data is wdiff? If an observation wdiff is 0, what does this mean about the person's weight and desired weight. What if wdiff is positive or negative?

  6. \n", "
  7. Describe the distribution of wdiff in terms of its center, shape, and spread, including any plots you use. What does this tell us about how people feel about their current weight?\n", "

  8. \n", "
  9. Using numerical summaries and a side-by-side box plot, determine if men tend to view their weight differently than women.

  10. \n", "
  11. Now it's time to get creative. Find the mean and standard deviation of weight and determine what proportion of the weights are within one standard deviation of the mean.
  12. \n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "This lab was adapted by David Akman and Imran Ture from OpenIntro by Andrew Bray and Mine Çetinkaya-Rundel.\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "***" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 4 }